Articles | Volume 21, issue 1
https://doi.org/10.5194/os-21-241-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-241-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Circulation of Baffin Bay and Hudson Bay waters on the Labrador shelf and into the subpolar North Atlantic
Institute of Oceanography, CEN, University of Hamburg, Hamburg, Germany
Nicholas P. Foukal
Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
Eleanor Frajka-Williams
Institute of Oceanography, CEN, University of Hamburg, Hamburg, Germany
Related authors
No articles found.
Francisco M. Calafat, Parvathi Vallivattathillam, and Eleanor Frajka-Williams
EGUsphere, https://doi.org/10.5194/egusphere-2025-1216, https://doi.org/10.5194/egusphere-2025-1216, 2025
Short summary
Short summary
Understanding how heat moves through the ocean is crucial to predicting future climate change confidently. This requires accurate records of heat transport throughout the ocean, but these are challenging to obtain by direct ocean observation. Here, we combine in-situ and satellite-based observations to generate estimates of meridional heat transport for the period 2004–2020 at 3-month resolution across the Atlantic Ocean with improved accuracy compared to existing indirectly inferred estimates.
Arthur Coquereau and Nicholas P. Foukal
Ocean Sci., 19, 1393–1411, https://doi.org/10.5194/os-19-1393-2023, https://doi.org/10.5194/os-19-1393-2023, 2023
Short summary
Short summary
Understanding meltwater circulation around Greenland is crucial as it could influence climate variability but difficult as data are scarce. Here, we use 34 surface drifters to evaluate satellite-derived surface currents and show that satellite data recover the general structure of the flow and can recreate the pathways of particles around the southern tip of Greenland. This result permits a wide range of work to proceed looking at long-term changes in the circulation of the region since 1993.
Cited articles
Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E. M., van den Broeke, M. R., and Noel, B.: Land Ice Freshwater Budget of the Arctic and North Atlantic Oceans: 1. Data, Methods, and Results, J. Geophys. Res.-Oceans, 123, 1827–1837, https://doi.org/10.1002/2017JC013605, 2018.
Benetti, M., Reverdin, G., Lique, C., Yashayaev, I., Holliday, N. P., Tynan, E., Torres-Valdes, S., Lherminier, P., Tréguer, P., and Sarthou, G.: Composition of freshwater in the spring of 2014 on the southern Labrador Shelf and slope, J. Geophys. Res.-Oceans, 122, 1102–1121, https://doi.org/10.1002/2016JC012244, 2017.
Biló, T. C., Straneo, F., Holte, J., and Le Bras, I. A.-A.: Arrival of New Great Salinity Anomaly Weakens Convection in the Irminger Sea, Geophys. Res. Lett., 49, e2022GL098857, https://doi.org/10.1029/2022GL098857, 2022.
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., and Bamber, J. L.: Emerging impact of Greenland meltwater on deepwater formation in the North Atlantic Ocean, Nat. Geosci., 9, 523–527, https://doi.org/10.1038/ngeo2740, 2016.
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of the Atlantic Meridional Overturning Circulation: A review, Rev. Geophys., 54, 5–63, https://doi.org/10.1002/2015RG000493, 2016.
Buckley, M. W., Lozier, M. S., Desbruyères, D., and Evans, D. G.: Buoyancy forcing and the subpolar Atlantic meridional overturning circulation, Philos. T. R. Soc. A, 381, 20220181, https://doi.org/10.1098/rsta.2022.0181, 2023.
Castelao, R. M., Luo, H., Oliver, H., Rennermalm, A. K., Tedesco, M., Bracco, A., Yager, P. L., Mote, T. L., and Medeiros, P. M.: Controls on the Transport of Meltwater From the Southern Greenland Ice Sheet in the Labrador Sea, J. Geophys. Res.-Oceans, 124, 3551–3560, https://doi.org/10.1029/2019JC015159, 2019.
