Articles | Volume 21, issue 6
https://doi.org/10.5194/os-21-3375-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-3375-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Observations of cross-shelf transport due to internal wave pumping on the Bay of Biscay shelf
Adèle Moncuquet
CORRESPONDING AUTHOR
Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER/DYNECO/DHYSED, Brest, France
Nicole L. Jones
School of Earth and Oceans and Oceans Institute, University of Western Australia, Perth, WA, Australia
Lucie Bordois
Service Hydrographie et Océanographie de la Marine, Brest, France
François Dufois
Institut Français de Recherche pour l'Exploitation de la Mer, IFREMER/DYNECO/DHYSED, Brest, France
Pascal Lazure
Institut Français de Recherche pour l'Exploitation de la Mer, LOPS (UMR6523 CNRS/IFREMER/IRD/UBO), Brest, France
Related authors
No articles found.
Axel Tassigny, Stef L. Bardoel, Thomas Valran, Samuel Viboud, Louis Gostiaux, Joël Sommeria, Lucie Bordois, Xavier Carton, and Maria Eletta Negretti
EGUsphere, https://doi.org/10.5194/egusphere-2025-5723, https://doi.org/10.5194/egusphere-2025-5723, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study uses a realistic laboratory model to reveal how tides and topography shape the exchange of waters at the Strait of Gibraltar. The experiments show when, where and why strong dilution occurs, and how and why conditions change between spring and neap tides. The results give new insight into a complex passage that links the Atlantic and Mediterranean, improving our ability to understand and predict its behavior.
Jessica Kolbusz, Devin Harrison, Nicole Jones, Joanne O'Callaghan, Taimoor Sohail, Todd Bond, Heather Stewart, and Alan Jamieson
EGUsphere, https://doi.org/10.5194/egusphere-2025-4709, https://doi.org/10.5194/egusphere-2025-4709, 2025
Short summary
Short summary
The bottom mixed layer is where water at the seafloor mixes with the water column above it, helping to move heat and nutrients around the ocean. Using new observations from the Pacific Ocean and publicly available data, we found that depth, seafloor shape, and internal wave energy losses explain much of the variation in the bottom mixed layer thickness. Our findings offer new insights into how these seafloor regions change over an abyssal region and where future measurements should focus.
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024, https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
Short summary
We propose a novel method for the estimation of ocean surface flow properties in terms of its energy and spatial and temporal scales. The method relies on flow observations collected either at a fixed location or along the flow, as would be inferred from the trajectory of freely drifting platforms. The accuracy of the method is quantified in several experimental configurations. We innovatively demonstrate that freely drifting platforms, even in isolation, can be used to capture flow properties.
Xabier Davila, Anna Rubio, Luis Felipe Artigas, Ingrid Puillat, Ivan Manso-Narvarte, Pascal Lazure, and Ainhoa Caballero
Ocean Sci., 17, 849–870, https://doi.org/10.5194/os-17-849-2021, https://doi.org/10.5194/os-17-849-2021, 2021
Short summary
Short summary
The ocean is a turbulent system, full of meandering currents and fronts of various scales. These processes can influence the distribution of microscopic algae or phytoplankton by upwelling deep, nutrient-rich waters to the sunlit surface or by actively gathering and accumulating them. Our results suggest that, at the surface, salinity is the main conditioning factor for phytoplankton distribution. However, at the subsurface, oceanic currents influence phytoplankton distribution the most.
Lucia Pineau-Guillou, Pascal Lazure, and Guy Wöppelmann
Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021, https://doi.org/10.5194/os-17-17-2021, 2021
Short summary
Short summary
We investigated the long-term changes of the principal tidal component M2 along North Atlantic coasts, from 1846 to 2018. We analysed 18 tide gauges. We found that M2 variations are consistent at all the stations in the North-East Atlantic, whereas some discrepancies appear in the North-West Atlantic. The similarity between the North Atlantic Oscillation and M2 variations in the North-East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide.
