Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2367-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2367-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Spatiotemporal properties of intrinsic sea level variability along the southeastern United States coastline
Carmine Donatelli
CORRESPONDING AUTHOR
Atmospheric and Environmental Research, Lexington, MA, USA
Christopher M. Little
Atmospheric and Environmental Research, Lexington, MA, USA
Rui M. Ponte
Atmospheric and Environmental Research, Lexington, MA, USA
Stephen G. Yeager
National Center for Atmospheric Research, Boulder, CO, USA
Related authors
No articles found.
Ingo Richter, Ping Chang, Ping-Gin Chiu, Gokhan Danabasoglu, Takeshi Doi, Dietmar Dommenget, Guillaume Gastineau, Zoe E. Gillett, Aixue Hu, Takahito Kataoka, Noel S. Keenlyside, Fred Kucharski, Yuko M. Okumura, Wonsun Park, Malte F. Stuecker, Andréa S. Taschetto, Chunzai Wang, Stephen G. Yeager, and Sang-Wook Yeh
Geosci. Model Dev., 18, 2587–2608, https://doi.org/10.5194/gmd-18-2587-2025, https://doi.org/10.5194/gmd-18-2587-2025, 2025
Short summary
Short summary
Tropical ocean basins influence each other through multiple pathways and mechanisms, referred to here as tropical basin interaction (TBI). Many researchers have examined TBI using comprehensive climate models but have obtained conflicting results. This may be partly due to differences in experiment protocols and partly due to systematic model errors. The Tropical Basin Interaction Model Intercomparison Project (TBIMIP) aims to address this problem by designing a set of TBI experiments that will be performed by multiple models.
Lara Börger, Michael Schindelegger, Mengnan Zhao, Rui M. Ponte, Anno Löcher, Bernd Uebbing, Jean-Marc Molines, and Thierry Penduff
Earth Syst. Dynam., 16, 75–90, https://doi.org/10.5194/esd-16-75-2025, https://doi.org/10.5194/esd-16-75-2025, 2025
Short summary
Short summary
Flows in the ocean are driven either by atmospheric forces or by small-scale internal disturbances that are inherently chaotic. We use computer simulation results to show that these chaotic oceanic disturbances can attain spatial scales large enough to alter the motion of Earth's pole of rotation. Given their size and unpredictable nature, the chaotic signals are a source of uncertainty when interpreting observed year-to-year polar motion changes in terms of other processes in the Earth system.
Roberto Bilbao, Pablo Ortega, Didier Swingedouw, Leon Hermanson, Panos Athanasiadis, Rosie Eade, Marion Devilliers, Francisco Doblas-Reyes, Nick Dunstone, An-Chi Ho, William Merryfield, Juliette Mignot, Dario Nicolì, Margarida Samsó, Reinel Sospedra-Alfonso, Xian Wu, and Stephen Yeager
Earth Syst. Dynam., 15, 501–525, https://doi.org/10.5194/esd-15-501-2024, https://doi.org/10.5194/esd-15-501-2024, 2024
Short summary
Short summary
In recent decades three major volcanic eruptions have occurred: Mount Agung in 1963, El Chichón in 1982 and Mount Pinatubo in 1991. In this article we explore the climatic impacts of these volcanic eruptions with a purposefully designed set of simulations from six CMIP6 decadal prediction systems. We analyse the radiative and dynamical responses and show that including the volcanic forcing in these predictions is important to reproduce the observed surface temperature variations.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Stephen G. Yeager, Nan Rosenbloom, Anne A. Glanville, Xian Wu, Isla Simpson, Hui Li, Maria J. Molina, Kristen Krumhardt, Samuel Mogen, Keith Lindsay, Danica Lombardozzi, Will Wieder, Who M. Kim, Jadwiga H. Richter, Matthew Long, Gokhan Danabasoglu, David Bailey, Marika Holland, Nicole Lovenduski, Warren G. Strand, and Teagan King
Geosci. Model Dev., 15, 6451–6493, https://doi.org/10.5194/gmd-15-6451-2022, https://doi.org/10.5194/gmd-15-6451-2022, 2022
Short summary
Short summary
The Earth system changes over a range of time and space scales, and some of these changes are predictable in advance. Short-term weather forecasts are most familiar, but recent work has shown that it is possible to generate useful predictions several seasons or even a decade in advance. This study focuses on predictions over intermediate timescales (up to 24 months in advance) and shows that there is promising potential to forecast a variety of changes in the natural environment.
