Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2101-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2101-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Controls on dense-water formation along the path of the North Atlantic subpolar gyre
Oliver J. Tooth
CORRESPONDING AUTHOR
Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
National Oceanography Centre, Southampton, United Kingdom
Helen L. Johnson
Department of Earth Sciences, University of Oxford, Oxford, United Kingdom
Chris Wilson
National Oceanography Centre, Liverpool, United Kingdom
Related authors
No articles found.
Helene Asbjørnsen, Tor Eldevik, Johanne Skrefsrud, Helen L. Johnson, and Alejandra Sanchez-Franks
Ocean Sci., 20, 799–816, https://doi.org/10.5194/os-20-799-2024, https://doi.org/10.5194/os-20-799-2024, 2024
Short summary
Short summary
The Gulf Stream system is essential for northward ocean heat transport. Here, we use observations along the path of the extended Gulf Stream system and an observationally constrained ocean model to investigate variability in the Gulf Stream system since the 1990s. We find regional differences in the variability between the subtropical, subpolar, and Nordic Seas regions, which warrants caution in using observational records at a single latitude to infer large-scale circulation change.
Yavor Kostov, Marie-José Messias, Herlé Mercier, David P. Marshall, and Helen L. Johnson
Ocean Sci., 20, 521–547, https://doi.org/10.5194/os-20-521-2024, https://doi.org/10.5194/os-20-521-2024, 2024
Short summary
Short summary
We examine factors affecting variability in the volume of Labrador Sea Water (LSW), a water mass that is important for the uptake and storage of heat and carbon in the Atlantic Ocean. We find that LSW accumulated in the Labrador Sea exhibits a lagged response to remote conditions: surface wind stress, heat flux, and freshwater flux anomalies, especially along the pathways of the North Atlantic Current branches. We use our results to reconstruct and attribute historical changes in LSW volume.
Oliver John Tooth, Helen Louise Johnson, Chris Wilson, and Dafydd Gwyn Evans
Ocean Sci., 19, 769–791, https://doi.org/10.5194/os-19-769-2023, https://doi.org/10.5194/os-19-769-2023, 2023
Short summary
Short summary
This study uses the trajectories of water parcels traced within an ocean model simulation to identify the pathways responsible for the seasonal cycle of dense water formation (overturning) in the eastern subpolar North Atlantic. We show that overturning seasonality is due to the fastest water parcels circulating within the eastern basins in less than 8.5 months. Slower pathways set the average strength of overturning in this region since water parcels cannot escape intense wintertime cooling.
Noam S. Vogt-Vincent, Satoshi Mitarai, and Helen L. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2023-778, https://doi.org/10.5194/egusphere-2023-778, 2023
Preprint archived
Short summary
Short summary
Coral larvae can drift through ocean currents between coral reefs, establishing connectivity, which plays an important role in coral reef resilience. However, larval transport is chaotic. We simulate coral spawning events across the tropical southwest Indian Ocean for almost three decades, and find that larval transport can vary massively from day-to-day. This variability is largely random, and this introduces a lot of uncertainty in connectivity predictions.
Noam S. Vogt-Vincent and Helen L. Johnson
Geosci. Model Dev., 16, 1163–1178, https://doi.org/10.5194/gmd-16-1163-2023, https://doi.org/10.5194/gmd-16-1163-2023, 2023
Short summary
Short summary
Ocean currents transport things over large distances across the ocean surface. Predicting this transport is key for tackling many environmental problems, such as marine plastic pollution and coral reef resilience. However, doing this requires a good understanding ocean currents, which is currently lacking. Here, we present and validate state-of-the-art simulations for surface currents in the southwestern Indian Ocean, which will support future marine dispersal studies across this region.