Centurioni, L. R., Turton, J., Lumpkin, R., Braasch, L., Brassington, G., Chao, Y., Charpentier, E., Chen, Z., Corlett, G., Dohan, K., Donlon, C., Gallage, C., Hormann, V., Ignatov, A., Ingleby, B., Jensen, R., Kelly-Gerreyn, B. A., Koszalka, I. M., Lin, X., Lindstrom, E., Maximenko, N., Merchant, C. J., Minnett, P., O'Carroll, A., Paluszkiewicz, T., Poli, P., Poulain, P.-M., Reverdin, G., Sun, X., Swail, V., Thurston, S., Wu, L., Yu, L., Wang, B., and Zhang, D.: Global in situ Observations of Essential Climate and Ocean Variables at the Air–Sea Interface, Front. Mar. Sci., 6, 419, https://doi.org/10.3389/fmars.2019.00419, 2019.
Chapman, D. C.: Separation of an Advectively Trapped Buoyancy Current at a Bathymetric Bend, J. Phys. Oceanogr., 33, 1108–1121, https://doi.org/10.1175/1520-0485(2003)033<1108:SOAATB>2.0.CO;2, 2003.
Clément, L., Frajka-Williams, E., von Oppeln-Bronikowski, N., Goszczko, I., and deYoung, B.: Cessation of Labrador Sea Convection Triggered by Distinct Fresh and Warm (Sub)Mesoscale Flows, J. Phys. Oceanogr., 53, 1959–1977, https://doi.org/10.1175/JPO-D-22-0178.1, 2023.
Colbourne, E., deYoung, B., Narayanan, S., and Helbig, J.: Comparison of hydrography and circulation on the Newfoundland Shelf during Pages 1990–1993 with the long-term mean, Can. J. Fish. Aquat. Sci., 54, 68–80, https://doi.org/10.1139/f96-156, 1997.
Copernicus Climate Change Service (C3S): Sea ice concentration daily gridded data from 1978 to present derived from satellite observations, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.3cd8b812, 2020.
Cuny, J., Rhines, P. B., Niiler, P. P., and Bacon, S.: Labrador Sea Boundary Currents and the Fate of the Irminger Sea Water, J. Phys. Oceanogr., 32, 627–647, https://doi.org/10.1175/1520-0485(2002)032<0627:LSBCAT>2.0.CO;2, 2002.
Cuny, J., Rhines, P. B., and Ron Kwok: Davis Strait volume, freshwater and heat fluxes, Deep-Sea Res. Pt. I, 52, 519–542, https://doi.org/10.1016/j.dsr.2004.10.006, 2005.
Curry, B., Lee, C. M., Petrie, B., Moritz, R. E., and Kwok, R.: Multiyear Volume, Liquid Freshwater, and Sea Ice Transports through Davis Strait, 2004–10, J. Phys. Oceanogr., 44, 1244–1266, https://doi.org/10.1175/JPO-D-13-0177.1, 2014.
Cyr, F. and Galbraith, P. S.: A climate index for the Newfoundland and Labrador shelf, Earth Syst. Sci. Data, 13, 1807–1828, https://doi.org/10.5194/essd-13-1807-2021, 2021.
de Jong, M. F., van Aken, H. M., Våge, K., and Pickart, R. S.: Convective mixing in the central Irminger Sea: 2002–2010, Deep-Sea Res. Pt. I, 63, 36–51, https://doi.org/10.1016/j.dsr.2012.01.003, 2012.
Dickson, R. R., Meincke, J., Malmberg, S.-A., and Lee, A. J.: The “great salinity anomaly” in the Northern North Atlantic 1968–1982, Prog. Oceanogr., 20, 103–151, https://doi.org/10.1016/0079-6611(88)90049-3, 1988.
Dukhovskoy, D. S., Yashayaev, I., Proshutinsky, A., Bamber, J. L., Bashmachnikov, I. L., Chassignet, E. P., Lee, C. M., and Tedstone, A. J.: Role of Greenland Freshwater Anomaly in the Recent Freshening of the Subpolar North Atlantic, J. Geophys. Res.-Oceans, 124, 3333–3360, https://doi.org/10.1029/2018JC014686, 2019.
Dukhovskoy, D. S., Yashayaev, I., Chassignet, E. P., Myers, P. G., Platov, G., and Proshutinsky, A.: Time Scales of the Greenland Freshwater Anomaly in the Subpolar North Atlantic, J. Climate, 34, 8971–8987, https://doi.org/10.1175/JCLI-D-20-0610.1, 2021.