Keith B. Rodgers, Sun-Seon Lee, Nan Rosenbloom, Axel Timmermann, Gokhan Danabasoglu, Clara Deser, Jim Edwards, Ji-Eun Kim, Isla R. Simpson, Karl Stein, Malte F. Stuecker, Ryohei Yamaguchi, Tamás Bódai, Eui-Seok Chung, Lei Huang, Who M. Kim, Jean-François Lamarque, Danica L. Lombardozzi, William R. Wieder, and Stephen G. Yeager
Earth Syst. Dynam., 12, 1393–1411, https://doi.org/10.5194/esd-12-1393-2021, https://doi.org/10.5194/esd-12-1393-2021, 2021
Short summary
Short summary
A large ensemble of simulations with 100 members has been conducted with the state-of-the-art CESM2 Earth system model, using historical and SSP3-7.0 forcing. Our main finding is that there are significant changes in the variance of the Earth system in response to anthropogenic forcing, with these changes spanning a broad range of variables important to impacts for human populations and ecosystems.
Pablo Ortega, Jon I. Robson, Matthew Menary, Rowan T. Sutton, Adam Blaker, Agathe Germe, Jöel J.-M. Hirschi, Bablu Sinha, Leon Hermanson, and Stephen Yeager
Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, https://doi.org/10.5194/esd-12-419-2021, 2021
Short summary
Short summary
Deep Labrador Sea densities are receiving increasing attention because of their link to many of the processes that govern decadal climate oscillations in the North Atlantic and their potential use as a precursor of those changes. This article explores those links and how they are represented in global climate models, documenting the main differences across models. Models are finally compared with observational products to identify the ones that reproduce the links more realistically.
Qiang Sun, Christopher M. Little, Alice M. Barthel, and Laurie Padman
Ocean Sci., 17, 131–145, https://doi.org/10.5194/os-17-131-2021, https://doi.org/10.5194/os-17-131-2021, 2021
Shaoqing Zhang, Haohuan Fu, Lixin Wu, Yuxuan Li, Hong Wang, Yunhui Zeng, Xiaohui Duan, Wubing Wan, Li Wang, Yuan Zhuang, Hongsong Meng, Kai Xu, Ping Xu, Lin Gan, Zhao Liu, Sihai Wu, Yuhu Chen, Haining Yu, Shupeng Shi, Lanning Wang, Shiming Xu, Wei Xue, Weiguo Liu, Qiang Guo, Jie Zhang, Guanghui Zhu, Yang Tu, Jim Edwards, Allison Baker, Jianlin Yong, Man Yuan, Yangyang Yu, Qiuying Zhang, Zedong Liu, Mingkui Li, Dongning Jia, Guangwen Yang, Zhiqiang Wei, Jingshan Pan, Ping Chang, Gokhan Danabasoglu, Stephen Yeager, Nan Rosenbloom, and Ying Guo
Geosci. Model Dev., 13, 4809–4829, https://doi.org/10.5194/gmd-13-4809-2020, https://doi.org/10.5194/gmd-13-4809-2020, 2020
Short summary
Short summary
Science advancement and societal needs require Earth system modelling with higher resolutions that demand tremendous computing power. We successfully scale the 10 km ocean and 25 km atmosphere high-resolution Earth system model to a new leading-edge heterogeneous supercomputer using state-of-the-art optimizing methods, promising the solution of high spatial resolution and time-varying frequency. Corresponding technical breakthroughs are of significance in modelling and HPC design communities.
Cited articles
Bessières, L., Leroux, S., Brankart, J.-M., Molines, J.-M., Moine, M.-P., Bouttier, P.-A., Penduff, T., Terray, L., Barnier, B., and Sérazin, G.: Development of a probabilistic ocean modelling system based on NEMO 3.5: application at eddying resolution, Geosci. Model Dev., 10, 1091–1106, https://doi.org/10.5194/gmd-10-1091-2017, 2017.
Calafat, F. M., Wahl, T., Lindsten, F., Williams, J., and Frajka-Williams, E.: Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves, Nature Communications, 9, 2571, https://doi.org/10.1038/s41467-018-04898-y, 2018.