Cited articles
Baines, P.: On internal tide generation models, Deep-Sea Res., 29, 307–338, https://doi.org/10.1016/0198-0149(82)90098-X, 1982. a
Barbot, S.: Modélisation réaliste de la marée interne: sa signature en surface, sa variabilité et son bilan énergétique, Océanographie. Université Paul Sabatier - Toulouse III, Français, https://theses.hal.science/tel-03683133v1 (last access: 8 December 2025), 2021. a
Barbot, S., Lyard, F., Tchilibou, M., and Carrere, L.: Background stratification impacts on internal tide generation and abyssal propagation in the western equatorial Atlantic and the Bay of Biscay, Ocean Sci., 17, 1563–1583, https://doi.org/10.5194/os-17-1563-2021, 2021. a, b
Batifoulier, F., Lazure, P., and Bonneton, P.: Poleward coastal jets induced by westerlies in the Bay of Biscay, J. Geophys. Res.-Oceans, 117, https://doi.org/10.1029/2011JC007658, 2012. a, b, c
Charles, E., Idier, D., Delecluse, P., Déqué, M., and Le Cozannet, G.: Climate change impact on waves in the Bay of Biscay, France, Ocean Dynam., 62, 831–848, https://doi.org/10.1007/s10236-012-0534-8, 2012. a
Cheriton, O. M., McPhee-Shaw, E. E., Shaw, W. J., Stanton, T. P., Bellingham, J. G., and Storlazzi, C. D.: Suspended particulate layers and internal waves over the southern Monterey Bay continental shelf: an important control on shelf mud belts?, J. Geophys. Res.-Oceans, 119, 428–444, https://doi.org/10.1002/2013JC009360, 2014. a
Cirac, P., Berne, S., Castaing, P., and Weber, O.: Processus de mise en place et d'évolution de la couverture sédimentaire superficielle de la plate-forme nord-aquitaine, Oceanol. Acta, 23, 663–686, https://doi.org/10.1016/S0399-1784(00)00110-9, 2000. a
Dauhajre, D. P., Molemaker, M. J., McWilliams, J. C., and Hypolite, D.: Effects of stratification on shoaling internal tidal bores, J. Phys. Oceanogr., https://doi.org/10.1175/JPO-D-21-0107.1, 2021. a
Davis, K. A., Arthur, R. S., Reid, E. C., Rogers, J. S., Fringer, O. B., DeCarlo, T. M., and Cohen, A. L.: Fate of internal waves on a shallow shelf, J. Geophys. Res.-Oceans, 125, e2019JC015377, https://doi.org/10.1029/2019JC015377, 2020. a
Demerliac, M.: Calcul du niveau moyen journalier, Annales Hydrographiques du SHOM 5 éme série, 49–57, 1974. a
Franks, P. J. S., Garwood, J. C., Ouimet, M., Cortes, J., Musgrave, R. C., and Lucas, A. J.: Stokes drift of plankton in linear internal waves: cross-shore transport of neutrally buoyant and depth-keeping organisms, Limnol. Oceanogr., 65, 1286–1296, https://doi.org/10.1002/lno.11389, 2020. a, b, c, d
Froidefond, J. M., Castaing, P., and Jouanneau, J. M.: Distribution of suspended matter in a coastal upwelling area. Satellite data and in situ measurements, J. Marine Syst., 8, 91–105, https://doi.org/10.1016/0924-7963(95)00040-2, 1996. a
Garwood, J., Musgrave, R., and Lucas, A.: Life in internal waves, Oceanography, 33, 38–49, https://doi.org/10.5670/oceanog.2020.313, 2020. a
Gerkema, T.: Internal and interfacial tides: beam scattering and local generation of solitary waves, J. Mar. Res., 59, 227–255, https://elischolar.library.yale.edu/journal_of_marine_research/2390 (last access: 8 December 2025), 2001. a
Gil, G. T. C. and Fringer, O.: Particle transport due to trapped cores, International Symposium on Stratified Flows, 1, https://escholarship.org/uc/item/1qg7b8nr (last access: 8 December 2025), 2016. a
Henderson, S. M.: Upslope internal-wave Stokes drift, and compensating downslope eulerian mean currents, observed above a lakebed, J. Phys. Oceanogr., 46, 1947–1961, https://doi.org/10.1175/JPO-D-15-0114.1, 2016. a, b, c, d
Huthnance, J. M.: Circulation, exchange and water masses at the ocean margin: the role of physical processes at the shelf edge, Prog. Oceanogr., 35, 353–431, https://doi.org/10.1016/0079-6611(95)80003-C, 1995. a, b
Huthnance, J. M., Holt, J. T., and Wakelin, S. L.: Deep ocean exchange with west-European shelf seas, Ocean Sci., 5, 621–634, https://doi.org/10.5194/os-5-621-2009, 2009. a, b
