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Abstract. The influence of intrinsic ocean variability on
coastal sea level remains largely unexplored but is of po-
tential importance for emerging forecasting efforts. As in
weather forecasts, intrinsic variability will amplify uncer-
tainty in initial conditions. However, variability originat-
ing from intrinsic processes may be predictable in a fore-
cast system with sufficient resolution and accurate initial-
ization. Here, we examine the spatiotemporal properties of
intrinsic sea level variability along the southeastern United
States coast using a suite of global ocean/sea-ice simulations
at 0.1° horizontal resolution. In model simulations, intrin-
sic variability is a dominant component of the monthly de-
seasonalized and detrended sea level variability in deep wa-
ters, but it is damped along continental shelves, where it com-
prises ∼ 10 %–30 % of the sea level standard deviation. Our
analyses demonstrate that US East Coast and Gulf of Mex-
ico shelves exhibit a common intrinsic mode, with maximal
amplitude in the South Atlantic Bight and almost no expres-
sion north of Cape Hatteras. This intrinsic coastal mode is
coherent with sea level along the Gulf Stream axis after de-
tachment from Cape Hatteras. Intrinsic sea level variability
in the detached Gulf Stream leads the coastal mode by 2–3
months, suggesting that intrinsic coastal sea level variability
may exhibit predictability.

1 Introduction

Coastal ecosystems, communities, and economies are highly
susceptible to sea level variability over a wide range of
timescales (e.g., Rashid et al., 2021; NOAA, 2022). Accu-
rate sea level predictions are needed for mitigation and adap-

tation purposes and for effectively managing risks associated
with sea level variability. Such predictions will benefit from
(1) improved understanding of relevant drivers of regional
coastal sea level variability, and (2) assessment of the repre-
sentation of monthly to interannual coastal sea level variabil-
ity in dynamic models utilized for operational ocean fore-
casting.

Various physical processes operating at different spatial
and temporal scales influence sea level variability (e.g.,
Gerkema and Duran-Matute, 2017; Little et al., 2019; Ca-
margo et al., 2024). These processes can be partitioned into
a deterministic component that occurs in response to an ap-
plied forcing (“atmospherically forced component”), and a
non-deterministic (“intrinsic”) component, which is not di-
rectly driven by atmospheric variability but is instead gen-
erated by the ocean itself, for instance, through small-scale
(i.e., mesoscale and smaller) turbulent processes (e.g., Pen-
duff et al., 2011). Such small-scale processes become par-
ticularly important in eddy-active regions of the ocean and
cause the ocean’s evolution to be non-deterministic at both
small and large (regional to basin) scales under prescribed
forcing conditions (Sérazin et al., 2015; Qiu et al., 2015; For-
get and Ponte, 2015; Close et al., 2020).

Sea level variability originating from intrinsic processes
might be a significant source of uncertainty in forecasts and
can only be represented by adopting ocean models of suffi-
cient horizontal resolution (e.g., Penduff et al., 2010, 2011;
Sérazin et al., 2018; Chassignet et al., 2020). However, gen-
erally, the horizontal resolution of ocean models used for
coastal sea level forecasts is on the order of 1° (∼ 100 km),
which is insufficient to capture the effect of oceanic intrinsic
variability on coastal sea level (e.g., Long et al., 2021).
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Even in simulations capable of representing intrinsic pro-
cesses, separation of forced and intrinsic variability is not
trivial. Two strategies have been used to isolate the contribu-
tion of intrinsic variability in eddy-permitting ocean model
simulations. The first strategy compares model output from
a realistic atmospherically forced model with one only sub-
jected to climatological forcing (e.g., Stewart et al., 2020)
(i.e., repeat-year forcing simulations). The second approach
employs ensemble members with perturbed initial condi-
tions, which permit the estimation of the forced (ensem-
ble mean) and intrinsic components (i.e., difference between
time series of a specific member and the ensemble mean)
(e.g., Penduff et al., 2014; Bessières et al., 2017; Donatelli et
al., 2025).