Duyck, E.: Code – Circulation of Baffin Bay and Hudson Bay waters on the Labrador Shelf and into the subpolar North Atlantic, Zenodo [code], https://doi.org/10.5281/zenodo.14103680, 2024.
Duyck, E. and De Jong, M. F.: Circulation Over the South-East Greenland Shelf and Potential for Liquid Freshwater Export: A Drifter Study, Geophys. Res. Lett., 48, e2020JB020886, https://doi.org/10.1029/2020GL091948, 2021.
Duyck, E. and De Jong, M. F.: Cross-Shelf Exchanges Between the East Greenland Shelf and Interior Seas, J. Geophys. Res.-Oceans, 128, e2023JC019905, https://doi.org/10.1029/2023JC019905, 2023a.
Duyck, E. and De Jong, M. F.: Full EGC-DrIFT 6h interpolated dataset, NIOZ [data set], https://doi.org/10.25850/nioz/7b.b.ff, 2023b.
Duyck, E., Gelderloos, R., and de Jong, M. F.: Wind-Driven Freshwater Export at Cape Farewell, J. Geophys. Res.-Oceans, 127, e2021JC018309, https://doi.org/10.1029/2021JC018309, 2022.
EUMETSAT: Ocean and Sea Ice Satellite Application Facility, Global sea ice concentration interim climate data record 2021-onwards (v3.0, 2022), OSI-430-a, [data set], https://doi.org/10.15770/EUM_SAF_OSI_0014, 2022.
Florindo-López, C., Bacon, S., Aksenov, Y., Chafik, L., Colbourne, E., and Holliday, N. P.: Arctic Ocean and Hudson Bay Freshwater Exports: New Estimates from Seven Decades of Hydrographic Surveys on the Labrador Shelf, J. Climate, 33, 8849–8868, https://doi.org/10.1175/JCLI-D-19-0083.1, 2020.
Fox, A. D., Handmann, P., Schmidt, C., Fraser, N., Rühs, S., Sanchez-Franks, A., Martin, T., Oltmanns, M., Johnson, C., Rath, W., Holliday, N. P., Biastoch, A., Cunningham, S. A., and Yashayaev, I.: Exceptional freshening and cooling in the eastern subpolar North Atlantic caused by reduced Labrador Sea surface heat loss, Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, 2022.
Fratantoni, D. M.: North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters, J. Geophys. Res.-Oceans, 106, 22067–22093, https://doi.org/10.1029/2000JC000730, 2001.
Fratantoni, P. S. and McCartney, M. S.: Freshwater export from the Labrador Current to the North Atlantic Current at the Tail of the Grand Banks of Newfoundland, Deep-Sea Res. Pt. I, 57, 258–283, https://doi.org/10.1016/j.dsr.2009.11.006, 2010.
Fratantoni, P. S. and Pickart, R. S.: The Western North Atlantic Shelfbreak Current System in Summer, J. Phys. Oceanogr., 37, 2509–2533, https://doi.org/10.1175/JPO3123.1, 2007.
Furey, H. H., Foukal, N. P., Anderson, A., and Bower, A. S.: Investigation of the Source of Iceland Basin Freshening: Virtual Particle Tracking with Satellite-Derived Geostrophic Surface Velocities, Remote Sens., 15, 5711, https://doi.org/10.3390/rs15245711, 2023.
Gelderloos, R., Straneo, F., and Katsman, C. A.: Mechanisms behind the Temporary Shutdown of Deep Convection in the Labrador Sea: Lessons from the Great Salinity Anomaly Years 1968–71, J. Climate, 25, 6743–6755, https://doi.org/10.1175/JCLI-D-11-00549.1, 2012.
Georgiou, S., van der Boog, C. G., Brüggemann, N., Ypma, S. L., Pietrzak, J. D., and Katsman, C. A.: On the interplay between downwelling, deep convection and mesoscale eddies in the Labrador Sea, Ocean Model., 135, 56–70, https://doi.org/10.1016/j.ocemod.2019.02.004, 2019.
Georgiou, S., Ypma, S. L., Brüggemann, N., Sayol, J.-M., Pietrzak, J. D., and Katsman, C. A.: Pathways of the water masses exiting the Labrador Sea: The importance of boundary–interior exchanges, Ocean Model., 150, 101623, https://doi.org/10.1016/j.ocemod.2020.101623, 2020.