Huthnance, J., Hopkins, J., Berx, B., Dale, A., Holt, J., Hosegood, P., Inall, M., Jones, S., Loveday, B. R., Miller, P. I., Polton, J., Porter, M., and Spingys, C.: Ocean shelf exchange, NW European shelf seas: measurements, estimates and comparisons, Prog. Oceanogr., 202, 102760, https://doi.org/10.1016/j.pocean.2022.102760, 2022. a, b, c
Inall, M., Shapiro, G., and Sherwin, T.: Mass transport by non-linear internal waves on the Malin Shelf, Cont. Shelf Res., 21, 1449–1472, https://doi.org/10.1016/S0278-4343(01)00020-6, 2001. a, b, c, d
Jackson, C. R., United States Office of Naval Research, and Global Ocean Associates: An atlas of internal solitary-like waves and their properties, http://www.internalwaveatlas.com/Atlas2_index.html (last access: 8 December 2025), 2004. a
Kersalé, M., Marié, L., Le Cann, B., Serpette, A., Lathuilière, C., Le Boyer, A., Rubio, A., and Lazure, P.: Poleward along-shore current pulses on the inner shelf of the Bay of Biscay, Estuar. Coast. Shelf S., 179, 155–171, https://doi.org/10.1016/j.ecss.2015.11.018, 2016. a
Koutsikopoulos, C. and Cann, B.: Physical processes and hydrological structures related to the Bay of Biscay anchovy, Scientia Marina, https://www.semanticscholar.org/paper/Physical-processes-and-hydrological-structures-to-Koutsikopoulos-Cann/ 335803dfe67ff259954433a7cad9d8c688800d09 (last access: 8 December 2025), 1996. a, b, c, d
Laës, A., Blain, S., Laan, P., Ussher, S. J., Achterberg, E. P., Tréguer, P., and de Baar, H. J. W.: Sources and transport of dissolved iron and manganese along the continental margin of the Bay of Biscay, Biogeosciences, 4, 181–194, https://doi.org/10.5194/bg-4-181-2007, 2007. a
Lamb, K. G.: Particle transport by nonbreaking, solitary internal waves, J. Geophys. Res.-Oceans, 102, 18641–18660, https://doi.org/10.1029/97JC00441, 1997. a
Lamb, K. G.: Interaction of mode-one internal solitary waves of opposite polarity in double-pycnocline stratifications, J. Fluid Mech., 962, A17, https://doi.org/10.1017/jfm.2023.284, 2023. a
Lazure, P.: SOLIBOB 2022, RV Côtes De La Manche, French Oceanographic Cruises [data set], https://doi.org/10.17600/18002070, 2022. a
Lazure, P. and Jegou, A.-M.: 3D modelling of seasonal evolution of Loire and Gironde plumes on Biscay Bay continental shelf, Oceanol. Acta, 21, 165–177, https://doi.org/10.1016/S0399-1784(98)80006-6, 1998. a
Lazure, P. and Puillat, I.: ETOILE cruise, Côtes De La Manche R/V. Current meters, Subsurface meas. underway (T,S) MVP (Moving vessel profiler), Thermistor chain CTD stations, French Oceanographic Cruises [data set], https://doi.org/10.17600/17010800, 2017. a
Le Boyer, A., Charria, G., Le Cann, B., Lazure, P., and Marié, L.: Circulation on the shelf and the upper slope of the Bay of Biscay, Cont. Shelf Res., 55, 97–107, https://doi.org/10.1016/j.csr.2013.01.006, 2013. a, b, c
Le Cann, B.: Barotropic tidal dynamics of the Bay of Biscay shelf: observations, numerical modelling and physical interpretation, Cont. Shelf Res., 10, 723–758, https://doi.org/10.1016/0278-4343(90)90008-A, 1990. a, b
Lentz, S. J. and Chapman, D. C.: The importance of nonlinear cross-shelf momentum flux during wind-driven coastal upwelling, J. Phys. Oceanogr., 34, 2444–2457, https://doi.org/10.1175/JPO2644.1, 2004. a, b, c
MacCready, P.: Calculating estuarine exchange flow using isohaline coordinates, J. Phys. Oceanogr., 41, 1116–1124, https://doi.org/10.1175/2011JPO4517.1, 2011. a, b
Moncuquet, A., Jones, N. L., Zulberti, A. P., Bordois, L., Dufois, F., and Lazure, P.: Observations of mode-one nonlinear internal waves (NLIW) of opposite polarity in changing background conditions, J. Geophys. Res.-Oceans, 130, e2024JC021021, https://doi.org/10.1029/2024JC021021, 2025. a, b, c, d, e, f
Pairaud, I. L., Auclair, F., Marsaleix, P., Lyard, F., and Pichon, A.: Dynamics of the semi-diurnal and quarter-diurnal internal tides in the Bay of Biscay. Part 2: Baroclinic tides, Cont. Shelf Res., 30, 253–269, https://doi.org/10.1016/j.csr.2009.10.008, 2010. a
Pichon, A., Morel, Y., Baraille, R., and Quaresma, L.: Internal tide interactions in the Bay of Biscay: observations and modelling, J. Marine Syst., 109–110, S26–S44, https://doi.org/10.1016/j.jmarsys.2011.07.003, 2013. a