This paper focuses on characterizing the spatiotemporal
properties of intrinsic sea level variability along the south-
eastern coast of the United States (including the Gulf of Mex-
ico), where societal vulnerability to sea level variability is
high and increasing (e.g., Thatcher et al., 2013). The major-
ity of the studies in this area focus on atmospherically forced
variability (e.g., Frederikse et al., 2017; Calafat et al., 2018;
Piecuch et al., 2018; Wang et al., 2024) and less is known
about the influence of oceanic intrinsic processes on coastal
sea level.

The southeastern coast of the United States (from now on,
SEUS) has a strong intrinsic component at subannual to in-
terannual timescales (e.g., Close et al., 2020; Little et al.,
2024). However, previous studies do not elucidate: (i) the
SEUS along-coast spatial structure, and (ii) how coastal vari-
ability relates to offshore variability over space and time. To
explore these questions, it is essential to use simulations that
(1) represent the SEUS shelf topography with sufficient grid
points, even in regions where the shelf narrows, and (2) ad-
equately resolve offshore intrinsic variability (e.g., Hallberg,
2013).

Here, to study the spatial structure (and magnitude) of in-
trinsic sea level variability along the SEUS coastline and
its spatiotemporal relationship with offshore variability, we
utilize monthly sea surface height (SSH) fields from high-
resolution (HR) forced ocean/sea-ice (FOSI) and repeat-
year-forcing (RYF) (Stewart et al., 2020) simulations per-
formed using the Community Earth System Model at 0.1°
horizontal resolution (Chang et al., 2020; Yeager et al., 2023;
Little et al., 2024). We utilized the HR FOSI simulation to
evaluate whether the model faithfully represents observa-
tions, and the HR RYF simulation to cleanly estimate intrin-
sic sea level variability. The paper is organized as follows.
The model setup, observational datasets, and data processing
are described in the Appendix. In Sect. 2 we show the results,
and in Sect. 3 we present the discussion and conclusions.

2 Results

2.1 Total and intrinsic sea level variability

We first compare the total (i.e., forced plus intrinsic) sea level
standard deviation from the HR FOSI simulation and obser-
vations over the 1993–2018 period (Fig. 1). Total sea level
standard deviation (mean across the FOSI members; Fig. 1a)
is larger in deep waters and decreases over the continental
shelf. Over the same temporal window, a gridded altimeter
product (Fig. 1b) shows a similar spatial structure, with the
model generally underestimating the observed monthly to-
tal sea level standard deviation over the shelf by 10 %–20 %.
A similar result was obtained when we compared coastal
grid points with the detrended and de-seasonalized sea level
recorded by tide gauges (TGs). At three representative lo-
cations along the US coastline (Fig. 1c, d, e), discrepancies
between model and TG observations were more significant in
Galveston (see standard deviations in Fig. 1c, d, e). In con-
trast, Charleston exhibited the largest inter-cycle differences.
Our results show that, overall, sea level hindcasts compare fa-
vorably to TG observations over the 1993–2018 period (see
Table 1).

We next quantify intrinsic variability using detrended and
de-seasonalized monthly outputs from the HR RYF simula-
tion (Fig. 1f). The intrinsic standard deviation shows substan-
tial spatial variations; specifically, it is damped on the conti-
nental shelf relative to offshore. By computing the intrinsic
fraction (i.e., ratio between the intrinsic standard deviation
from the HR RYF simulation and the total cycle-mean sea
level standard deviation from the HR FOSI simulation), we
found that the intrinsic standard deviation represents 10 %–
30 % of the total sea level standard deviation on the continen-
tal shelf south of Cape Hatteras and up to 100 % of the total
standard deviation in deep waters (Fig. 1g; note that these
results pertain to a region dominated by a western boundary
current). Offshore intrinsic variability is maximized in the
interior of the Gulf of Mexico and in proximity to the Gulf
Stream (GS). Along the GS path, we found a minimum in
the offshore intrinsic fraction (Fig. 1g), which coincides with
a region of low intrinsic standard deviation (Fig. 1f). The
core of the GS is characterized by weaker zonal SSH gradi-
ents with respect to its margins (see SSH contours in Fig. 3).
These spatial variations in SSH gradients may be responsible
for the patterns observed in offshore intrinsic variability near
the GS.