Cited articles
Aldama-Campino, A., Döös, K., Kjellsson, J., and Jönsson, B.: TRACMASS: Formal Release of Version 7.0, Zenodo [code], https://doi.org/10.5281/zenodo.4337926, 2020. a, b
Archibald, A. T., Sinha, B., Russo, M. R., Matthews, E., Squires, F. A., Abraham, N. L., Bauguitte, S. J.-B., Bannan, T. J., Bell, T. G., Berry, D., Carpenter, L. J., Coe, H., Coward, A., Edwards, P., Feltham, D., Heard, D., Hopkins, J., Keeble, J., Kent, E. C., King, B. A., Lawrence, I. R., Lee, J., Macintosh, C. R., Megann, A., Moat, B. I., Read, K., Reed, C., Roberts, M. J., Schiemann, R., Schroeder, D., Smyth, T. J., Temple, L., Thamban, N., Whalley, L., Williams, S., Wu, H., and Yang, M.: Data Supporting the North Atlantic Climate System Integrated Study (ACSIS) Programme, Including Atmospheric Composition; Oceanographic and Sea-Ice Observations (2016–2022); and Output from Ocean, Atmosphere, Land, and Sea-Ice Models (1950–2050), Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, 2025. a
Årthun, M. and Eldevik, T.: On Anomalous Ocean Heat Transport toward the Arctic and Associated Climate Predictability, J. Climate, 29, 689–704, https://doi.org/10.1175/JCLI-D-15-0448.1, 2016. a, b
Årthun, M., Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H. L., and Keenlyside, N. S.: Skillful Prediction of Northern Climate Provided by the Ocean, Nat. Commun., 8, 15875, https://doi.org/10.1038/ncomms15875, 2017. a, b
Bebieva, Y. and Lozier, M. S.: Fresh Water and Atmospheric Cooling Control on Density-Compensated Overturning in the Labrador Sea, J. Phys. Oceanogr., 53, 2575–2589, https://doi.org/10.1175/JPO-D-22-0238.1, 2023. a
Bersch, M.: North Atlantic Oscillation–Induced Changes of the Upper Layer Circulation in the Northern North Atlantic Ocean, J. Geophys. Res.-Oceans, 107, 3156, https://doi.org/10.1029/2001JC000901, 2002. a
Bersch, M., Yashayaev, I., and Koltermann, K. P.: Recent Changes of the Thermohaline Circulation in the Subpolar North Atlantic, Ocean Dynam., 57, 223–235, https://doi.org/10.1007/s10236-007-0104-7, 2007. a
Bingham, R. J., Hughes, C. W., Roussenov, V., and Williams, R. G.: Meridional Coherence of the North Atlantic Meridional Overturning Circulation, Geophys. Res. Lett., 34, 2007GL031731, https://doi.org/10.1029/2007GL031731, 2007. a
Blanke, B. and Delecluse, P.: Variability of the Tropical Atlantic Ocean Simulated by a General Circulation Model with Two Different Mixed-Layer Physics, J. Phys. Oceanogr., 23, 1363–1388, https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2, 1993. a
Blanke, B., Bonhommeau, S., Grima, N., and Drillet, Y.: Sensitivity of Advective Transfer Times across the North Atlantic Ocean to the Temporal and Spatial Resolution of Model Velocity Data: Implication for European Eel Larval Transport, Dynam. Atmos. Oceans, 55–56, 22–44, https://doi.org/10.1016/j.dynatmoce.2012.04.003, 2012. a
Blockley, E., Fiedler, E., Ridley, J., Roberts, L., West, A., Copsey, D., Feltham, D., Graham, T., Livings, D., Rousset, C., Schroeder, D., and Vancoppenolle, M.: The Sea Ice Component of GC5: Coupling SI3 to HadGEM3 Using Conductive Fluxes, Geosci. Model Dev., 17, 6799–6817, https://doi.org/10.5194/gmd-17-6799-2024, 2024. a
Boer, G. J., Smith, D. M., Cassou, C., Doblas-Reyes, F., Danabasoglu, G., Kirtman, B., Kushnir, Y., Kimoto, M., Meehl, G. A., Msadek, R., Mueller, W. A., Taylor, K. E., Zwiers, F., Rixen, M., Ruprich-Robert, Y., and Eade, R.: The Decadal Climate Prediction Project (DCPP) Contribution to CMIP6, Geosci. Model Dev., 9, 3751–3777, https://doi.org/10.5194/gmd-9-3751-2016, 2016. a
Böning, C. W., Scheinert, M., Dengg, J., Biastoch, A., and Funk, A.: Decadal Variability of Subpolar Gyre Transport and Its Reverberation in the North Atlantic Overturning, Geophys. Res. Lett., 33, 2006GL026906, https://doi.org/10.1029/2006GL026906, 2006. a
Born, A. and Stocker, T. F.: Two Stable Equilibria of the Atlantic Subpolar Gyre, J. Phys. Oceanogr., 44, 246–264, https://doi.org/10.1175/JPO-D-13-073.1, 2014. a
