Articles | Volume 21, issue 1
https://doi.org/10.5194/os-21-419-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-419-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Hydrographic section along 55° E in the Indian and Southern oceans
Katsuro Katsumata
CORRESPONDING AUTHOR
Department of Earth and Planetary Science, The University of Tokyo, Tokyo, Japan
Shigeru Aoki
Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
Kay I. Ohshima
Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
Michiyo Yamamoto-Kawai
Department of Ocean Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan
Related authors
No articles found.
Shenjie Zhou, Pierre Dutrieux, Claudia F. Giulivi, Adrian Jenkins, Alessandro Silvano, Christopher Auckland, E. Povl Abrahamsen, Michael P. Meredith, Irena Vaňková, Keith W. Nicholls, Peter E. D. Davis, Svein Østerhus, Arnold L. Gordon, Christopher J. Zappa, Tiago S. Dotto, Theodore A. Scambos, Kathyrn L. Gunn, Stephen R. Rintoul, Shigeru Aoki, Craig Stevens, Chengyan Liu, Sukyoung Yun, Tae-Wan Kim, Won Sang Lee, Markus Janout, Tore Hattermann, Julius Lauber, Elin Darelius, Anna Wåhlin, Leo Middleton, Pasquale Castagno, Giorgio Budillon, Karen J. Heywood, Jennifer Graham, Stephen Dye, Daisuke Hirano, and Una Kim Miller
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-54, https://doi.org/10.5194/essd-2025-54, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We created the first standardised dataset of in-situ ocean measurements time series from around Antarctica collected since 1970s. This includes temperature, salinity, pressure, and currents recorded by instruments deployed in icy, challenging conditions. Our analysis highlights the dominance of tidal currents and separates these from other patterns to study regional energy distribution. This unique dataset offers a foundation for future research on Antarctic ocean dynamics and ice interactions.
Mutsumi Iizuka, Takuya Itaki, Osamu Seki, Ryosuke Makabe, Motoha Ojima, and Shigeru Aoki
J. Micropalaeontol., 43, 37–53, https://doi.org/10.5194/jm-43-37-2024, https://doi.org/10.5194/jm-43-37-2024, 2024
Short summary
Short summary
Radiolarian fossils are valuable tools for understanding water mass distribution. However, they have not been used in the high-latitude Southern Ocean due to unclear radiolarian assemblages. Our study identifies four assemblages related to water masses and ice edge environments in the high-latitude Southern Ocean, offering insights for water mass reconstruction in this region.
Kazuya Kusahara, Daisuke Hirano, Masakazu Fujii, Alexander D. Fraser, Takeshi Tamura, Kohei Mizobata, Guy D. Williams, and Shigeru Aoki
The Cryosphere, 18, 43–73, https://doi.org/10.5194/tc-18-43-2024, https://doi.org/10.5194/tc-18-43-2024, 2024
Short summary
Short summary
This study focuses on the Totten and Moscow University ice shelves, East Antarctica. We used an ocean–sea ice–ice shelf model to better understand regional interactions between ocean, sea ice, and ice shelf. We found that a combination of warm ocean water and local sea ice production influences the regional ice shelf basal melting. Furthermore, the model reproduced the summertime undercurrent on the upper continental slope, regulating ocean heat transport onto the continental shelf.
Vigan Mensah, Koji Fujita, Stephen Howell, Miho Ikeda, Mizuki Komatsu, and Kay I. Ohshima
EGUsphere, https://doi.org/10.5194/egusphere-2023-2492, https://doi.org/10.5194/egusphere-2023-2492, 2023
Preprint archived
Short summary
Short summary
We estimated the volume of freshwater released by sea ice, glaciers, rivers, and precipitation into Baffin Bay and the Labrador Sea, and their changes over the past 70 years. We found that the freshwater volume has risen in Baffin Bay due to increased glacier melting, and dropped in the Labrador Sea because of the decline in sea ice production. We also infer that freshwater from the Arctic Ocean has been exported to our study region for the past 30 years, possibly as a result of global warming.