Camargo, C. M., Piecuch, C. G., and Raubenheimer, B.: From Shelfbreak to Shoreline: Coastal sea level and local ocean dynamics in the Northwest Atlantic, Geophysical Research Letters, 51, e2024GL109583, https://doi.org/10.1029/2024GL109583, 2024.
Chang, P., Zhang, S., Danabasoglu, G., Yeager, S. G., Fu, H., Wang, H., Castruccio, F. S., Chen, Y., Edwards, J., Fu, D., Jia, Y., Laurindo, L. C., Liu, X., Rosenbloom, N., Small, R. J., Xu, G., Zeng, Y., Zhang, Q., Bacmeister, J., Bailey, D. A., Duan, X., DuVivier, A. K., Li, D., Li, Y., Neale, R., Stössel, A., Wang, L., Zhuang, Y., Baker, A., Bates, S., Dennis, J., Diao, X., Gan, B., Gopal, A., Jia, D., Zhao Jing, Ma, X., Saravanan, R., Strand, W. G., Tao, J., Yang, H., Wang, X., Wei, Z., and Wu, L.: An unprecedented set of high-resolution earth system simulations for understanding multiscale interactions in climate variability and change, Journal of Advances in Modeling Earth Systems, 12, e2020MS002298, https://doi.org/10.1029/2020MS002298, 2020.
Chassignet, E. and Marshall, D.: Gulf Stream separation in numerical ocean models, Geophysical Monograph Series, 177, https://doi.org/10.1029/177GM05, 2008.
Chassignet, E. P., Yeager, S. G., Fox-Kemper, B., Bozec, A., Castruccio, F., Danabasoglu, G., Horvat, C., Kim, W. M., Koldunov, N., Li, Y., Lin, P., Liu, H., Sein, D. V., Sidorenko, D., Wang, Q., and Xu, X.: Impact of horizontal resolution on global ocean–sea ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, 2020.
Close, S., Penduff, T., Speich, S., and Molines, J. M.: A means of estimating the intrinsic and atmospherically-forced contributions to sea surface height variability applied to altimetric observations, Prog. Oceanogr., 184, 102314, https://doi.org/10.1016/j.pocean.2020.102314, 2020.
Dangendorf, S., Frederikse, T., Chafik, L., Klinck, J. M., Ezer, T., and Hamlington, B. D.: Data-driven reconstruction reveals large-scale ocean circulation control on coastal sea level, Nature Climate Change, 11, 514–520, https://doi.org/10.1038/s41558-021-01046-1, 2021.
Dangendorf, S., Hendricks, N., Sun, Q., Klinck, J., Ezer, T., Frederikse, T., Calafat, F. M., Wahl, T., and Törnqvist, T. E.: Acceleration of US Southeast and Gulf coast sea-level rise amplified by internal climate variability, Nature Communications, 14, 1935, https://doi.org/10.1038/s41467-023-37649-9, 2023.
Donatelli, C., Ponte, R. M., Penduff, T., Zhao, M., an Llovel, W.: Effects of oceanic intrinsic processes on the mean seasonal cycle in sea level, ESS Open Archive, https://doi.org/10.22541/essoar.175130702.25669481/v1, 2025.
Ezer, T., Mellor, G. L., and Greatbatch, R. J.: On the interpentadal variability of the North Atlantic Ocean: Model simulated changes in transport, meridional heat flux and coastal sea level between 1955–1959 and 1970–1974, Journal of Geophysical Research: Oceans, 100, 10559–10566, https://doi.org/10.1029/95JC00659, 1995.
Ezer, T., Atkinson, L. P., Corlett, W. B., and Blanco, J. L.: Gulf Stream's induced sea level rise and variability along the US mid-Atlantic coast, Journal of Geophysical Research: Oceans, 118, 685–697, https://doi.org/10.1002/jgrc.20091, 2013.
Forget, G. and Ponte, R. M.: The partition of regional sea level variability, Progress in Oceanography, 137, 173–195, https://doi.org/10.1016/j.pocean.2015.06.002, 2015.
Frederikse, T., Simon, K., Katsman, C. A., and Riva, R.: The sea-level budget along the Northwest Atlantic coast: GIA, mass changes, and large-scale ocean dynamics, Journal of Geophysical Research: Oceans, 122, 5486–5501, https://doi.org/10.1002/2017JC012699, 2017.