Buckley, M. W., Ferreira, D., Campin, J.-M., Marshall, J., and Tulloch, R.: On the Relationship between Decadal Buoyancy Anomalies and Variability of the Atlantic Meridional Overturning Circulation, J. Climate, 25, 8009–8030, https://doi.org/10.1175/JCLI-D-11-00505.1, 2012. a, b
Buckley, M. W., Lozier, M. S., Desbruyères, D., and Evans, D. G.: Buoyancy Forcing and the Subpolar Atlantic Meridional Overturning Circulation, Philos. T. Roy. Soc. A, 381, 20220181, https://doi.org/10.1098/rsta.2022.0181, 2023. a, b, c
Chafik, L. and Holliday, N. P.: Rapid Communication of Upper-Ocean Salinity Anomaly to Deep Waters of the Iceland Basin Indicates an AMOC Short-Cut, Geophys. Res. Lett., 49, e2021GL097570, https://doi.org/10.1029/2021GL097570, 2022. a
Chafik, L. and Rossby, T.: Volume, Heat, and Freshwater Divergences in the Subpolar North Atlantic Suggest the Nordic Seas as Key to the State of the Meridional Overturning Circulation, Geophys. Res. Lett., 46, 4799–4808, https://doi.org/10.1029/2019GL082110, 2019. a, b
Chafik, L., Holliday, N. P., Bacon, S., and Rossby, T.: Irminger Sea Is the Center of Action for Subpolar AMOC Variability, Geophys. Res. Lett., 49, e2022GL099133, https://doi.org/10.1029/2022GL099133, 2022. a, b
Chafik, L., Penny Holliday, N., Bacon, S., Baker, J. A., Desbruyères, D., Frajka-Williams, E., and Jackson, L. C.: Observed Mechanisms Activating the Recent Subpolar North Atlantic Warming since 2016, Philos. T. Roy. Soc. A, 381, 20220183, https://doi.org/10.1098/rsta.2022.0183, 2023. a, b
Chenillat, F., Blanke, B., Grima, N., Franks, P. J. S., Capet, X., and Rivière, P.: Quantifying Tracer Dynamics in Moving Fluids: A Combined Eulerian-Lagrangian Approach, Front. Environ. Sci., 3, 1–15, https://doi.org/10.3389/fenvs.2015.00043, 2015. a
Collins, M. and Sinha, B.: Predictability of Decadal Variations in the Thermohaline Circulation and Climate, Geophys. Res. Lett., 30, 2002GL016504, https://doi.org/10.1029/2002GL016504, 2003. a
Curry, R. G. and McCartney, M. S.: Ocean Gyre Circulation Changes Associated with the North Atlantic Oscillation, J. Phys. Oceanogr., 31, 3374–3400, https://doi.org/10.1175/1520-0485(2001)031<3374:OGCCAW>2.0.CO;2, 2001. a
Curry, R. G., McCartney, M. S., and Joyce, T. M.: Oceanic Transport of Subpolar Climate Signals to Mid-Depth Subtropical Waters, Nature, 391, 575–577, https://doi.org/10.1038/35356, 1998. a
Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino, P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T., Thierry, V., and Gladyshev, S.: The Northern North Atlantic Ocean Mean Circulation in the Early 21st Century, Prog. Oceanogr., 146, 142–158, https://doi.org/10.1016/j.pocean.2016.06.007, 2016. a, b
Delworth, T. L. and Zeng, F.: Multicentennial Variability of the Atlantic Meridional Overturning Circulation and Its Climatic Influence in a 4000 Year Simulation of the GFDL CM2.1 Climate Model, Geophys. Res. Lett., 39, 2012GL052107, https://doi.org/10.1029/2012GL052107, 2012. a
Delworth, T. L. and Zeng, F.: The Impact of the North Atlantic Oscillation on Climate through Its Influence on the Atlantic Meridional Overturning Circulation, J. Climate, 29, 941–962, https://doi.org/10.1175/JCLI-D-15-0396.1, 2016. a
Desbruyères, D., Thierry, V., and Mercier, H.: Simulated Decadal Variability of the Meridional Overturning Circulation across the A25-Ovide Section, J. Geophys. Res.-Oceans, 118, 462–475, https://doi.org/10.1029/2012JC008342, 2013. a
Desbruyères, D., Mercier, H., and Thierry, V.: On the Mechanisms behind Decadal Heat Content Changes in the Eastern Subpolar Gyre, Prog. Oceanogr., 132, 262–272, https://doi.org/10.1016/j.pocean.2014.02.005, 2015. a
Desbruyères, D., Chafik, L., and Maze, G.: A Shift in the Ocean Circulation Has Warmed the Subpolar North Atlantic Ocean since 2016, Commun. Earth Environ., 2, 48, https://doi.org/10.1038/s43247-021-00120-y, 2021. a