Alexander D. Fraser, Robert A. Massom, Mark S. Handcock, Phillip Reid, Kay I. Ohshima, Marilyn N. Raphael, Jessica Cartwright, Andrew R. Klekociuk, Zhaohui Wang, and Richard Porter-Smith
The Cryosphere, 15, 5061–5077, https://doi.org/10.5194/tc-15-5061-2021, https://doi.org/10.5194/tc-15-5061-2021, 2021
Short summary
Short summary
Landfast ice is sea ice that remains stationary by attaching to Antarctica's coastline and grounded icebergs. Although a variable feature, landfast ice exerts influence on key coastal processes involving pack ice, the ice sheet, ocean, and atmosphere and is of ecological importance. We present a first analysis of change in landfast ice over an 18-year period and quantify trends (−0.19 ± 0.18 % yr−1). This analysis forms a reference of landfast-ice extent and variability for use in other studies.
Alexander D. Fraser, Robert A. Massom, Kay I. Ohshima, Sascha Willmes, Peter J. Kappes, Jessica Cartwright, and Richard Porter-Smith
Earth Syst. Sci. Data, 12, 2987–2999, https://doi.org/10.5194/essd-12-2987-2020, https://doi.org/10.5194/essd-12-2987-2020, 2020
Short summary
Short summary
Landfast ice, or
fast ice, is a form of sea ice which is mechanically fastened to stationary parts of the coast. Long-term and accurate knowledge of its extent around Antarctica is critical for understanding a number of important Antarctic coastal processes, yet no accurate, large-scale, long-term dataset of its extent has been available. We address this data gap with this new dataset compiled from satellite imagery, containing high-resolution maps of Antarctic fast ice from 2000 to 2018.
Cited articles
Aoki, S., Bindoff, N. L., and Church, J. A.: Interdecadal water mass changes in the Southern Ocean between 30°E and 160°E, Geophys. Res. Lett., 32, L07607, https://doi.org/10.1029/2004GL022220, 2005. a, b
Aoki, S., Katsumata, K., Hamaguchi, M., Noda, A., Kitade, Y., Shimada, K., Hirano, D., Simizu, D., Aoyama, Y., Doi, K., and Nogi, Y.: Freshening of Antarctic Bottom Water Off Cape Darnley, East Antarctica, J. Geophys. Res.-Oceans, 125, e2020JC016374, https://doi.org/10.1029/2020JC016374, 2020a. a, b
Aoki, S., Yamazaki, K., Hirano, D., Katsumata, K., Shimada, K., Kitade, Y., Sasaki, H., and Murase, H.: Reversal of freshening trend of Antarctic Bottom Water in the Australian-Antarctic Basin during 2010s, Sci. Rep., 10, 14415, https://doi.org/10.1038/s41598-020-71290-6, 2020b. a
Bryden, H. L., McDonagh, E. L., and King, B. A.: Changes in Ocean Water Mass Properties: Oscillations or Trends?, Science, 300, 2086–2088, https://doi.org/10.1126/science.1083980, 2003. a, b
Bullister, J. L. and Warner, M. J.: Atmospheric Histories (1765–2022) for CFC-11, CFC-12, CFC-113, CCl4, SF6 and N2O (NCEI Accession 0164584), NOAA National Centers for Environmental Information, https://doi.org/10.3334/cdiac/otg.cfc_atm_hist_2015, 2017. a
Bullister, J. L., Wisegarver, D. P., and Menzia, F. A.: The solubility of sulfur hexafluoride in water and seawater, Deep-Sea Res. Pt. I, 49, 175–187, 2002. a
CCHDO: CCHDO Hydrographic Data Archive, UC San Diego Library Digital Collections [data set], https://doi.org/10.6075/J0CCHAM8, 2023. a
E.U. Copernicus Marine Service Information: Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, https://doi.org/10.48670/moi-00148, 2025. a
Fine, R. A., Smethie, W. M., Bullister, J. L., Rhein, M., Min, D.-H., Warner, M. J., Poisson, A., and Weiss, R. F.: Decadal ventilation and mixing of Indian Ocean waters, Deep-Sea Res. Pt. I, 55, 20–37, https://doi.org/10.1016/j.dsr.2007.10.002, 2008. a
