Articles | Volume 21, issue 6
https://doi.org/10.5194/os-21-3055-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-3055-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contribution of dark inorganic carbon fixation to bacterial carbon demand in the oligotrophic Southeastern Mediterranean Sea
Tom Reich
CORRESPONDING AUTHOR
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Natalia Belkin
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Guy Sisma-Ventura
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Hagar Hauzer
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Maxim Rubin-Blum
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Ilana Berman-Frank
CORRESPONDING AUTHOR
Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
Eyal Rahav
CORRESPONDING AUTHOR
National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
Department of Earth and Environmental Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
Institute of Marine Science, University of California, Santa Cruz, CA, USA
Related authors
No articles found.
Maxim Rubin-Blum, Eyal Rahav, Guy Sisma-Ventura, Yana Yudkovski, Zoya Harbuzov, Or M. Bialik, Oded Ezra, Anneleen Foubert, Barak Herut, and Yizhaq Makovsky
Biogeosciences, 22, 1321–1340, https://doi.org/10.5194/bg-22-1321-2025, https://doi.org/10.5194/bg-22-1321-2025, 2025
Short summary
Short summary
Chemotones, transition zones in chemosynthetic ecosystems, alter geochemical cycles and biodiversity. We studied seep chemotones, which are heavily burrowed by ghost shrimp. To investigate if burrowing affects habitat functionality, we surveyed the seafloor with deep-sea vehicles, analyzed sediment, and explored microbial communities in burrows. We found chemosynthetic biofilms, linking them to macromolecule turnover and nutrient cycling. This process may play a crucial role in deep-sea cycles.
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Natalia Belkin, Tamar Guy-Haim, Maxim Rubin-Blum, Ayah Lazar, Guy Sisma-Ventura, Rainer Kiko, Arseniy R. Morov, Tal Ozer, Isaac Gertman, Barak Herut, and Eyal Rahav
Ocean Sci., 18, 693–715, https://doi.org/10.5194/os-18-693-2022, https://doi.org/10.5194/os-18-693-2022, 2022
Short summary
Short summary
We studied how distinct water circulations that elevate (cyclone) or descend (anticyclone) water from the upper ocean affect the biomass, activity and diversity of planktonic microorganisms in the impoverished eastern Mediterranean. We show that cyclonic and anticyclonic eddies differ in their community composition and production. Moreover, the anticyclone may be a potential bio-invasion and dispersal vector, while the cyclone may serve as a thermal refugee for native species.
Hanni Vigderovich, Werner Eckert, Michal Elul, Maxim Rubin-Blum, Marcus Elvert, and Orit Sivan
Biogeosciences, 19, 2313–2331, https://doi.org/10.5194/bg-19-2313-2022, https://doi.org/10.5194/bg-19-2313-2022, 2022
Short summary
Short summary
Anaerobic oxidation of methane (AOM) is one of the major processes limiting the release of the greenhouse gas methane from natural environments. Here we show that significant AOM exists in the methane zone of lake sediments in natural conditions and even after long-term (ca. 18 months) anaerobic slurry incubations with two stages. Methanogens were most likely responsible for oxidizing the methane, and humic substances and iron oxides are likely electron acceptors to support this oxidation.
Cited articles
Agogué, H., Brink, M., Dinasquet, J., and Herndl, G. J.: Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic, Nature, 456, 788–792, https://doi.org/10.1038/nature07535, 2008.
Alkalay, R., Weinstein, Y., Herut, B., Ozer, T., Zlatkin, O., Bar, T., Berman-Frank, I., and Katz, T.: Temporal Pattern and Profile of a Coastal-Deep Sea Conveyor at a Marginal Deep Oligotrophic Sea, J. Geophys. Res. Oceans, 129, https://doi.org/10.1029/2023JC020441, 2024.
Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C., and Bertilsson, S.: High bicarbonate assimilation in the dark by Arctic bacteria, ISME Journal, 4, 1581–1590, https://doi.org/10.1038/ismej.2010.69, 2010.
Alothman, A., López-Sandoval, D., Duarte, C. M., and Agustí, S.: Bacterioplankton dark CO2 fixation in oligotrophic waters, Biogeosciences, 20, 3613–3624, https://doi.org/10.5194/bg-20-3613-2023, 2023.