2.2 Intrinsic sea level variability along the SEUS coast

We utilized detrended and de-seasonalized monthly SSHs
extracted at 170 coastal grid points (pseudo-TGs) from the
HR RYF simulation to analyze the spatial structure of in-
trinsic sea level variability along the SEUS coast. Consistent
with Fig. 1f, g, coastal grid points exhibit minimal variabil-
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Figure 1. Total sea level standard deviation (cm) from (a) the HR FOSI simulation (the blue dashed line indicates the offshore region in
Fig. 3a) and (b) gridded altimeter product over the period 1993–2015. (c, d, e) Comparison between detrended and de-seasonalized time
series from tide gauges (TGs) and HR FOSI ensemble simulation in three representative locations. We reported the standard deviation (cm)
for TGs (black) and each FOSI cycle. The location of each TG is shown in Fig. 1b. (f) Intrinsic standard deviation (cm) estimated using the
HR RYF simulation. (g) Intrinsic fraction (i.e., intrinsic standard deviation estimated from the HR RYF simulation divided by total standard
deviation computed using the HR FOSI simulation).

Table 1. Comparison between HR FOSI simulation and TG observations. For each ensemble member, we reported coefficient of determina-
tion (R2) and root mean square error (RMSE).

Tide gauge R2 RMSE (cm)

Portland (Maine) 0.81, 0.80, 0.78, 0.8 2.70, 2.73, 2.88, 2.79
New Port 0.80, 0.78, 0.78, 0.79 2.52, 2.63, 2.65, 2.59
Cape May 0.86, 0.86, 0.85, 0.86 2.80, 2.85, 2.90, 2.85
Sewells Point, Hampton Roads 0.85, 0.85, 0.85, 0.85 3.51, 3.57, 3.53, 3.54
Beaufort (North Carolina) 0.70, 0.69, 0.73, 0.71 4.01, 4.11, 3.93, 3.99
Wilmington 0.49, 0.51, 0.54, 0.52 6.77, 6.72, 6.62, 6.66
Charleston 0.66, 0.71, 0.73, 0.66 5.19, 4.85, 4.79, 5.22
Fort Pulaski 0.64, 0.68, 0.71, 0.63 5.62, 5.27, 5.32, 5.75
Naples 0.41, 0.43, 0.51, 0.43 4.10, 3.92, 3.73, 3.94
St. Petersburg 0.48, 0.46, 0.53, 0.44 3.85, 3.79, 3.60, 3.93
Apalachicola 0.57, 0.54, 0.58, 0.52 4.80, 4.90, 4.73, 5.02
Grand Isle 0.67, 0.67, 0.72, 0.66 3.99, 3.95, 3.68, 4.00
Galveston 0.76, 0.78, 0.81, 0.75 4.76, 4.59, 4.37, 4.80
Rockport 0.73, 0.75, 0.77, 0.73 4.42, 4.37, 3.98, 4.65
Port Isabel (Texas) 0.7, 0.72, 0.75, 0.71 4.21, 4.05, 3.82, 4.15
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Figure 2. (a) Monthly time series from the HR RYF simulation extracted at 170 pseudo-TGs along the SEUS coastline. These time series
are 32 years long. (b) First mode and (c) second mode obtained from EOF analysis. The color of the circles indicates the eigenvectors’ value
in each pseudo-TG, while the circles’ radius is related to the magnitude. (d) Principal components (PCs, cm) associated with modes 1 and 2.

ity north of Cape Hatters (see pseudo-TGs between locations
100 and 170 in Fig. 2a).