Gao, L., Zu, L., Guo, G., and Hou, S.: Recent changes and distribution of the newly-formed Cape Darnley Bottom Water, East Antarctica, Deep-Sea Res. Pt. II, 201, 105119, https://doi.org/10.1016/j.dsr2.2022.105119, 2022. a
Gille, S. T.: Warming of the Southern Ocean Since the 1950s, Science, 295, 1275–1277, https://doi.org/10.1126/science.1065863, 2002. a
Gordon, A. L. and Huber, B. A.: Thermohaline stratification below the Southern Ocean sea ice, J. Geophys. Res.-Oceans, 89, 641–648, 1984. a
Haine, T. W. N., Watson, A. J., Liddicoat, M. I., and Dickson, R. R.: The flow of Antarctic bottom water to the southwest Indian Ocean estimated using CFCs, J. Geophys. Res.-Oceans, 103, 27637–27653, https://doi.org/10.1029/98JC02476, 1998. a, b
Heywood, K. J., Sparrow, M. D., Brown, J., and Dickson, R. R.: Frontal structure and Antarctic Bottom Water flow through the Princess Elizabeth Trough, Antarctica, Deep-Sea Res. Pt. I, 46, 1181–1200, https://doi.org/10.1016/S0967-0637(98)00108-3, 1999. a
Jackett, D. R. and McDougall, T. J.: A Neutral Density Variable for the World’s Oceans, J. Phys. Oceanogr., 27, 237–263, https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2, 1997. a
Johnson, G. C.: Quantifying Antarctic Bottom Water and North Atlantic Deep Water volumes, J. Geophys. Res.-Oceans, 113, C05027, https://doi.org/10.1029/2007JC004477, 2008. a, b, c
Jullion, L., Naveira Garabato, A. C., Bacon, S., Meredith, M. P., Brown, P. J., Torres-Valdés, S., Speer, K. G., Holland, P. R., Dong, J., Bakker, D., Hoppema, M., Loose, B., Venables, H. J., Jenkins, W. J., Messias, M.-J., and Fahrbach, E.: The contribution of the Weddell Gyre to the lower limb of the Global Overturning Circulation, J. Geophys. Res.-Oceans, 119, 3357–3377, https://doi.org/10.1002/2013JC009725, 2014. a, b
Katsumata, K.: Eddies Observed by Argo Floats. Part II: Form Stress and Streamline Length in the Southern Ocean, J. Phys. Oceanogr., 47, 2237–2250, https://doi.org/10.1175/JPO-D-17-0072.1, 2017. a
Katsumata, K. and Yamazaki, K.: Diapycnal and isopycnal mixing along the continental rise in the Australian–Antarctic Basin, Prog. Oceanogr., 211, 102979, https://doi.org/10.1016/j.pocean.2023.102979, 2023. a
Katsumata, K., Talley, L. D., Capuano, T. A., and Whalen, C. B.: Spatial and Temporal Variability of Diapycnal Mixing in the Indian Ocean, J. Geophys. Res.-Oceans, 126, e2021JC017257, https://doi.org/10.1029/2021JC017257, 2021. a
Kim, Y. S. and Orsi, A. H.: On the Variability of Antarctic Circumpolar Current Fronts Inferred from 1992–2011 Altimetry, J. Phys. Oceanogr., 44, 3054–3071, https://doi.org/10.1175/JPO-D-13-0217.1, 2014. a
Kusahara, K., Williams, G. D., Tamura, T., Massom, R., and Hasumi, H.: Dense shelf water spreading from Antarctic coastal polynyas to the deep Southern Ocean: A regional circumpolar model study, J. Geophys. Res.- Oceans, 122, 6238–6253, https://doi.org/10.1002/2017JC012911, 2017. a, b, c
Ledwell, J. R.: The Brazil Basin Tracer Release Experiment: Observations, J. Phys. Oceanogr., 54, 1105–1120, https://doi.org/10.1175/JPO-D-22-0249.1, 2024. a
Madsen, K., Nielsen, H. B., and Tingless, O.: Methods for non-linear least squares problems, Informatics and Mathematical Modelling, Technical University of Denmark, 2nd Edition, http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf (last access: 10 February 2025), 2004. a
Mantyla, A. W. and Reid, J. L.: Abyssal characteristics of the World Ocean waters, Deep-Sea Res. Pt. I, 30, 805–833, 1983. a
McDougall, T. J.: The relative roles of diapycnal and isopycnal mixing on subsurface water mass conversion, J. Phys. Oceanogr., 14, 1577–1589, 1984. a