Gallet, C. and Julien, C.: The significance threshold for coherence when using the Welch's periodogram method: Effect of overlapping segments, Biomedical Signal Processing and Control, 6, 405–409, https://doi.org/10.1016/j.bspc.2010.11.004, 2011.
Gangopadhyay, A., Gawarkiewicz, G., Silva, N. E. S., Silver, A. M., Monim, M., and Clark, J.: A census of the warm‐core rings of the Gulf Stream: 1980–2017, Journal of Geophysical Research: Oceans 125, no. 8: e2019JC016033, https://doi.org/10.1029/2019JC016033, 2020.
Gerkema, T. and Duran-Matute, M.: Interannual variability of mean sea level and its sensitivity to wind climate in an inter-tidal basin, Earth Syst. Dynam., 8, 1223–1235, https://doi.org/10.5194/esd-8-1223-2017, 2017.
Grégorio, S., Penduff, T., Sérazin, G., Molines, J. M., Barnier, B., and Hirschi, J.: Intrinsic variability of the Atlantic meridional overturning circulation at interannual-to-multidecadal time scales, Journal of Physical Oceanography, 45, 1929–1946, https://doi.org/10.1175/JPO-D-14-0163.1, 2015.
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016.
Guo, Y., Bishop, S., Bryan, F., and Bachman, S.: Mesoscale variability linked to interannual displacement of Gulf Stream, Geophysical Research Letters, 50, e2022GL102549, https://doi.org/10.1029/2022GL102549, 2023.
Hallberg, R.: Using a resolution function to regulate parameterizations of oceanic mesoscale eddy effects, Ocean Modelling, 72, 92–103, https://doi.org/10.1016/j.ocemod.2013.08.007, 2013.
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Folden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.: New Data Systems and Products at the Permanent Service for Mean Sea Level, Journal of Coastal Research, 29, 493–504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013.
Hughes, C. W., Fukumori, I., Griffies, S. M., Huthnance, J. M., Minobe, S., Spence, P., Thompson, K. R., and Wise, A.: Sea Level and the Role of Coastal Trapped Waves in Mediating the Influence of the Open Ocean on the Coast, Surveys in Geophysics, 40, 1467–1492, https://doi.org/10.1007/s10712-019-09535-x, 2019.
Huthnance, J. M.: Ocean-to-shelf signal transmission: A parameter study, Journal of Geophysical Research, 109, https://doi.org/10.1029/2004JC002358, 2004.
Li, D., Chang, P., Yeager, S. G., Danabasoglu, G., Castruccio, F. S., Small, J., Wang, H., Zhang, Q., and Gopal, A.: The Impact of Horizontal Resolution on Projected Sea-Level Rise Along US East Continental Shelf with the Community Earth System Model, Journal of Advances in Modeling Earth Systems, 14, https://doi.org/10.1029/2021MS002868, 2022.
Little, C. M., Hu, A., Hughes, C. W., McCarthy, G. D., Piecuch, C. G., Ponte, R. M., and Thomas, M. D.: The Relationship Between U.S. East Coast Sea Level and the Atlantic Meridional Overturning Circulation: A Review, Journal of Geophysical Research: Oceans, 124, 6435–6458, https://doi.org/10.1029/2019JC015152, 2019.
Little, C. M., Yeager, S. G., Ponte, R. M., Chang, P., and Kim, W. M.: Influence of Ocean Model Horizontal Resolution on the Representation of Global Annual-To-Multidecadal Coastal Sea Level Variability, J. Geophys. Res. Oceans, 129, e2024JC021679, https://doi.org/10.1029/2024JC021679, 2024.
Long, X., Widlansky, M. J., Spillman, C. M., Kumar, A., Balmaseda, M., Thompson, P. R., Chikamoto, Y., Smith, G. A., Huang, B., Shin, C. S., Merrifield, M. A., Sweet, W. V., Leuliette, E., Annamalai, H. S., Marra, J. J., and Mitchum, G.: Seasonal forecasting skill of sea-level anomalies in a multi-model prediction framework, Journal of Geophysical Research: Oceans, 126, e2020JC017060, https://doi.org/10.1029/2020JC017060, 2021.