Andersen, K. S., Kirkegaard, R. H., Karst, S. M., and Albertsen, M.: ampvis2: an R package to analyse and visualise 16S rRNA amplicon data, bioRxiv [preprint], https://doi.org/10.1101/299537, 2018.
Apprill, A., Mcnally, S., Parsons, R., and Weber, L.: Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton, Aquatic Microbial Ecology, 75, 129–137, https://doi.org/10.3354/ame01753, 2015.
Baltar, F. and Herndl, G. J.: Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates?, Biogeosciences, 16, 3793–3799, https://doi.org/10.5194/bg-16-3793-2019, 2019.
Baltar, F., Arístegui, J., Gasol, J. M., Sintes, E., and Herndl, G. J.: Evidence of prokaryotic metabolism on suspended particulate organic matter in the dark waters of the subtropical North Atlantic, Limnol. Oceanogr., 54, 182–193, https://doi.org/10.4319/lo.2009.54.1.0182, 2009.
Baltar, F., Arístegui, J., Sintes, E., Gasol, J. M., Reinthaler, T., and Herndl, G. J.: Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic, Geophys. Res. Lett., 37, https://doi.org/10.1029/2010GL043105, 2010.
Baltar, F., Martínez-Pérez, C., Amano, C., Vial, M., Robaina-Estévez, S., Reinthaler, T., Herndl, G. J., Zhao, Z., Logares, R., Morales, S. E., and González, J. M.: A ubiquitous gammaproteobacterial clade dominates expression of sulfur oxidation genes across the mesopelagic ocean, Nat. Microbiol., 8, 1137–1148, https://doi.org/10.1038/s41564-023-01374-2, 2023.
Bar-Zeev, E., Berman-Frank, I., Girshevitz, O., and Berman, T.: Revised paradigm of aquatic biofilm formation facilitated by microgel transparent exopolymer particles, Proc. Natl. Acad. Sci. USA, 109, 9119–9124, https://doi.org/10.1073/pnas.1203708109, 2012.
Belkin, N., Guy-Haim, T., Rubin-Blum, M., Lazar, A., Sisma-Ventura, G., Kiko, R., Morov, A. R., Ozer, T., Gertman, I., Herut, B., and Rahav, E.: Influence of cyclonic and anticyclonic eddies on plankton in the southeastern Mediterranean Sea during late summertime, Ocean Sci., 18, 693–715, https://doi.org/10.5194/os-18-693-2022, 2022.
Ben-Ezra, T., Krom, M. D., Tsemel, A., Berman-Frank, I., Herut, B., Lehahn, Y., Rahav, E., Reich, T., Thingstad, T. F., and Sher, D.: Deep-Sea Research Part I Seasonal nutrient dynamics in the P depleted Eastern Mediterranean Sea, Deep-Sea Research Part I, 176, 103607, https://doi.org/10.1016/j.dsr.2021.103607, 2021.
Berg, I. A., Kockelkorn, D., Buckel, W., and Fuchs, G.: A 3-hydroxypropionate/4-hydroxybutyrate autotrophic carbon dioxide assimilation pathway in archaea, Science, 318, 1782–1786, https://doi.org/10.1126/science.1149976, 2007.
Berman-Frank, I. and Rahav, E.: Dinitrogen fixation as a source for new production in the Mediterranean Sea: A review, in: Life in the Mediterranean Sea, Nova Science Publishers, Inc., United States, 199–226, ISBN 9781612096445, 2012.
Brankovits, D., Pohlman, J. W., Niemann, H., Leigh, M. B., Leewis, M. C., Becker, K. W., Iliffe, T. M., Alvarez, F., Lehmann, M. F., and Phillips, B.: Methane-and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem, Nat. Commun., 8, https://doi.org/10.1038/s41467-017-01776-x, 2017.
Burd, A. B., Hansell, D. A., Steinberg, D. K., Anderson, T. R., Arístegui, J., Baltar, F., Beaupré, S. R., Buesseler, K. O., DeHairs, F., Jackson, G. A., Kadko, D. C., Koppelmann, R., Lampitt, R. S., Nagata, T., Reinthaler, T., Robinson, C., Robison, B. H., Tamburini, C., and Tanaka, T.: Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: What the @$#! is wrong with present calculations of carbon budgets?, Deep Sea Res. 2 Top Stud. Oceanogr., 57, 1557–1571, https://doi.org/10.1016/j.dsr2.2010.02.022, 2010.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Civitarese, G., Gačić, M., Lipizer, M., and Eusebi Borzelli, G. L.: On the impact of the Bimodal Oscillating System (BiOS) on the biogeochemistry and biology of the Adriatic and Ionian Seas (Eastern Mediterranean), Biogeosciences, 7, 3987–3997, https://doi.org/10.5194/bg-7-3987-2010, 2010.