Meijers, A. J. S., Klocker, A., Bindoff, N. L., Williams, G. D., and Marsland, S. J.: The circulation and water masses of the Antarctic shelf and continental slope between 30 and 80°E, Deep-Sea Res. Pt. II, 57, 723–737, https://doi.org/10.1016/j.dsr2.2009.04.019, 2010. a, b
Menezes, V. V., Macdonald, A. M., and Schatzman, C.: Accelerated freshening of Antarctic Bottom Water over the last decade in the Southern Indian Ocean, Sci. Adv., 3, e1601426, https://doi.org/10.1126/sciadv.1601426, 2017. a
Meredith, M. P., Locarnini, R. A., Van Scoy, K. A., Watson, A. J., Heywood, K. J., and King, B. A.: On the sources of Weddell Gyre Antarctic Bottom Water, J. Geophys. Res.-Oceans, 105, 1093–1104, https://doi.org/10.1029/1999JC900263, 2000. a
Mishonov, A. V., Boyer T. P., Baranova, O. K., Bouchard, C. N., Cross, S., Garcia, H. E., Locarnini, R. A., Paver, C. R., Reagan, J. R., Wang, Z., Seidov, D., Grodsky, A. I., and Beauchamp, J. G.: World Ocean Database 2023, C. Bouchard, Technical Ed., NOAA Atlas NESDIS 97, 206 pp., https://doi.org/10.25923/z885-h264, 2024. a, b, c
NOAA Global Monitoring Laboratory: Combined Dadtaset for Chlorofluorocarbon-12 (CCl2F2) and Sulfur hexafluoride (SF6), https://gml.noaa.gov/hats/data.html, last access: 10 February 2025. a
Ohashi, Y., Yamamoto-Kawai, M., Kusahara, K., Sasaki, K., and Ohshima, K. I.: Age distribution of Antarctic Bottom Water off Cape Darnley, East Antarctica, estimated using chlorofluorocarbon and sulfur hexafluoride, Scie. Rep., 12, 8462, https://doi.org/10.1038/s41598-022-12109-4, 2022. a, b, c, d
Ohshima, K. I. and Katsumata, K.: CTD and bottle data from KH-20-1 cruise in the 2020/21 season from the region around Cape Darnley, 0.10, Arctic Data archive System (ADS), Japan, https://ads.nipr.ac.jp/dataset/A20240613-001 (last access: 10 February 2025), 2024. a
Ohshima, K., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F., Kitade, Y., Tamura, T., Hirano, D., Herraiz-Borreguero, L., Field, I., Hindell, M., Aoki, S., and Wakatsuchi, M.: Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya, Nat. Geosci., 6, 235–240, 2013. a, b
Ohshima, K. I., Yamamoto-Kawai, M., and Katsumata, K.: CTD and bottle data from KH-19-1 cruise in the 2019/20 season from the region around Cape Darnley, 0.10, Arctic Data archive System (ADS), Japan, https://ads.nipr.ac.jp/dataset/A20240612-002 (last access: 10 February 2025), 2024. a
Orsi, A. H., Johnson, G. C., and Bullister, J. L.: Circulation, mixing, and production of Antarctic Bottom Water, Prog. Oceanogr., 43, 55–109, https://doi.org/10.1016/S0079-6611(99)00004-X, 1999. a, b
Park, Y.-H. and Gambéroni, L.: Cross-frontal exchange of Antarctic Intermediate Water and Antarctic Bottom Water in the Crozet Basin, Deep-Sea Res. Pt. II, 44, 963–986, https://doi.org/10.1016/S0967-0645(97)00004-0, 1997. a, b
Park, Y.-H., Gambéroni, L., and Charriaud, E.: Frontal structure and transport of the Antarctic Circumpolar Current in the south Indian Ocean sector, 40–80°E, Mar. Chem. 35, 45–62, https://doi.org/10.1016/S0304-4203(09)90007-X, 1991. a, b, c, d
Park, Y.-H., Charriaud, E., and Fieux, M.: Thermohaline structure of the Antarctic Surface Water/Winter Water in the Indian sector of the Southern Ocean, J. Mar. Syst., 17, 5–23, https://doi.org/10.1016/S0924-7963(98)00026-8, 1998. a
Phillips, H. E. and Rintoul, S. R.: Eddy Variability and Energetics from Direct Current Measurements in the Antarctic Circumpolar Current South of Australia, J. Phys. Oceanogr., 30, 3050–3076, https://doi.org/10.1175/1520-0485(2000)030<3050:EVAEFD>2.0.CO;2, 2000. a