MEaSUREs: Global Mean Sea Level Trend from Integrated Multi-Mission Ocean Altimeters TOPEX/Poseidon, Jason-1, OSTM/Jason-2, and Jason-3 Version 5.1, NASA Physical Oceanography DAAC [data set], https://doi.org/10.5067/GMSLM-TJ151, 2021.
MEaSUREs: MEaSUREs Gridded Sea Surface Height Anomalies Version 2205, NASA Physical Oceanography DAAC [data set], https://doi.org/10.5067/SLREF-CDRV3, 2022.
NOAA: A NOAA capability for Coastal Flooding and Inundation Information and Services at Climate Timescales to Reduce Risk and Improve Resilience, https://cpo.noaa.gov/Portals/0/Docs/Risk-Teams/NOAA-Coastal-Inundation-at-Climate-Timescales-Whitepaper.pdf, last access: 1 March 2025, 2022.
Oelsmann, J., Calafat, F. M., Passaro, M., Hughes, C., Richter, K., Piecuch, C., Wise, A., Katsman, C., Dettmering, D., and Jevrejeva, S.: Coherent modes of global coastal sea level variability, Journal of Geophysical Research: Oceans, 129, e2024JC021120, https://doi.org/10.1029/2024JC021120, 2024.
Penduff, T., Juza, M., Brodeau, L., Smith, G. C., Barnier, B., Molines, J.-M., Treguier, A.-M., and Madec, G.: Impact of global ocean model resolution on sea-level variability with emphasis on interannual time scales, Ocean Sci., 6, 269–284, https://doi.org/10.5194/os-6-269-2010, 2010.
Penduff, T., Juza, M., Barnier, B., Zika, J., Dewar, W. K., Treguier, A.-M., Molines, J.-M., and Audiffren, N.: Sea Level Expression of Intrinsic and Forced Ocean Variabilities at Interannual Time Scales, Journal of Climate, 24, 5652–5670, https://doi.org/10.1175/JCLI-D-11-00077.1, 2011.
Penduff, T., Barnier, B., Terray, L., Bessières, L., Sérazin, G., Gregorio, S., Brankart, J. M., Moine, M. P., Molines, J. M., and Brasseur, P.: Ensembles of eddying ocean simulations for climate, CLIVAR Exchanges, Special Issue on High Resolution Ocean Climate Modelling, 19, last access: 1 March 2025, 2014.
Penduff, T., Llovel, W., Close, S., Garcia-Gomez, I., and Leroux, S.: Trends of Coastal Sea Level Between 1993 and 2015: Imprints of Atmospheric Forcing and Oceanic Chaos, Surv. Geophys., 40, 1543–1562, https://doi.org/10.1007/s10712-019-09571-7, 2019.
Permanent Service for Mean Sea Level (PSMSL): “Tide Gauge Data”, PSMSL [data set], http://www.psmsl.org/data/obtaining/, last access: 1 March 2025, 2024.
Piecuch, C. G., Bittermann, K., Kemp, A. C., Ponte, R. M., Little, C. M., Engelhart, S. E., and Lentz, S. J.: River-discharge effects on United States Atlantic and Gulf coast sea-level changes, Proceedings of the National Academy of Sciences, 115, 7729–7734, https://doi.org/10.1073/pnas.1805428115, 2018.
Quattrocchi, G., Pierini, S., and Dijkstra, H. A.: Intrinsic low-frequency variability of the Gulf Stream, Nonlin. Processes Geophys., 19, 155–164, https://doi.org/10.5194/npg-19-155-2012, 2012.
Qiu, B., Chen, S., Wu, L., and Kida, S.: Wind-versus eddy-forced regional sea level trends and variability in the North Pacific Ocean, Journal of Climate, 28, 1561–1577, https://doi.org/10.1175/JCLI-D-14-00479.1, 2015.
Rashid, M. M., Wahl, T., and Chambers, D. P.: Extreme sea level variability dominates coastal flood risk changes at decadal time scales, Environmental Research Letters, 16, 024026, https://doi.org/10.1088/1748-9326/abd4aa, 2021.
Sérazin, G., Penduff, T., Gregorio, S., Barnier, B., Molines, J.-M., and Terray, L.: Intrinsic Variability of Sea Level from Global Ocean Simulations: Spatiotemporal Scales, Journal of Climate, 28, 4279–4292, https://doi.org/10.1175/JCLI-D-14-00554.1, 2015.