Civitarese, G., Gačić, M., Batistić, M., Bensi, M., Cardin, V., Dulčić, J., Garić, R., and Menna, M.: The BiOS mechanism: History, theory, implications, Progress in Oceanography, https://doi.org/10.1016/j.pocean.2023.103056, 2023.
De Cáceres, M., Cáceres, C., and Legendre, P.: Associations between species and groups of sites: indices and statistical inference, Ecology, 90, 3566–3574, https://doi.org/10.1890/08-1823.1, 2009.
De Corte, D., Yokokawa, T., Varela, M. M., Agogué, H., and Herndl, G. J.: Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea, ISME Journal, 3, 147–158, https://doi.org/10.1038/ismej.2008.94, 2009.
del Giorgio, P. A. and Cole, J. J.: Bacterial growth efficiency in natural aquatic systems, Annu. Rev. Ecol. Syst., 29, 503–541, https://doi.org/10.1146/annurev.ecolsys.29.1.503, 1998.
del Giorgio, P. A. and Duarte, C. M.: Respiration in the open ocean, Nature, 420, 379–384, https://doi.org/10.1038/nature01165, 2002.
Dijkhuizen, L. and Harder, W.: Current views on the regulation of autotrophic carbon dioxide fixation via the Calvin cycle in bacteria, Antonie Van Leeuwenhoek, 50, 473–487, 1984.
Ducklow, H. W.: Bacterial Production and Biomass in the Oceans, in: Microbial Ecology of the Oceans, Gasol, J. M. and Kirchman, D. L., Wiley-Liss, New York, 85–119, ISBN 9780471299929, 2000.
Erb, T. J.: Carboxylases in natural and synthetic microbial pathways, Appl. Environ. Microbiol., 77, https://doi.org/10.1128/AEM.05702-11, 2011.
Gasol, J. M., Doval, M. D., Pinhassi, J., Calderón-Paz, J. I., Guixa-Boixareu, N., Vaqué, D., and Pedrós-Alió, C.: Diel variations in bacterial heterotrophic activity and growth in the northwestern Mediterranean Sea, Mar. Ecol. Prog. Ser., 164, 107–124, https://doi.org/10.3354/meps164107, 1998.
Glöckner, F. O., Yilmaz, P., Quast, C., Gerken, J., Beccati, A., Ciuprina, A., Bruns, G., Yarza, P., Peplies, J., Westram, R., and Ludwig, W.: 25 years of serving the community with ribosomal RNA gene reference databases and tools, Journal of Biotechnology, https://doi.org/10.1016/j.jbiotec.2017.06.1198, 2017.
Grossart, H. P., Frindte, K., Dziallas, C., Eckert, W., and Tang, K. W.: Microbial methane production in oxygenated water column of an oligotrophic lake, Proc. Natl. Acad. Sci. USA, 108, 19657–19661, https://doi.org/10.1073/pnas.1110716108, 2011.
Hallam, S. J., Mincer, T. J., Schleper, C., Preston, C. M., Roberts, K., Richardson, P. M., and DeLong, E. F.: Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota, PLoS Biol, 4, 520–536, https://doi.org/10.1371/journal.pbio.0040095, 2006.
Hansman, R. L., Griffin, S., Watson, J. T., Druffel, E. R. M., Ingalls, A. E., Pearson, A., and Aluwihare, L. I.: The radiocarbon signature of microorganisms in the mesopelagic ocean, Proceedings of the National Academy of Sciences, 106, 6513–6518, https://doi.org/10.1073/pnas.0810871106, 2009.
Hazan, O., Silverman, J., Sisma-Ventura, G., Ozer, T., Gertman, I., Shoham-Frider, E., Kress, N., and Rahav, E.: Mesopelagic prokaryotes alter surface phytoplankton production during simulated deep mixing experiments in Eastern Mediterranean Sea waters, Front. Mar. Sci., 5, 1–11, https://doi.org/10.3389/fmars.2018.00001, 2018.