We used EOF analysis to identify the modes that ex-
plain the largest fraction of the variability along the SEUS
coastline. The EOF decomposition revealed that the first two
modes explain most of the variability in the dataset. Specifi-
cally, the first mode explains 73 % of the variability, while the
second mode contributes 12 % (Fig. 2b, c). The eigenvector
associated with the dominant mode showed the same sign in

all the pseudo-TGs (as indicated by the color of the circles in
Fig. 2b), revealing a “common mode” linking the East Coast
and the Gulf of Mexico. In contrast, the second eigenvector
suggests that the pseudo-TGs along the US East Coast be-
have opposite to those in the Gulf of Mexico (Fig. 2c). The
variability explained by each mode presents significant spa-
tial variations (see the size of the circles in Fig. 2b, c), partic-
ularly between pseudo-TGs south of Cape Hatteras (larger)
and those north of Cape Hatteras (smaller standard devia-

Ocean Sci., 21, 2367–2377, 2025 https://doi.org/10.5194/os-21-2367-2025



C. Donatelli et al.: Spatiotemporal properties of intrinsic sea level variability 2371

tion). Both modes show enhanced variability between Cape
Hatteras and Jacksonville.

The temporal evolution of the first two eigenvectors is rep-
resented by the PCs associated with each mode (Fig. 2d).
The PCs exhibit fluctuations at subannual to interannual
timescales, including multi-year sea level trends (for exam-
ple PC1, over a 5-year period beginning around month 90)
(Penduff et al., 2019). The remainder of the paper considers
only the first mode (PC1) given its dominant role in explain-
ing SEUS intrinsic coastal variability.

2.3 Relationship between along-coast and offshore
intrinsic sea level variability

We utilized detrended and de-seasonalized SSH fields ob-
tained from the HR RYF simulation to identify spatial path-
ways connecting offshore and coastal intrinsic sea level vari-
ability. With no lag, PC1 correlates with (i) SSHs over the
entire continental shelf south of Cape Hatteras, and (ii) SSHs
within an off-shelf region located in proximity to the GS axis
after detachment from Cape Hatteras (Fig. 3a).

To assess evidence for propagating oceanic signals, lag
correlations at different lags were applied, with a positive
lag indicating that offshore sea level leads PC1. We high-
light correlated off-shelf regions (blue contours in Fig. 3b, c,
d) using a threshold of 0.3 (note that coherence analysis per-
formed in the following paragraph is not sensitive to the pre-
cise threshold employed to identify the detachment region).
Interestingly, lag correlations reveal that the off-shelf region
(i) moves westward and varies in size with decreasing time
lag, and (ii) leads the along-coast intrinsic mode.

We employed a spectral approach to further characterize
the relationship between the PC1 and the detrended and de-
seasonalized SSHs over the off-shelf region (i.e., solid blue
line in Fig. 3a). The two-time series show high coherence
values (coherence amplitude greater than 0.5, Fig. 4a) for
frequencies smaller than 0.9 yr−1. In this frequency band, the
coherence phase lag (positive phase lag denotes off-shelf re-
gion leads the PC1; shown only for frequency bands where
coherence is statistically significant) ranges between 20 and
40° (i.e., off-shelf region leads PC1 by 2–3 months). To help
visualize these results, we applied a 13-month low-pass filter
to the two-time series (Fig. 4b). Consistent with Fig. 4a, the
two filtered signals show that the off-shelf region leads the
along-coast intrinsic mode.

3 Discussion and conclusions

Using a 50-member ocean ensemble hindcast at 0.25° hori-
zontal resolution, Close et al. (2020) showed that sea level
variability is almost entirely driven by intrinsic processes
in energetic regions of the ocean, such as the GS. Building
on this study, we utilized a set of numerical experiments at
higher spatial resolution to explore the linkage between off-