Pineda, J.: Predictable upwelling and the shoreward transport of planktonic larvae by internal tidal bores, Science, 253, 548–549, https://doi.org/10.1126/science.253.5019.548, 1991. a
Pingree, R. D. and Mardell, G. T.: Solitary internal waves in the Celtic Sea, Prog. Oceanogr., 14, 431–441, https://doi.org/10.1016/0079-6611(85)90021-7, 1985. a
Pingree, R. D. and New, A. L.: Abyssal penetration and bottom reflection of internal tidal energy in the Bay of Biscay, J. Phys. Oceanogr., 21, 28–39, https://doi.org/10.1175/1520-0485(1991)021<0028:APABRO>2.0.CO;2, 1991. a
Puillat, I., Lazure, P., Jégou, A. M., Lampert, L., and Miller, P. I.: Hydrographical variability on the French continental shelf in the Bay of Biscay, during the 1990s, Cont. Shelf Res., 24, 1143–1163, https://doi.org/10.1016/j.csr.2004.02.008, 2004. a, b
Puillat, I., Lazure, P., Jegou, A.-M., Lampert, L., and Miller, P.: Mesoscale hydrological variability induced by northwesterly wind on the French continental shelf of the Bay of Biscay, Scientia Marina, 70, 15–26, 2006. a
Scotti, A., Butman, B., Beardsley, R. C., Alexander, P. S., and Anderson, S.: A modified beam-to-Earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler, J. Atmos. Ocean. Tech., 22, 583–591, https://doi.org/10.1175/JTECH1731.1, 2005. a
Shroyer, E. L., Moum, J. N., and Nash, J. D.: Observations of polarity reversal in shoaling nonlinear internal waves, J. Phys. Oceanogr., 39, 691–701, https://doi.org/10.1175/2008JPO3953.1, 2009. a
Shroyer, E. L., Moum, J. N., and Nash, J. D.: Vertical heat flux and lateral mass transport in nonlinear internal waves, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL042715, 2010. a, b
Teledyne RD Instruments: ADCP Coordinate Transformation: Formulas and Calculations, Technical Paper P/N 951-6079-00, Teledyne RD Instruments, Poway, CA, USA, https://www.teledynemarine.com/en-us/support/SiteAssets/RDI/Manuals%20and%20Guides/General%20Interest/Coordinate_Transformation.pdf (last access: 8 December 2025), 2009. a
Thorpe, S. A.: On the shape of progressive internal waves, Philosophical Transactions of the Royal Society of London Series A, 263, 563–614, https://doi.org/10.1098/rsta.1968.0033, 1968. a
Valencia, V., Franco, J., Borja, A., and Fontán, A.: Chapter 7 – Hydrography of the southeastern Bay of Biscay, in: Elsevier Oceanography Series, edited by: Borja, A. and Collins, M., Vol. 70 of Oceanography and Marine Environment of the Basque Country, Elsevier, https://doi.org/10.1016/S0422-9894(04)80045-X , 159–194, 2004. a
Walter, R. K., Woodson, C. B., Leary, P. R., and Monismith, S. G.: Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability, J. Geophys. Res.-Oceans, 119, 3517–3534, https://doi.org/10.1002/2014JC009998, 2014. a
Xie, X. H., Cuypers, Y., Bouruet Aubertot, P., Pichon, A., Lourenço, A., and Ferron, B.: Generation and propagation of internal tides and solitary waves at the shelf edge of the Bay of Biscay, J. Geophys. Res.-Oceans, 120, 6603–6621, https://doi.org/10.1002/2015JC010827, 2015. a, b
Zhang, S., Alford, M. H., and Mickett, J. B.: Characteristics, generation and mass transport of nonlinear internal waves on the Washington continental shelf, J. Geophys. Res.-Oceans, 120, 741–758, https://doi.org/10.1002/2014JC010393, 2015. a, b
Zhang, W., Didenkulova, I., Kurkina, O., Cui, Y., Haberkern, J., Aepfler, R., Santos, A., Zhang, H., and Hanebuth, T.: Internal solitary waves control offshore extension of mud depocenters on the NW Iberian shelf, Mar. Geol., 409, https://doi.org/10.1016/j.margeo.2018.12.008, 2018. a
Short summary
Internal waves along the Bay of Biscay coast transport water distinctly: surface and seafloor water moves shoreward while mid-depth water moves offshore, matching linear internal tide theory. This transport equals effects of moderate winds that typically dominate. Internal waves were the main transport at one site and enhanced shoreward flow near the seabed at another. Understanding these patterns could explain movement of nutrients, sediments, and pollutants affecting coastal ecosystems.
Internal waves along the Bay of Biscay coast transport water distinctly: surface and seafloor...