Herndl, G. J. and Reinthaler, T.: Microbial control of the dark end of the biological pump, Nature Geoscience, https://doi.org/10.1038/ngeo1921, 2013.
Herndl, G. J., Reinthaler, T., Teira, E., Van Aken, H., Veth, C., Pernthaler, A., and Pernthaler, J.: Contribution of Archaea to total prokaryotic production in the deep atlantic ocean, Appl. Environ. Microbiol., 71, 2303–2309, https://doi.org/10.1128/AEM.71.5.2303-2309.2005, 2005.
Hügler, M. and Sievert, S. M.: Beyond the Calvin cycle: Autotrophic carbon fixation in the ocean, Ann. Rev. Mar. Sci., 3, 261–289, https://doi.org/10.1146/annurev-marine-120709-142712, 2011.
Jaffe, A. L., Salcedo, R. S. R., and Dekas, A. E.: Abundant and metabolically flexible lineages within the SAR324 and gammaproteobacteria dominate the potential for rubisco-mediated carbon fixation in the dark ocean, bioRxiv [preprint], https://doi.org/10.1101/2024.05.09.593449, 2024.
Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm, S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.: Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean, Nature Reviews Microbiology, https://doi.org/10.1038/nrmicro2386, 2010.
Karl, D. M., Knauer, G. A., and Martin, J. H.: Downward flux of particulate organic matter in the ocean: a particle decomposition paradox, Nature, 332, 438–441, https://doi.org/10.1038/332438a0, 1988.
La Cono, V., Ruggeri, G., Azzaro, M., Crisafi, F., Decembrini, F., Denaro, R., La Spada, G., Maimone, G., Monticelli, L. S., Smedile, F., Giuliano, L., and Yakimov, M. M.: Contribution of bicarbonate assimilation to carbon pool dynamics in the deep Mediterranean Sea and cultivation of actively nitrifying and CO2-fixing bathypelagic prokaryotic consortia, Front. Microbiol., 9, https://doi.org/10.3389/fmicb.2018.00003, 2018.
Luna, G. M., Bianchelli, S., Decembrini, F., De Domenico, E., Danovaro, R., and Dell'Anno, A.: The dark portion of the Mediterranean Sea is a bioreactor of organic matter cycling, Global Biogeochem. Cycles, 26, https://doi.org/10.1029/2011GB004168, 2012.
Martínez-Pérez, A. M., Álvarez-Salgado, X. A., Arístegui, J., and Nieto-Cid, M.: Deep-ocean dissolved organic matter reactivity along the Mediterranean Sea: Does size matter, Sci. Rep., 7, https://doi.org/10.1038/s41598-017-05941-6, 2017.
Mattes, T. E., Nunn, B. L., Marshall, K. T., Proskurowski, G., Kelley, D. S., Kawka, O. E., Goodlett, D. R., Hansell, D. A., and Morris, R. M.: Sulfur oxidizers dominate carbon fixation at a biogeochemical hot spot in the dark ocean, ISME Journal, 7, 2349–2360, https://doi.org/10.1038/ismej.2013.113, 2013.
McMurdie, P. J. and Holmes, S.: Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLoS One, 8, https://doi.org/10.1371/journal.pone.0061217, 2013.
Mena, C., Reglero, P., Hidalgo, M., Sintes, E., Santiago, R., Martín, M., Moyà, G., and Balbín, R.: Phytoplankton Community Structure Is Driven by Stratification in the Oligotrophic Mediterranean Sea, Front. Microbiol., 10, https://doi.org/10.3389/fmicb.2019.01698, 2019.
Moutin, T. and Raimbault, P.: Primary production, carbon export and nutrients availability in western and eastern Mediterranean Sea in early summer 1996 (MINOS cruise), Journal of Marine Systems, 33, 273–288, 2002.
Nakagawa, T., Mori, K., Kato, C., Takahashi, R., and Tokuyama, T.: Distribution of Cold-Adapted Ammonia-Oxidizing Microorganisms in the Deep-Ocean of the Northeastern Japan Sea, Microbes Environ., 365–372, 2007.
Nielsen, E. S.: The use of radio-active carbon (C14) for measuring organic production in the sea, ICES Journal of Marine Science, 18, 117–140, 1952.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.: Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples, Environ. Microbiol., 18, 1403–1414, https://doi.org/10.1111/1462-2920.13023, 2016.