Gillard, L. C., Hu, X., Myers, P. G., and Bamber, J. L.: Meltwater pathways from marine terminating glaciers of the Greenland ice sheet, Geophys. Res. Lett., 43, 10873–10882, https://doi.org/10.1002/2016GL070969, 2016.
Gonçalves Neto, A., Palter, J. B., Xu, X., and Fratantoni, P.: Temporal Variability of the Labrador Current Pathways Around the Tail of the Grand Banks at Intermediate Depths in a High-Resolution Ocean Circulation Model, J. Geophys. Res.-Oceans, 128, e2022JC018756, https://doi.org/10.1029/2022JC018756, 2023.
Haine, T. W. N., Curry, B., Gerdes, R., Hansen, E., Karcher, M., Lee, C., Rudels, B., Spreen, G., de Steur, L., Stewart, K. D., and Woodgate, R.: Arctic freshwater export: Status, mechanisms, and prospects, Global Planet. Change, 125, 13–35, https://doi.org/10.1016/j.gloplacha.2014.11.013, 2015.
Häkkinen, S.: An Arctic source for the great salinity anomaly: A simulation of the Arctic ice-ocean system for 1955–1975, J. Geophys. Res.-Oceans, 98, 16397–16410, https://doi.org/10.1029/93JC01504, 1993.
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S. A., Larsen, K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic, Nat. Commun., 11, 585, https://doi.org/10.1038/s41467-020-14474-y, 2020.
Howatt, T., Palter, J. B., Matthews, J. B. R., deYoung, B., Bachmayer, R., and Claus, B.: Ekman and Eddy Exchange of Freshwater and Oxygen across the Labrador Shelf Break, J. Phys. Oceanogr., 48, 1015–1031, https://doi.org/10.1175/JPO-D-17-0148.1, 2018.
Jutras, M., Dufour, C. O., Mucci, A., and Talbot, L. C.: Large-scale control of the retroflection of the Labrador Current, Nat. Commun., 14, 2623, https://doi.org/10.1038/s41467-023-38321-y, 2023.
Lazier, J. R. N.: Oceanographic conditions at Ocean Weather Ship Bravo, 1964–1974, Atmos. Ocean, 18, 227–238, https://doi.org/10.1080/07055900.1980.9649089, 1980.
Lazier, J. R. N. and Wright, D. G.: Annual Velocity Variations in the Labrador Current, J. Phys. Oceanogr., 23, 659–678, https://doi.org/10.1175/1520-0485(1993)023<0659:AVVITL>2.0.CO;2, 1993.
LeBlond, P. H., Osborn, T. R., Hodgins, D. O., Goodman, R., and Metge, M.: Surface circulation in the Western Labrador Sea, Deep-Sea Res. Pt. A, 28, 683–693, https://doi.org/10.1016/0198-0149(81)90129-1, 1981.
Lilly, J. M.: jLab: A data analysis package for Matlab, v.1.7.3, Zenodo [code], https://doi.org/10.5281/zenodo.4547006, 2024.
Lilly, J. M., Rhines, P. B., Schott, F., Lavender, K., Lazier, J., Send, U., and D'Asaro, E.: Observations of the Labrador Sea eddy field, Prog. Oceanogr., 59, 75–176, https://doi.org/10.1016/j.pocean.2003.08.013, 2003.
Lin, P., Pickart, R. S., Heorton, H., Tsamados, M., Itoh, M., and Kikuchi, T.: Recent state transition of the Arctic Ocean's Beaufort Gyre, Nat. Geosci., 16, 485–491, https://doi.org/10.1038/s41561-023-01184-5, 2023.
Loder, J., Petrie, B., and Gawarkiewicz, G.: The Coastal Ocean off Northeastern North America: A Large-Scale View, The Sea, edited by: Robinson, A. R. and Brink, K. H., Regional Studies and Syntheses, Vol. 11, 105–133, Harvard University Press, ISBN 9780674017412, 1998.
Lozier, M. S.: Overturning in the subpolar North Atlantic: a review, Philos. T. R. Soc. A, 381, 20220191, https://doi.org/10.1098/rsta.2022.0191, 2023.