Devana, M. S., Johns, W. E., Houk, A., and Zou, S.: Rapid Freshening of Iceland Scotland Overflow Water Driven by Entrainment of a Major Upper Ocean Salinity Anomaly, Geophys. Res. Lett., 48, e2021GL094396 , https://doi.org/10.1029/2021GL094396, 2021. a
de Vries, P. and Weber, S. L.: The Atlantic Freshwater Budget as a Diagnostic for the Existence of a Stable Shut down of the Meridional Overturning Circulation, Geophys. Res. Lett., 32, 2004GL021450, https://doi.org/10.1029/2004GL021450, 2005. a
Döös, K.: Interocean Exchange of Water Masses, J. Geophys. Res.-Oceans, 100, 13499–13514, https://doi.org/10.1029/95JC00337, 1995. a
d'Orgeville, M. and Peltier, W. R.: On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: Might They Be Related?, Geophys. Res. Lett., 34, 2007GL031584, https://doi.org/10.1029/2007GL031584, 2007. a
Eden, C. and Willebrand, J.: Mechanism of Interannual to Decadal Variability of the North Atlantic Circulation, J. Climate, 14, 2266–2280, https://doi.org/10.1175/1520-0442(2001)014<2266:MOITDV>2.0.CO;2, 2001. a, b
Eldevik, T., Nilsen, J. E. Ø., Iovino, D., Anders Olsson, K., Sandø, A. B., and Drange, H.: Observed Sources and Variability of Nordic Seas Overflow, Nat. Geosci., 2, 406–410, https://doi.org/10.1038/ngeo518, 2009. a
Evans, D. G., Holliday, N. P., Bacon, S., and Le Bras, I.: Mixing and Air–Sea Buoyancy Fluxes Set the Time-Mean Overturning Circulation in the Subpolar North Atlantic and Nordic Seas, Ocean Sci., 19, 745–768, https://doi.org/10.5194/os-19-745-2023, 2023. a
Fan, H., Borchert, L. F., Brune, S., Koul, V., and Baehr, J.: North Atlantic Subpolar Gyre Provides Downstream Ocean Predictability, npj Clim. Atmos. Sci., 6, 145, https://doi.org/10.1038/s41612-023-00469-1, 2023. a, b
Feng, S. and Hu, Q.: How the North Atlantic Multidecadal Oscillation May Have Influenced the Indian Summer Monsoon during the Past Two Millennia, Geophys. Res. Lett., 35, 2007GL032 484, https://doi.org/10.1029/2007GL032484, 2008. a
Fraser, N. J. and Cunningham, S. A.: 120 Years of AMOC Variability Reconstructed From Observations Using the Bernoulli Inverse, Geophys. Res. Lett., 48, e2021GL093893, https://doi.org/10.1029/2021GL093893, 2021. a
Fröhle, J., Handmann, P. V. K., and Biastoch, A.: Major Sources of North Atlantic Deep Water in the Subpolar North Atlantic from Lagrangian Analyses in an Eddy-Rich Ocean Model, Ocean Sci., 18, 1431–1450, https://doi.org/10.5194/os-18-1431-2022, 2022. a, b
Fu, Y., Lozier, M. S., Biló, T. C., Bower, A. S., Cunningham, S. A., Cyr, F., de Jong, M. F., de Young, B., Drysdale, L., Fraser, N., Fried, N., Furey, H. H., Han, G., Handmann, P., Holliday, N. P., Holte, J., Inall, M. E., Johns, W. E., Jones, S., Karstensen, J., Li, F., Pacini, A., Pickart, R. S., Rayner, D., Straneo, F., and Yashayaev, I.: Seasonality of the Meridional Overturning Circulation in the Subpolar North Atlantic, Commun. Earth Environ., 4, 181, https://doi.org/10.1038/s43247-023-00848-9, 2023a. a, b
Fu, Y, Lozier, M. S, Biló, T. C., Bower, A. S., Cunningham, S. A., Cyr, F., de Jong, M. F., deYoung, B., Drysdale, L., Fraser, N., Fried, N., Furey, H. H., Han, G., Handmann, P., Holliday, N. P., Holte, J., Inall, M. E., Johns, W. E., Jones, S., and Karstensen, J.: Meridional Overturning Circulation Observed by the Overturning in the Subpolar North Atlantic Program (OSNAP) Array from August 2014 to June 2020, Georgia Tech Digital Repository [data set], https://doi.org/10.35090/gatech/70342, 2023b. a
Fu, Y., Lozier, M. S., Majumder, S., and Petit, T.: Water Mass Transformation and Its Relationship With the Overturning Circulation in the Eastern Subpolar North Atlantic, J. Geophys. Res.-Oceans, 129, e2024JC021222, https://doi.org/10.1029/2024JC021222, 2024. a
Georgiou, S., Ypma, S. L., Brüggemann, N., Sayol, J.-M., Pietrzak, J. D., and Katsman, C. A.: Pathways of the Water Masses Exiting the Labrador Sea: The Importance of Boundary–Interior Exchanges, Ocean Model., 150, 101623, https://doi.org/10.1016/j.ocemod.2020.101623, 2020. a