Psarra, S., Zohary, T., Krom, M. D., Mantoura, R. F. C., Polychronaki, T., Stambler, N., Tanaka, T., Tselepides, A., and Frede Thingstad, T.: Phytoplankton response to a Lagrangian phosphate addition in the Levantine Sea (Eastern Mediterranean), Deep Sea Res. 2 Top. Stud. Oceanogr., 52, 2944–2960, https://doi.org/10.1016/j.dsr2.2005.08.015, 2005.
R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: 3 November 2025), 2020.
Rahav, E., Silverman, J., Raveh, O., Hazan, O., Rubin-Blum, M., Zeri, C., Gogou, A., Kralj, M., Pavlidou, A., and Kress, N.: The deep water of Eastern Mediterranean Sea is a hotspot for bacterial activity, Deep Sea Res. 2 Top. Stud. Oceanogr., 164, 135–143, https://doi.org/10.1016/j.dsr2.2019.03.004, 2019.
Reich, T.: Primal, chemo and bacterial productivity coupled with inorganic nutrient concentrations from an off shore, outgoing transect cruises, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.975231, 2025.
Reich, T., Ben-Ezra, T., Belkin, N., Tsemel, A., Aharonovich, D., Roth-Rosenberg, D., Givati, S., Bialik, M., Herut, B., Berman-Frank, I., Frada, M., Krom, M. D., Lehahn, Y., Rahav, E., and Sher, D.: A year in the life of the Eastern Mediterranean: Monthly dynamics of phytoplankton and bacterioplankton in an ultra-oligotrophic sea, Deep Sea Research Part I: Oceanographic Research Papers, 182, 103720, https://doi.org/10.1016/j.dsr.2022.103720, 2022.
Reich, T., Belkin, N., Sisma-Ventura, G., Berman-Frank, I., and Rahav, E.: Significant dark inorganic carbon fixation in the euphotic zone of an oligotrophic sea, Limnol. Oceanogr., 69, 1129–1142, https://doi.org/10.1002/lno.12560, 2024.
Reinthaler, T., van Aken, H. M., and Herndl, G. J.: Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic's interior, Deep Sea Res. 2 Top. Stud. Oceanogr., 57, 1572–1580, https://doi.org/10.1016/j.dsr2.2010.02.023, 2010.
Riebesell, U., Kö, A., and Oschlies, A.: Sensitivities of marine carbon fluxes to ocean change, PNAS, https://doi.org/10.1073/pnas.0813291106, 2009.
Robinson, C., Tilstone, G. H., Rees, A. P., Smyth, T. J., Fishwick, J. R., Tarran, G. A., Luz, B., Barkan, E., and David, E.: Comparison of in vitro and in situ plankton production determinations, Aquatic Microbial Ecology, 54, 13–34, https://doi.org/10.3354/ame01250, 2009.
Santinelli, C.: DOC in the Mediterranean Sea, in: Biogeochemistry of marine dissolved organic matter, Elsevier, 579–608, https://doi.org/10.1016/B978-0-12-405940-5.00013-3, 2015.
Santinelli, C., Nannicini, L., and Seritti, A.: DOC dynamics in the meso and bathypelagic layers of the Mediterranean Sea, Deep Sea Res. 2 Top. Stud. Oceanogr., 57, 1446–1459, https://doi.org/10.1016/j.dsr2.2010.02.014, 2010.
Santinelli, C., Hansell, D. A., and Ribera d’Alcalà, M.: Influence of stratification on marine dissolved organic carbon (DOC) dynamics: The Mediterranean Sea case, Prog. Oceanogr., 119, 68–77, https://doi.org/10.1016/J.POCEAN.2013.06.001, 2013.
Schlitzer, R.: Ocean Data View, https://odv.awi.de, last access: 25 February 2025.
Simon, M., Alldredge, A., and Azam, F.: Bacterial carbon dynamics on marine snow, Mar. Ecol. Prog. Ser., 65, 205–211, 1990.
Sisma-Ventura, G., Kress, N., Silverman, J., Gertner, Y., Ozer, T., Biton, E., Lazar, A., Gertman, I., Rahav, E., and Herut, B.: Post-eastern Mediterranean Transient Oxygen Decline in the Deep Waters of the Southeast Mediterranean Sea Supports Weakening of Ventilation Rates, Front. Mar. Sci., 7, https://doi.org/10.3389/fmars.2020.598686, 2021.