Polzin, K. L., Naveira Garabato, A. C., Huussen, T. N., Sloyan, B. M., and Waterman, S.: Finescale parameterizations of turbulent dissipation, J. Geophys. Res.-Oceans, 119, 1383–1419, https://doi.org/10.1002/2013JC008979, 2014. a
Reiniger, R. F. and Ross, C. K.: A method of interpolation with application to oceanographic data, Deep-Sea Res., 15, 185–193, https://doi.org/10.1016/0011-7471(68)90040-5, 1968. a
Ryan, S., Schröder, M., Huhn, O., and Timmermann, R.: On the warm inflow at the eastern boundary of the Weddell Gyre, Deep-Sea Res. Pt. I, 107, 70–81, https://doi.org/10.1016/j.dsr.2015.11.002, 2016. a
Sasaki, Y., Yasuda, I., Katsumata, K., Kouketsu, S., and Uchida, H.: Turbulence across the Antarctic Circumpolar Current in the Indian Southern Ocean: Micro-Temperature Measurements and Finescale Parameterizations, J. Geophys. Res.-Oceans, 129, e2023JC019847, https://doi.org/10.1029/2023JC019847, 2024. a
Schlosser, P., Bullister, J. L., and Bayer, R.: Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers, Mar. Chem., 35, 97–122, 1991. a
SeaDataNet: Pan-European infrastructure for ocean and marine data management, CTD data from M/V Marion Dufresne, https://cdi.seadatanet.org/, last access: 10 February 2025. a
Sokolov, S. and Rintoul, S. R.: Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: 2. Variability and relationship to sea surface height, J. Geophys. Res.-Oceans, 114, C11019, https://doi.org/10.1029/2008JC005248, 2009. a
Tulloch, R., Ferrari, R., Jahn, O., Klocker, A., LaCasce, J., Ledwell, J. R., Marshall, J., Messias, M.-J., Speer, K., and Watson, A.: Direct Estimate of Lateral Eddy Diffusivity Upstream of Drake Passage, J. Phys. Oceanogr., 44, 2593–2616, https://doi.org/10.1175/JPO-D-13-0120.1, 2014. a
Uchida, H.: The latest batch-to-batch correction table for IAPSO Standard Seawater, JAMSTEC, https://doi.org/10.17596/0001983, 2019. a, b
Uchida, H., Shimada, K., and Kawano, T.: A Method for Data Processing to Obtain High-Quality XCTD Data, J. Atmos. Ocean. Tech., 28, 816–826, https://doi.org/10.1175/2011JTECHO795.1, 2011. a
Uchida, H., Murata, A., Katsumata, K., Arulananthan, K., and Doi, T.: WHP I08N revisit/I07S in 2019/2020 data book, JAMSTEC https://doi.org/10.17596/0002118, 2021. a, b
Warner, M. J. and Weiss, R. F.: Solubilities of chlorofluorocarbons 11 and 12 in water and seawater, Deep-Sea Res. Pt. I., 32, 1485–1497, 1985. a
Warren, B. A.: Bottom water transport through the Southwest Indian Ridge, Deep- Sea Res., 25, 315–321, https://doi.org/10.1016/0146-6291(78)90596-9, 1978. a
Williams, G. D., Nicol, S., Aoki, S., Meijers, A. J. S., Bindoff, N. L., Iijima, Y., Marsland, S. J., and Klocker, A.: Surface oceanography of BROKE-West, along the Antarctic margin of the south-west Indian Ocean (30–80°E), Deep-Sea Res. Pt. II, 57, 738–757, https://doi.org/10.1016/j.dsr2.2009.04.020, 2010. a, b
Zilberman, N. V., Scanderbeg, M. C., Gray, A. R., and Oke, P. R.: Scripps Argo trajectory-based velocity product 2001-01 to 2020-12, UC San Diego Library Digital Collections, Scripps Argo Trajectory-Based Velocity Product [data set], https://doi.org/10.6075/J0KD1Z35, 2022. a
Short summary
Ship-based observations provide data of seawater properties like temperature, salinity, nutrients, and various gases, but some important world oceans have still not been covered. A voyage in 2019/20 in the southwest Indian Ocean along approximately 55° E from 30° S to Antarctica attempted to fill one such data-sparse region. The measured cross section of the Antarctic Circumpolar Current and accompanying eddies demonstrates various oceanic behaviours including fronts and eddy mixing.
Ship-based observations provide data of seawater properties like temperature, salinity,...