Figure 3. Lag correlations between the PC1 and SSH field: (a) no
lag, (b) lag of 3 months, (c) lag of 1 month, and (d) lag of−1 month.
A positive lag means that SSH field leads the PC1. The solid blue
line in panel (a) shows the off-shelf region when no lag is applied
to the PC1. The solid lines in panel (b), (c) represent the off-shelf
region when lags of (b) 3 months and (c) 1 month are applied to
the PC1. The dashed lines in panels (b), (c), and (d) show the off-
shelf region when no lag is applied to the PC1 (i.e., the dashed lines
are the same as the solid line in panel a). The statistical significance
of the lag correlations was evaluated using a p value of 0.05. The
thicker black lines indicate a water depth of 100 m, while the lighter
black line indicates a water depth of 1000 m. The grey lines are
time-mean SSH contours at 10 cm intervals.

shore and coastal sea level variability along the SEUS coast-
line.

Our analyses revealed that, at monthly to interannual
timescales south of Cape Hatteras, intrinsic processes mean-
ingfully contribute to sea level variability, reaching up to
30 % of the total monthly sea level standard deviation on
the continental shelf. A common intrinsic sea level mode,
largest between Charleston and the Florida Straits, but co-
herent around the Gulf of Mexico, is correlated with sea level
variability in the detached GS through a large-scale pathway
connecting deep and shelf waters. The absence of intrinsic
variability to the north of Cape Hatteras is consistent with
the limited ability of eddies to influence sea level where the
shelf is wide (e.g., Gangopadhyay et al., 2020), and the equa-
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Figure 4. (a) Coherence analysis between the PC1 and average SSH signal within the off-shelf region. Note phase lag is only shown for
statistically significant coherence (a positive phase means that the off-shelf region leads the PC1). (b) PC1 (cm) and average SSH signal (cm)
within the off-shelf region to which we applied a 13-month low-pass filter. The average SSH signal within the off-shelf region is divided by
10.

torward propagation of coastal sea level anomalies originat-
ing near the GS detachment.

The along-coast coherence of PC1, and the robust 2–3
month lag between off-shelf and coastal sea level variability
(see offshore region in Fig. 3), inform hypotheses about the
underlying oceanic mechanisms controlling the propagation
of sea level anomalies from the off-shelf region to the coast
(e.g., Wu and He, 2025). Our results are consistent with prop-
agation along the continental slope via topographic Rossby
waves (e.g., Wise et al., 2018, 2020; Hughes et al., 2019).
The latter travel with a speed of a few centimeters per sec-
ond at these latitudes (first baroclinic mode), roughly con-
sistent with the time lag we quantified between the off-shelf
region and the PC1 (barotropic Rossby waves may also be
involved in this transfer process). Once sea level anomalies
break the potential vorticity barrier and penetrate onto the
shallow continental shelf (e.g., Wise et al., 2020), they are
transmitted via Kelvin waves traveling at a few meters per
second (first baroclinic mode); such signals can travel from

Cape Hatteras to the Gulf of Mexico in less than a month.
This lag is not resolved using the monthly SSH fields avail-
able from the HR RYF and is thus consistent with our iden-
tification of a single signed coastal mode. Given the dispar-
ity between open-ocean and coastal wave speeds, daily SSH
fields will be required to capture the along-coast propagation
of sea level anomalies.

The frequency band in which the along-coast intrinsic
mode and the off-shelf region exhibit high coherence sug-
gests that SSH within the off-shelf region might be influ-
enced by variations in the GS position excited by intrin-
sic oceanic variability (e.g., Quattrocchi et al., 2012; Grégo-
rio et al., 2015). More specifically, frequencies smaller than
0.9 yr−1 seem consistent with interannual GS path oscilla-
tions, which are known to control a significant fraction of the
total SSH variance within the GS detachment region (e.g.,
Guo et al., 2023). Related to this point, it is important to
mention that the GS is often misplaced in numerical mod-
els (Chassignet and Marshall, 2008). This GS separation bias
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produces excessive surface EKE north of Cape Hatteras in
POP (Parallel Ocean Program, Smith et al., 2010) HR FOSI
(Chassignet et al., 2020) and, therefore, we can expect that
it may also impact the magnitude of the along-coast mode
detected in the HR RYF simulation.