Lumpkin, R. and Centurioni, L.: Global Drifter Program quality-controlled 6-hour interpolated data from ocean surface drifting buoys, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/7ntx-z961, 2019.
Luo, H., Castelao, R. M., Rennermalm, A. K., Tedesco, M., Bracco, A., Yager, P. L., and Mote, T. L.: Oceanic transport of surface meltwater from the southern Greenland ice sheet, Nat. Geosci., 9, 528–532, https://doi.org/10.1038/ngeo2708, 2016.
Marsh, R., Desbruyères, D., Bamber, J. L., de Cuevas, B. A., Coward, A. C., and Aksenov, Y.: Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model, Ocean Sci., 6, 749–760, https://doi.org/10.5194/os-6-749-2010, 2010.
Marson, J. M., Gillard, L. C., and Myers, P. G.: Distinct ocean responses to Greenland's liquid runoff and iceberg melt, J. Geophys. Res.-Oceans, 126, e2021JC017542, https://doi.org/10.1029/2021JC017542, 2021.
Myers, P. G.: Impact of freshwater from the Canadian Arctic Archipelago on Labrador Sea Water formation, Geophys. Res. Lett., 32, L06605, https://doi.org/10.1029/2004GL022082, 2005.
NOAA: National Centers for Environmental Information: ETOPO 2022 15 Arc-Second Global Relief Model, NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/fd45-gt74, 2022.
Palter, J. B., Lozier, M. S., and Lavender, K. L.: How Does Labrador Sea Water Enter the Deep Western Boundary Current?, J. Phys. Oceanogr., 38, 968–983, https://doi.org/10.1175/2007JPO3807.1, 2008.
Pawlowicz, R.: M_Map: A mapping package for MATLAB, v1.4m, MATLAB [code], https://www.eoas.ubc.ca/~rich/map.html (last access: 24 January 2025), 2020.
Pennelly, C., Hu, X., and Myers, P. G.: Cross-Isobath Freshwater Exchange Within the North Atlantic Subpolar Gyre, J. Geophys. Res.-Oceans, 124, 6831–6853, https://doi.org/10.1029/2019JC015144, 2019.
Peterson, I.: A snapshot of the Labrador current inferred from ice-floe movement in NOAA satellite imagery, Atmos. Ocean, 25, 402–415, https://doi.org/10.1080/07055900.1987.9649283, 1987.
Petrie, B. and Anderson, C.: Circulation on the newfoundland continental shelf, Atmos. Ocean, 21, 207–226, https://doi.org/10.1080/07055900.1983.9649165, 1983.
Petrie, B. and Drinkwater, K.: Temperature and salinity variability on the Scotian Shelf and in the Gulf of Maine 1945–1990, J. Geophys. Res.-Oceans, 98, 20079–20089, https://doi.org/10.1029/93JC02191, 1993.
Pickart, R. S., Spall, M. A., and Lazier, J. R. N.: Mid-depth ventilation in the western boundary current system of the sub-polar gyre, Deep-Sea Res. Pt. I, 44, 1025–1054, https://doi.org/10.1016/S0967-0637(96)00122-7, 1997.
Reverdin, G., Niiler, P. P., and Valdimarsson, H.: North Atlantic Ocean surface currents, J. Geophys. Res.-Oceans, 108, 2-1–2-21, https://doi.org/10.1029/2001JC001020, 2003.
Rhein, M., Steinfeldt, R., Kieke, D., Stendardo, I., and Yashayaev, I.: Ventilation variability of Labrador Sea Water and its impact on oxygen and anthropogenic carbon: a review, Philos. T. R. Soc. A, 375, 20160321, https://doi.org/10.1098/rsta.2016.0321, 2017.
Ridenour, N. A., Straneo, F., Holte, J., Gratton, Y., Myers, P. G., and Barber, D. G.: Hudson Strait Inflow: Structure and Variability, J. Geophys. Res.-Oceans, 126, e2020JC017089, https://doi.org/10.1029/2020JC017089, 2021.