Georgiou, S., Ypma, S. L., Brüggemann, N., Sayol, J.-M., Van Der Boog, C. G., Spence, P., Pietrzak, J. D., and Katsman, C. A.: Direct and Indirect Pathways of Convected Water Masses and Their Impacts on the Overturning Dynamics of the Labrador Sea, J. Geophys. Res.-Oceans, 126, e2020JC016654, https://doi.org/10.1029/2020JC016654, 2021. a, b
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality Controlled Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with Uncertainty Estimates, J. Geophys. Res.-Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a
Goswami, B. N., Madhusoodanan, M. S., Neema, C. P., and Sengupta, D.: A Physical Mechanism for North Atlantic SST Influence on the Indian Summer Monsoon, Geophys. Res. Lett., 33, 2005GL024803, https://doi.org/10.1029/2005GL024803, 2006. a
Grist, J. P., Josey, S. A., Marsh, R., Good, S. A., Coward, A. C., De Cuevas, B. A., Alderson, S. G., New, A. L., and Madec, G.: The Roles of Surface Heat Flux and Ocean Heat Transport Convergence in Determining Atlantic Ocean Temperature Variability, Ocean Dynam., 60, 771–790, https://doi.org/10.1007/s10236-010-0292-4, 2010. a
Guiavarc'h, C., Storkey, D., Blaker, A. T., Blockley, E., Megann, A., Hewitt, H., Bell, M. J., Calvert, D., Copsey, D., Sinha, B., Moreton, S., Mathiot, P., and An, B.: GOSI9: UK Global Ocean and Sea Ice Configurations, Geosci. Model Dev., 18, 377–403, https://doi.org/10.5194/gmd-18-377-2025, 2025. a, b
Hermanson, L., Dunstone, N., Haines, K., Robson, J., Smith, D., and Sutton, R.: A Novel Transport Assimilation Method for the Atlantic Meridional Overturning Circulation at 26° N, Q. J. Roy. Meteorol. Soc., 140, 2563–2572, https://doi.org/10.1002/qj.2321, 2014. a
Heuzé, C.: North Atlantic Deep Water Formation and AMOC in CMIP5 Models, Ocean Sci., 13, 609–622, https://doi.org/10.5194/os-13-609-2017, 2017. a
Heuzé, C.: Antarctic Bottom Water and North Atlantic Deep Water in CMIP6 Models, Ocean Sci., 17, 59–90, https://doi.org/10.5194/os-17-59-2021, 2021. a
Hirschi, J. J.-M., Barnier, B., Böning, C., Biastoch, A., Blaker, A. T., Coward, A., Danilov, S., Drijfhout, S., Getzlaff, K., Griffies, S. M., Hasumi, H., Hewitt, H., Iovino, D., Kawasaki, T., Kiss, A. E., Koldunov, N., Marzocchi, A., Mecking, J. V., Moat, B., Molines, J.-M., Myers, P. G., Penduff, T., Roberts, M., Treguier, A.-M., Sein, D. V., Sidorenko, D., Small, J., Spence, P., Thompson, L., Weijer, W., and Xu, X.: The Atlantic Meridional Overturning Circulation in High-Resolution Models, J. Geophys. Res.-Oceans, 125, e2019JC015522, https://doi.org/10.1029/2019JC015522, 2020. a, b
Holliday, N. P., Hughes, S. L., Bacon, S., Beszczynska-Möller, A., Hansen, B., Lavín, A., Loeng, H., Mork, K. A., Østerhus, S., Sherwin, T., and Walczowski, W.: Reversal of the 1960s to 1990s Freshening Trend in the Northeast North Atlantic and Nordic Seas, Geophys. Res. Lett., 35, 2007GL032675, https://doi.org/10.1029/2007GL032675, 2008. a
Holliday, N. P., Bacon, S., Cunningham, S. A., Gary, S. F., Karstensen, J., King, B. A., Li, F., and Mcdonagh, E. L.: Subpolar North Atlantic Overturning and Gyre-Scale Circulation in the Summers of 2014 and 2016, J. Geophys. Res.-Oceans, 123, 4538–4559, https://doi.org/10.1029/2018JC013841, 2018. a
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S. A., Larsen, K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H., and Yashayaev, I.: Ocean Circulation Causes the Largest Freshening Event for 120 Years in Eastern Subpolar North Atlantic, Nat. Commun., 11, 585, https://doi.org/10.1038/s41467-020-14474-y, 2020. a
Hurrell, J. W.: Decadal Trends in the North Atlantic Oscillation: Regional Temperatures and Precipitation, Science, 269, 676–679, https://doi.org/10.1126/science.269.5224.676, 1995. a