Sérazin, G., Penduff, T., Barnier, B., Molines, J. M., Arbic, B. K., Müller, M., and Terray, L.: Inverse cascades of kinetic energy as a source of intrinsic variability: A global OGCM study, Journal of Physical Oceanography, 48, 1385–1408, https://doi.org/10.1175/JPO-D-17-0136.s1, 2018.
Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., Hecht, M., Jayne, S., Jochum, K. L. M., Large, W., Maltrud, M., Norton, N., Peacock, S., Vertenstein, M., and Yeager, S.: The parallel ocean program (POP) reference manual: ocean component of the community climate system model (CCSM) and community earth system model (CESM), Rep. LAUR-01853, 141, 140 pp., last access: 1 March 2025, 2010.
Steinberg, J. M., Griffies, S. M., Krasting, J. P., Piecuch, C. G., and Ross, A. C.: A Link between US East coast sea level and North Atlantic subtropical ocean heat content, Journal of Geophysical Research: Oceans, 129, e2024JC021425, https://doi.org/10.1029/2024JC021425, 2024.
Stewart, K. D., Kim, W. M., Urakawa, S., Hogg, A. McC., Yeager, S., Tsujino, H., Nakano, H., Kiss, A. E., and Danabasoglu, G.: JRA55-do-based repeat year forcing datasets for driving ocean-sea-ice models. Ocean Modelling, 147: 101557, https://doi.org/10.1016/j.ocemod.2019.101557, 2020.
Thatcher, C. A., Brock, J. C., and Pendleton, E. A.: Economic vulnerability to sea-level rise along the northern US Gulf Coast, Journal of Coastal Research, 234–243, https://doi.org/10.2112/SI63-017.1, 2013.
Wang, O., Lee, T., Frederikse, T., Ponte, R. M., Fenty, I., Fukumori, I., and Hamlington, B. D.: What forcing mechanisms affect the interannual sea level co-variability between the northeast and southeast coasts of the United States?, Journal of Geophysical Research: Oceans, 129, e2023JC019873, https://doi.org/10.1029/2023JC019873, 2024.
Wise, A., Hughes, C. W., and Polton, J. A.: Bathymetric Influence on the Coastal Sea Level Response to Ocean Gyres at Western Boundaries, Journal of Physical Oceanography, 48, 2949–2964, https://doi.org/10.1175/JPO-D-18-0007.1, 2018.
Wise, A., Polton, J. A., Hughes, C. W., and Huthnance, J. M.: Idealised modelling of offshore-forced sea level hot spots and boundary waves along the North American East Coast, Ocean Modelling, 155, 101706, https://doi.org/10.1016/j.ocemod.2020.101706, 2020.
Wu, T. and He, R.: Gulf Stream near Cape Hatteras modulates sea level variability along the southeastern coast of North America, Geophysical Research Letters, 52, e2024GL112776, https://doi.org/10.1029/2024GL112776, 2025.
Yeager, S. G., Chang, P., Danabasoglu, G., Rosenbloom, N., Zhang, Q., Castruccio, F. S., Gopal, A., Rencurrel, M. C., and Simpson, I. R.: Reduced Southern Ocean warming enhances global skill and signal-to-noise in an eddy-resolving decadal prediction system, npj Climate and Atmospheric Science, 6, 107, https://doi.org/10.1038/s41612-023-00434-y, 2023.
Co-editor-in-chief
This article is an engaging analysis and contributes to the ongoing discussion on intrinsic sea level variability and presents a novel and valuable contribution to our understanding of intrinsic sea level variability along the U.S. East Coast
This article is an engaging analysis and contributes to the ongoing discussion on intrinsic sea...
Short summary
Assessing the spatiotemporal properties of intrinsic sea level variability is vital to improving predictions of coastal sea level changes. Here, we examined intrinsic sea level variability along the Southeast United States coast, an area of high and increasing societal vulnerability to sea level change, using numerical modeling. Our findings reveal that intrinsic coastal sea level variability is not negligible as previously thought and may exhibit predictability despite its chaotic nature.
Assessing the spatiotemporal properties of intrinsic sea level variability is vital to improving...