CESM simulations show that intrinsic sea level variability
is smaller (in a time-aggregated sense) than forced sea level
variability; however, it is not negligible and, as noted, may
have inherent predictability. Although the origin of atmo-
spherically forced and intrinsic sea level variations is differ-
ent, our study reveals that the oceanic mechanisms involved
in the communication of off-shelf anomalies to the coast (and
from Cape Hatteras to the Gulf of Mexico) are similar to
those regulating the transfer of some previously described
forced sea level signals (e.g., Calafat et al., 2018; Dangendorf
et al., 2021, 2023; Steinberg et al., 2024). As such, our find-
ings help understand the role of GS path variations (forced
and intrinsic) on coastal sea level, and we suggest that sea
level forecasting efforts will benefit from further studies of
intrinsic variability along the SEUS coastline and elsewhere.
This study provides a better understanding of (i) the physical
processes governing offshore-shelf and shelf-to-shelf com-
munication along the SEUS coastline, and (ii) the relation-
ship between offshore GS variations and coastal sea level
(e.g., Ezer et al., 1995, 2013; Wu and He, 2025). It may also
help with the interpretation of observational datasets (e.g.,
Oelsmann et al., 2024).

Appendix A: CESM simulations

We employed an HR FOSI simulation with a spatial resolu-
tion of 0.1° (∼ 10 km) to analyze monthly SSH fields from
1993 to 2018. The HR FOSI simulation represents the re-
sponse of the ocean and sea ice to prescribed atmospheric
forcing (e.g., wind, temperature). This simulation was per-
formed using the global Community Earth System Model
version 1.3 (CESM1.3) following the Ocean Model Inter-
comparison Project version 2 (OMIP2) experimental proto-
col (Griffies et al., 2016). The 1958–2018 forcing applied
is (nearly) identical in each of four consecutive cycles (or
ensemble members) and is obtained from JRA55 reanaly-
sis. The JRA55 atmospheric fields have a spatial resolution
of 55 km and a temporal resolution of 3 h. The HR FOSI
simulation was initialized from observed climatology (i.e.,
World Ocean Atlas) and spun up through consecutive cycles
of 1958–2018 (61-year) forcing. Each cycle repeats the forc-
ing of the previous simulation (e.g., simulation years 62–122
(cycle 2) repeats the forcing of simulation years 1–61 (cycle
1)). Since the cycles share the same forcing but have differ-
ent initial conditions, inter-cycle differences can be largely
attributed to intrinsic processes.

The limited number of HR FOSI cycles does not allow a
clear separation of forced and intrinsic variability (although
estimation of the forced and intrinsic variance might be pos-

sible using inter-cycle differences, see Little et al., 2024).
To cleanly quantify intrinsic variability, we use an HR RYF
(repeat-year forcing) simulation. The HR RYF simulation
was carried out by applying a single year of JRA55 bound-
ary conditions from May 2003 to the end of April 2004. The
May 2003–April 2004 year is characterized by low (non-
anomalous) values for major climate modes. The May–April
cycle is to avoid forcing discontinuities in mid-winter. By ap-
plying the same annual forcing in each year, interannual vari-
ability in sea level can be mainly attributed to oceanic intrin-
sic processes. Here, we analyzed the last 32 years of monthly
outputs from a 70-year-long HR RYF simulation to exam-
ine the spatiotemporal properties of intrinsic sea level vari-
ability along the SEUS coastline, over the continental shelf,
and adjacent deep waters. The HR RYF simulation was se-
lected because of its unprecedentedly high resolution (0.1°),
which allows us to examine the linkage between offshore and
along-coast intrinsic sea level variability. Further details of
the model setup can be found in Little et al. (2024).

Appendix B: Observational dataset and comparisons
with model outputs

We utilized monthly mean TG observations with less than
12 missing months over the 1993–2018 period. TG observa-
tions were obtained from the Permanent Service for Mean
Sea Level Revised Local Reference database on 1 December
2022 (Holgate et al., 2013). Missing data were infilled using
linear interpolation after removing the seasonal cycle from
the time series.