Isachsen, P. E., Mauritzen, C., and Svendsen, H.: Dense Water Formation in the Nordic Seas Diagnosed from Sea Surface Buoyancy Fluxes, Deep-Sea Res. Pt. I, 54, 22–41, https://doi.org/10.1016/j.dsr.2006.09.008, 2007. a
Jackson, L. C. and Petit, T.: North Atlantic Overturning and Water Mass Transformation in CMIP6 Models, Clim. Dynam., 60, 2871–2891, https://doi.org/10.1007/s00382-022-06448-1, 2023. a
Jackson, L. C., Biastoch, A., Buckley, M. W., Desbruyères, D. G., Frajka-Williams, E., Moat, B., and Robson, J.: The Evolution of the North Atlantic Meridional Overturning Circulation since 1980, Nat. Rev. Earth Environ., 3, 241–254, https://doi.org/10.1038/s43017-022-00263-2, 2022. a
Jacobs, Z. L., Grist, J. P., Marsh, R., and Josey, S. A.: A Subannual Subsurface Pathway From the Gulf Stream to the Subpolar Gyre and Its Role in Warming and Salinification in the 1990s, Geophys. Res. Lett., 46, 7518–7526, https://doi.org/10.1029/2019GL083021, 2019. a
Jones, B. T., Solow, A., and Ji, R.: Resource Allocation for Lagrangian Tracking, J. Atmos. Ocean. Tech., 33, 1225–1235, https://doi.org/10.1175/JTECH-D-15-0115.1, 2016. a
Keenlyside, N. S., Latif, M., Jungclaus, J., Kornblueh, L., and Roeckner, E.: Advancing Decadal-Scale Climate Prediction in the North Atlantic Sector, Nature, 453, 84–88, https://doi.org/10.1038/nature06921, 2008. a
Khatri, H., Williams, R. G., Woollings, T., and Smith, D. M.: Fast and Slow Subpolar Ocean Responses to the North Atlantic Oscillation: Thermal and Dynamical Changes, Geophys. Res. Lett., 49, e2022GL101480, https://doi.org/10.1029/2022GL101480, 2022. a, b
Kieke, D., Rhein, M., Stramma, L., Smethie, W. M., Bullister, J. L., and LeBel, D. A.: Changes in the Pool of Labrador Sea Water in the Subpolar North Atlantic, Geophys. Res. Lett., 34, L06605, https://doi.org/10.1029/2006GL028959, 2007. a
Kim, W. M., Yeager, S., Chang, P., and Danabasoglu, G.: Low-Frequency North Atlantic Climate Variability in the Community Earth System Model Large Ensemble, J. Climate, 31, 787–813, https://doi.org/10.1175/JCLI-D-17-0193.1, 2018. a
Kim, W. M., Yeager, S., and Danabasoglu, G.: Atlantic Multidecadal Variability and Associated Climate Impacts Initiated by Ocean Thermohaline Dynamics, J. Climate, 33, 1317–1334, https://doi.org/10.1175/JCLI-D-19-0530.1, 2020. a
Kim, W. M., Ruprich-Robert, Y., Zhao, A., Yeager, S., and Robson, J.: North Atlantic Response to Observed North Atlantic Oscillation Surface Heat Flux in Three Climate Models, J. Climate, 37, 1777–1796, https://doi.org/10.1175/JCLI-D-23-0301.1, 2024. a
Koman, G., Johns, W., Houk, A., Houpert, L., and Li, F.: Circulation and Overturning in the Eastern North Atlantic Subpolar Gyre, Prog. Oceanogr., 208, 102884, https://doi.org/10.1016/j.pocean.2022.102884, 2022. a
Koman, G., Bower, A. S., Holliday, N. P., Furey, H. H., Fu, Y., and Biló, T. C.: Observed Decrease in Deep Western Boundary Current Transport in Subpolar North Atlantic, Nat. Geosci., 17, 1148–1153, https://doi.org/10.1038/s41561-024-01555-6, 2024. a
Kostov, Y., Messias, M.-J., Mercier, H., Johnson, H. L., and Marshall, D. P.: Fast Mechanisms Linking the Labrador Sea with Subtropical Atlantic Overturning, Clim. Dynam., 60, 2687–2712, https://doi.org/10.1007/s00382-022-06459-y, 2023. a, b
Kostov, Y., Messias, M.-J., Mercier, H., Marshall, D. P., and Johnson, H. L.: Surface Factors Controlling the Volume of Accumulated Labrador Sea Water, Ocean Sci., 20, 521–547, https://doi.org/10.5194/os-20-521-2024, 2024. a
Koul, V., Tesdal, J.-E., Bersch, M., Hátún, H., Brune, S., Borchert, L., Haak, H., Schrum, C., and Baehr, J.: Unraveling the Choice of the North Atlantic Subpolar Gyre Index, Sci. Rep., 10, 1005, https://doi.org/10.1038/s41598-020-57790-5, 2020. a
Le Bras, I., Straneo, F., Muilwijk, M., Smedsrud, L. H., Li, F., Lozier, M. S., and Holliday, N. P.: How Much Arctic Fresh Water Participates in the Subpolar Overturning Circulation?, J. Phys. Oceanogr., 51, 955–973, https://doi.org/10.1175/JPO-D-20-0240.1, 2021. a