Schiller-Weiss, I., Martin, T., and Schwarzkopf, F. U.: Emerging Influence of Enhanced Greenland Melting on Boundary Currents and Deep Convection Regimes in the Labrador and Irminger Seas, Geophys. Res. Lett., 51, e2024GL109022, https://doi.org/10.1029/2024GL109022, 2024.
Schulze Chretien, L. M. and Frajka-Williams, E.: Wind-driven transport of fresh shelf water into the upper 30 m of the Labrador Sea, Ocean Sci., 14, 1247–1264, https://doi.org/10.5194/os-14-1247-2018, 2018.
Shaw, J.-L. and Galbraith, P. S.: Climatology of Transport in the Strait of Belle Isle, J. Geophys. Res.-Oceans, 128, e2022JC019084, https://doi.org/10.1029/2022JC019084, 2023.
Shu, Q., Qiao, F., Song, Z., Zhao, J., and Li, X.: Projected Freshening of the Arctic Ocean in the 21st Century, J. Geophys. Res.-Oceans, 123, 9232–9244, https://doi.org/10.1029/2018JC014036, 2018.
Smith, E. H., Soule, F. M., and Mosby, O.: The Marion and General Greene Expeditions to the Davis Strait and Labrador Sea Under the Direction of the United States Coast Guard, 1928–1931–1933–1934–1935 – Scientific Results Part 2: Physical Oceanography, U.S. Govt. Print. Off., https://doi.org/10.5962/bhl.title.10182, 1937.
Solodoch, A., McWilliams, J. C., Stewart, A. L., Gula, J., and Renault, L.: Why Does the Deep Western Boundary Current “Leak” around Flemish Cap?, J. Phys. Oceanogr., 50, 1989–2016, https://doi.org/10.1175/JPO-D-19-0247.1, 2020.
Steinfeldt, R., Rhein, M., Bullister, J. L., and Tanhua, T.: Inventory changes in anthropogenic carbon from 1997–2003 in the Atlantic Ocean between 20° S and 65° N, Global Biogeochem. Cy., 23, https://doi.org/10.1029/2008GB003311, 2009.
Straneo, F. and Saucier, F.: The outflow from Hudson Strait and its contribution to the Labrador Current, Deep-Sea Res. Pt. I, 55, 926–946, https://doi.org/10.1016/j.dsr.2008.03.012, 2008.
Swift, J. H. and Aagaard, K.: Seasonal transitions and water mass formation in the Iceland and Greenland seas, Deep-Sea Res. Pt. A, 28, 1107–1129, https://doi.org/10.1016/0198-0149(81)90050-9, 1981.
The IMBIE team: Mass balance of the Greenland Ice Sheet from 1992 to 2018, Nature, 579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020.
Timmermans, M.-L. and Toole, J. M.: The Arctic Ocean's Beaufort Gyre, Annu. Rev. Mar. Sci., 15, 223–248, https://doi.org/10.1146/annurev-marine-032122-012034, 2023.
Yang, J. and Chen, K.: The role of wind stress in driving the along-shelf flow in the northwest Atlantic Ocean, J. Geophys. Res.-Oceans, 126, e2020JC016757, https://doi.org/10.1029/2020JC016757, 2021.
Yang, Q., Dixon, T. H., Myers, P. G., Bonin, J., Chambers, D., van den Broeke, M. R., Ribergaard, M. H., and Mortensen, J.: Recent increases in Arctic freshwater flux affects Labrador Sea convection and Atlantic overturning circulation, Nat. Commun., 7, 10525, https://doi.org/10.1038/ncomms10525, 2016.
Zhang, J., Weijer, W., Steele, M., Cheng, W., Verma, T., and Veneziani, M.: Labrador Sea freshening linked to Beaufort Gyre freshwater release, Nat. Commun., 12, 1229, https://doi.org/10.1038/s41467-021-21470-3, 2021.
Short summary
This study uses drifters – instruments that follow surface ocean currents – to investigate the pathways of Arctic origin waters that enter the North Atlantic west of Greenland. It shows that these waters remain close to the coast as they flow over the Labrador shelf and only spread into the open ocean south of the Labrador Sea. These results contribute to better understanding how the North Atlantic will be affected by additional freshwater from Greenland and the Arctic in the coming decades.
This study uses drifters – instruments that follow surface ocean currents – to investigate the...