Sea level recorded by TGs is affected by numerous pro-
cesses not accounted for in CESM simulations (e.g., inverted
barometer effect, barystatic changes, global mean steric ex-
pansion/contraction, and vertical land motion). Thus, we re-
moved from the TG record (i) the inverted barometer effect,
using surface pressure fields from the ERA-5 atmospheric re-
analysis, and (ii) the global mean sea level due to barystatic
and steric processes, employing estimates obtained from al-
timetry (MEaSUREs, 2021). Additionally, we linearly de-
trended the corrected TG time series to account for vertical
land motion (after correction and detrending, we denote sea
level as ζ ′).

To compare model output and sea level observed by TGs,
we extracted the SSH in the closest model grid points to each
TG using a ball tree algorithm (i.e., a ball tree algorithm is
an efficient means of finding model grid points closest to a
list of TG locations; more details can be found at https://
scikit-learn.org/stable/modules/neighbors.html (last access:
1 March 2025). The modelled time series were detrended to
remove model drift. To evaluate the model performance at
larger spatial scales, we compared the spatial structure of ζ ′

variability from the HR FOSI simulation with a 1/6° grid-
ded satellite altimeter product at monthly temporal resolu-
tion over the 1993–2018 period (MEaSUREs, 2022). Before
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comparing the two datasets, we removed the global mean sea
level and linearly detrended the residual at each grid point
from the altimeter product (note that the inverted barometer
effect has already been removed from the altimeter gridded
product).

Appendix C: Additional data processing

SSH time series were extracted from the HR RYF simula-
tion along the SEUS coast at 170 pseudo-TGs (one pseudo-
TG for each model grid cell along the coast). Then, we ap-
plied empirical orthogonal function (EOF) analysis to the ex-
tracted SSH time series to identify the modes that explain
the largest fraction of variability in the dataset. First, a ma-
trix (O) was created by storing the time series extracted from
the HR RYF simulation along each column. Then, we com-
puted the covariance matrix (C=OTO) and solved the cor-
responding eigenvalue problem:

C= V λV T , (C1)

where V and λ are the eigenvector and eigenvalue matrices.
Each eigenvalue indicates the fraction of the variance ex-
plained by each eigenvector. By expressing matrix O in the
space identified by the eigenvectors, we computed the prin-
cipal components (PCs) associated with each mode.

We also utilized coherence analysis to characterize the
relationship between along-coast and offshore intrinsic sea
level variability. The spectrum was obtained by applying a
Hanning window with overlapping (50 % overlap) data seg-
ments. Each data segment has a length of 64 time steps (i.e.,
64 months) and starts halfway through the previous segment
(i.e., each data segment captures half of the data of the pre-
vious one). Coherence uncertainties were obtained using a
standard approach (e.g., Gallet and Julien, 2011). This ap-
proach sets a threshold to assess whether a computed coher-
ence exceeds what might be expected from random noise.
The threshold is determined based on the significance level
(i.e., 95 % significance level) and the number of segments
used to compute the coherence spectrum. The number of seg-
ments was evaluated as the time series length divided by the
window length multiplied by 0.5.

Data availability. The sea level observations analyzed in this
study are available from the Permanent Service for Mean Sea
Level (https://doi.org/10.2112/JCOASTRES-D-12-00175.1, Hol-
gate et al., 2013; http://www.psmsl.org/data/obtaining/ (last access:
1 March 2025), Permanent Service for Mean Sea Level, 2024) (for
tide gauges) and from NASA (https://doi.org/10.5067/GMSLM-
TJ151, MEaSUREs, 2021, last access: 1 March 2025) (for satel-
lite altimetry). Derived quantities from CESM simulations and
the scripts required to generate the figures are archived at
https://doi.org/10.1029/2024JC021679 (Little et al., 2024, last ac-
cess: 1 March 2025).
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