Li, F., Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong, M. F., de Young, B., Fraser, N., Fried, N., Han, G., Holliday, N. P., Holte, J., Houpert, L., Inall, M. E., Johns, W. E., Jones, S., Johnson, C., Karstensen, J., Le Bras, I. A., Lherminier, P., Lin, X., Mercier, H., Oltmanns, M., Pacini, A., Petit, T., Pickart, R. S., Rayner, D., Straneo, F., Thierry, V., Visbeck, M., Yashayaev, I., and Zhou, C.: Subpolar North Atlantic Western Boundary Density Anomalies and the Meridional Overturning Circulation, Nat. Commun., 12, 3002, https://doi.org/10.1038/s41467-021-23350-2, 2021. a
Li, J., Sun, C., and Jin, F.-F.: NAO Implicated as a Predictor of Northern Hemisphere Mean Temperature Multidecadal Variability, Geophys. Res. Lett., 40, 5497–5502, https://doi.org/10.1002/2013GL057877, 2013. a
Lozier, M. S. and Stewart, N. M.: On the Temporally Varying Northward Penetration of Mediterranean Overflow Water and Eastward Penetration of Labrador Sea Water, J. Phys. Oceanogr., 38, 2097–2103, https://doi.org/10.1175/2008JPO3908.1, 2008. a
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A., de Jong, M. F., de Steur, L., deYoung, B., Fischer, J., Gary, S. F., Greenan, B. J. W., Holliday, N. P., Houk, A., Houpert, L., Inall, M. E., Johns, W. E., Johnson, H. L., Johnson, C., Karstensen, J., Koman, G., Le Bras, I. A., Lin, X., Mackay, N., Marshall, D. P., Mercier, H., Oltmanns, M., Pickart, R. S., Ramsey, A. L., Rayner, D., Straneo, F., Thierry, V., Torres, D. J., Williams, R. G., Wilson, C., Yang, J., Yashayaev, I., and Zhao, J.: A Sea Change in Our View of Overturning in the Subpolar North Atlantic, Science, 363, 516–521, https://doi.org/10.1126/science.aau6592, 2019. a
Luo, F., Li, S., and Furevik, T.: The Connection between the Atlantic Multidecadal Oscillation and the Indian Summer Monsoon in Bergen Climate Model Version 2.0, J. Geophys. Res., 116, D19117, https://doi.org/10.1029/2011JD015848, 2011. a
MacGilchrist, G. A., Johnson, H. L., Marshall, D. P., Lique, C., Thomas, M., Jackson, L. C., and Wood, R. A.: Locations and Mechanisms of Ocean Ventilation in the High-Latitude North Atlantic in an Eddy-Permitting Ocean Model, J. Climate, 33, 10113–10131, https://doi.org/10.1175/JCLI-D-20-0191.1, 2020. a
Madec, G., Bourdallé-Badie, R., Chanut, J., Clementi, E., Coward, A., Ethé, C., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Rousset, C., Storkey, D., Vancoppenolle, M., Müeller, S., Nurser, G., Bell, M., and Samson, G.: NEMO Ocean Engine, Zenodo [code], https://doi.org/10.5281/ZENODO.3878122, 2019. a, b
Markina, M. Y., Johnson, H. L., and Marshall, D. P.: Response of Subpolar North Atlantic Meridional Overturning Circulation to Variability in Surface Winds on Different Timescales, J. Phys. Oceanogr., 54, 1871–1887, https://doi.org/10.1175/JPO-D-23-0236.1, 2024. a
Marotzke, J., Müller, W. A., Vamborg, F. S. E., Becker, P., Cubasch, U., Feldmann, H., Kaspar, F., Kottmeier, C., Marini, C., Polkova, I., Prömmel, K., Rust, H. W., Stammer, D., Ulbrich, U., Kadow, C., Köhl, A., Kröger, J., Kruschke, T., Pinto, J. G., Pohlmann, H., Reyers, M., Schröder, M., Sienz, F., Timmreck, C., and Ziese, M.: MiKlip: A National Research Project on Decadal Climate Prediction, B. Am. Meteorol. Soc., 97, 2379–2394, https://doi.org/10.1175/BAMS-D-15-00184.1, 2016. a
Marsh, R.: Recent Variability of the North Atlantic Thermohaline Circulation Inferred from Surface Heat and Freshwater Fluxes, J. Climate, 13, 3239–3260, https://doi.org/10.1175/1520-0442(2000)013<3239:RVOTNA>2.0.CO;2, 2000. a
Marshall, J., Johnson, H., and Goodman, J.: A Study of the Interaction of the North Atlantic Oscillation with Ocean Circulation, J. Climate, 14, 1399–1421, https://doi.org/10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2, 2001. a
Martin, E. R. and Thorncroft, C. D.: The Impact of the AMO on the West African Monsoon Annual Cycle, Q. J. Roy. Meteorol. Soc., 140, 31–46, https://doi.org/10.1002/qj.2107, 2014. a
