Articles | Volume 21, issue 6
https://doi.org/10.5194/os-21-3375-2025
https://doi.org/10.5194/os-21-3375-2025
Research article
 | 
10 Dec 2025
Research article |  | 10 Dec 2025

Observations of cross-shelf transport due to internal wave pumping on the Bay of Biscay shelf

Adèle Moncuquet, Nicole L. Jones, Lucie Bordois, François Dufois, and Pascal Lazure

Related authors

A realistic physical model of the Gibraltar Strait
Axel Tassigny, Stef L. Bardoel, Thomas Valran, Samuel Viboud, Louis Gostiaux, Joël Sommeria, Lucie Bordois, Xavier Carton, and Maria Eletta Negretti
EGUsphere, https://doi.org/10.5194/egusphere-2025-5723,https://doi.org/10.5194/egusphere-2025-5723, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Bottom mixed layer derivation and spatial variability over the central and eastern abyssal Pacific Ocean
Jessica Kolbusz, Devin Harrison, Nicole Jones, Joanne O'Callaghan, Taimoor Sohail, Todd Bond, Heather Stewart, and Alan Jamieson
EGUsphere, https://doi.org/10.5194/egusphere-2025-4709,https://doi.org/10.5194/egusphere-2025-4709, 2025
Short summary
Inferring flow energy, space scales, and timescales: freely drifting vs. fixed-point observations
Aurelien Luigi Serge Ponte, Lachlan C. Astfalck, Matthew D. Rayson, Andrew P. Zulberti, and Nicole L. Jones
Nonlin. Processes Geophys., 31, 571–586, https://doi.org/10.5194/npg-31-571-2024,https://doi.org/10.5194/npg-31-571-2024, 2024
Short summary
Coastal submesoscale processes and their effect on phytoplankton distribution in the southeastern Bay of Biscay
Xabier Davila, Anna Rubio, Luis Felipe Artigas, Ingrid Puillat, Ivan Manso-Narvarte, Pascal Lazure, and Ainhoa Caballero
Ocean Sci., 17, 849–870, https://doi.org/10.5194/os-17-849-2021,https://doi.org/10.5194/os-17-849-2021, 2021
Short summary
Large-scale changes of the semidiurnal tide along North Atlantic coasts from 1846 to 2018
Lucia Pineau-Guillou, Pascal Lazure, and Guy Wöppelmann
Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021,https://doi.org/10.5194/os-17-17-2021, 2021
Short summary

Cited articles

Baines, P.: On internal tide generation models, Deep-Sea Res., 29, 307–338, https://doi.org/10.1016/0198-0149(82)90098-X, 1982. a
Barbot, S.: Modélisation réaliste de la marée interne: sa signature en surface, sa variabilité et son bilan énergétique, Océanographie. Université Paul Sabatier - Toulouse III, Français, https://theses.hal.science/tel-03683133v1 (last access: 8 December 2025), 2021. a
Barbot, S., Lyard, F., Tchilibou, M., and Carrere, L.: Background stratification impacts on internal tide generation and abyssal propagation in the western equatorial Atlantic and the Bay of Biscay, Ocean Sci., 17, 1563–1583, https://doi.org/10.5194/os-17-1563-2021, 2021. a, b
Batifoulier, F., Lazure, P., and Bonneton, P.: Poleward coastal jets induced by westerlies in the Bay of Biscay, J. Geophys. Res.-Oceans, 117, https://doi.org/10.1029/2011JC007658, 2012. a, b, c
Bowden, K. F.: Physical Oceanography of Coastal Waters, E. Horwood, ISBN 978-0-85312-686-7, 1983. a, b, c
Download
Short summary
Internal waves along the Bay of Biscay coast transport water distinctly: surface and seafloor water moves shoreward while mid-depth water moves offshore, matching linear internal tide theory. This transport equals effects of moderate winds that typically dominate. Internal waves were the main transport at one site and enhanced shoreward flow near the seabed at another. Understanding these patterns could explain movement of nutrients, sediments, and pollutants affecting coastal ecosystems.
Share