Sisma-Ventura, G., Bialik, O. M., Makovsky, Y., Rahav, E., Ozer, T., Kanari, M., Marmen, S., Belkin, N., Guy-Haim, T., Antler, G., Herut, B., and Rubin-Blum, M.: Cold seeps alter the near-bottom biogeochemistry in the ultraoligotrophic Southeastern Mediterranean Sea, Deep Sea Research Part I: Oceanographic Research Papers, 183, 103744, https://doi.org/10.1016/j.dsr.2022.103744, 2022a.
Sisma-Ventura, G., Belkin, N., Rubin-Blum, M., Jacobson, Y., Hauzer, H., Bar-Zeev, E., and Rahav, E.: Discharge of polyphosphonate-based antiscalants via desalination brine: impact on seabed nutrient flux and microbial activity, Environ. Sci. Technol., https://doi.org/10.1021/acs.est.2c04652, 2022b.
Smith, D. and Azam, F.: A simple, economical method for measuring bacterial protein synthesis rates in seawater using, Marine microbial food webs, 6, 107–114, 1992.
Swan, B. K., Martinez-Garcia, M., Preston, C. M., Sczyrba, A., Woyke, T., Lamy, D., Reinthaler, T., Poulton, N. J., Masland, E. D. P., Gomez, M. L., Sieracki, M. E., DeLong, E. F., Herndl, G. J., and Stepanauskas, R.: Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean, Science, 333, 1296–1300, https://doi.org/10.1126/science.1203690, 2011.
Tamburini, C., Boutrif, M., Garel, M., Colwell, R. R., and Deming, J. W.: Prokaryotic responses to hydrostatic pressure in the ocean – a review, Environmental Microbiology, https://doi.org/10.1111/1462-2920.12084, 2013.
Techtmann, S. M., Fortney, J. L., Ayers, K. A., Joyner, D. C., Linley, T. D., Pfiffner, S. M., and Hazen, T. C.: The unique chemistry of Eastern Mediterranean water masses selects for distinct microbial communities by depth, PLoS One, 10, https://doi.org/10.1371/journal.pone.0120605, 2015.
Teira, E., Pazó, M., Quevedo, M., Fuentes, M., Niell, F., and Fernández, E.: Rates of dissolved organic carbon production and bacterial activity in the eastern North Atlantic Subtropical Gyre during summer, Mar. Ecol. Prog. Ser., 249, 53–67, https://doi.org/10.3354/meps249053, 2003.
Thingstad, T. F., Krom, M. D., Mantoura, R. F. C., Flaten, G. A. F., Groom, S., Herut, B., Kress, N., Law, C. S., Pasternak, A., and Pitta, P.: Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean, Science, 309, 1068–1071, 2005.
Whitman, W. B., Coleman, D. C., and Wiebe, W. J.: Perspective Prokaryotes: The unseen majority, PNAS, https://doi.org/10.1073/pnas.95.12.6578, 6578–6583, 1998.
Yakimov, M. M., Cono, V. La, Smedile, F., Deluca, T. H., Juárez, S., Ciordia, S., Fernández, M., Albar, J. P., Ferrer, M., Golyshin, P. N., and Giuliano, L.: Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea), ISME Journal, 5, 945–961, https://doi.org/10.1038/ismej.2010.197, 2011.
Zhou, W., Li, Y., Liu, X., He, S., and Huang, J. C.: Comparison of microbial communities in different sulfur-based autotrophic denitrification reactors, Appl. Microbiol. Biotechnol., 101, 447–453, https://doi.org/10.1007/s00253-016-7912-y, 2017.
Zweifel, U., Norrman, B., and Hagström, Å.: Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients, Marine Ecology Progress Series, 101, 23–32, 1993.
Short summary
Dark carbon fixation by chemoautotrophs take a vital part in marine primary productivity. Measured rates can be seen all the way down to the dark layers of the ocean and integrated in our study site come close to the magnitude of photosynthesis. It can also explain about ~ 35 % of the missing organic carbon supply needed by deep microbial communities. By using oceanographic observations and analysis this paper highlights the significant of this overlooked parameter.
Dark carbon fixation by chemoautotrophs take a vital part in marine primary productivity....