Martin, E. R., Thorncroft, C., and Booth, B. B. B.: The Multidecadal Atlantic SST – Sahel Rainfall Teleconnection in CMIP5 Simulations, J. Climate, 27, 784–806, https://doi.org/10.1175/JCLI-D-13-00242.1, 2014. a
Mauritzen, C.: Production of Dense Overflow Waters Feeding the North Atlantic across the Greenland-Scotland Ridge. Part 1: Evidence for a Revised Circulation Scheme, Deep-Sea Res. Pt. I, 43, 769–806, https://doi.org/10.1016/0967-0637(96)00037-4, 1996. a
McDougall, T. J., Jackett, D. R., Millero, F. J., Pawlowicz, R., and Barker, P. M.: A Global Algorithm for Estimating Absolute Salinity, Ocean Sci., 8, 1123–1134, https://doi.org/10.5194/os-8-1123-2012, 2012. a
Megann, A., Blaker, A., Coward, A., Guiavarc'h, C., and Storkey, D.: Model Output from ° Global JRA55-forced Integration of GO8p7 Global Ocean-Sea Ice Model from 1958 to 2021, CEDA Archive [data set], https://doi.org/10.5285/399B0F762A004657A411A9EA7203493A, 2022. a, b, c
Menary, M. B., Park, W., Lohmann, K., Vellinga, M., Palmer, M. D., Latif, M., and Jungclaus, J. H.: A Multimodel Comparison of Centennial Atlantic Meridional Overturning Circulation Variability, Clim. Dynam., 38, 2377–2388, https://doi.org/10.1007/s00382-011-1172-4, 2012. a
Mercier, H., Desbruyères, D., Lherminier, P., Velo, A., Carracedo, L., Fontela, M., and Pérez, F. F.: New Insights into the Eastern Subpolar North Atlantic Meridional Overturning Circulation from OVIDE, Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, 2024. a, b
Msadek, R., Delworth, T. L., Rosati, A., Anderson, W., Vecchi, G., Chang, Y.-S., Dixon, K., Gudgel, R. G., Stern, W., Wittenberg, A., Yang, X., Zeng, F., Zhang, R., and Zhang, S.: Predicting a Decadal Shift in North Atlantic Climate Variability Using the GFDL Forecast System, J. Climate, 27, 6472–6496, https://doi.org/10.1175/JCLI-D-13-00476.1, 2014. a
Ortega, P., Robson, J., Sutton, R. T., and Andrews, M. B.: Mechanisms of Decadal Variability in the Labrador Sea and the Wider North Atlantic in a High-Resolution Climate Model, Clim. Dynam., 49, 2625–2647, https://doi.org/10.1007/s00382-016-3467-y, 2017. a
Ortega, P., Robson, J. I., Menary, M., Sutton, R. T., Blaker, A., Germe, A., Hirschi, J. J.-M., Sinha, B., Hermanson, L., and Yeager, S.: Labrador Sea Subsurface Density as a Precursor of Multidecadal Variability in the North Atlantic: A Multi-Model Study, Earth Syst. Dynam., 12, 419–438, https://doi.org/10.5194/esd-12-419-2021, 2021. a
Østerhus, S., Woodgate, R., Valdimarsson, H., Turrell, B., De Steur, L., Quadfasel, D., Olsen, S. M., Moritz, M., Lee, C. M., Larsen, K. M. H., Jónsson, S., Johnson, C., Jochumsen, K., Hansen, B., Curry, B., Cunningham, S., and Berx, B.: Arctic Mediterranean Exchanges: A Consistent Volume Budget and Trends in Transports from Two Decades of Observations, Ocean Sci., 15, 379–399, https://doi.org/10.5194/os-15-379-2019, 2019. a, b, c, d
Passos, L., Langehaug, H. R., Årthun, M., and Straneo, F.: On the Relation between Thermohaline Anomalies and Water Mass Transformation in the Eastern Subpolar North Atlantic, J. Climate, 37, 4821–4834, https://doi.org/10.1175/JCLI-D-23-0379.1, 2024. a, b
Petit, T., Robson, J., Ferreira, D., and Jackson, L. C.: Understanding the Sensitivity of the North Atlantic Subpolar Overturning in Different Resolution Versions of HadGEM3-GC3.1, J. Geophys. Res.-Oceans, 128, e2023JC019672, https://doi.org/10.1029/2023JC019672, 2023. a, b
Rahmstorf, S.: On the Freshwater Forcing and Transport of the Atlantic Thermohaline Circulation:, Clim. Dynam., 12, 799–811, https://doi.org/10.1007/s003820050144, 1996. a
Reintges, A., Robson, J. I., Sutton, R., and Yeager, S. G.: Subpolar North Atlantic Mean State Affects the Response of the Atlantic Meridional Overturning Circulation to the North Atlantic Oscillation in CMIP6 Models, J. Climate, 37, 5543–5559, https://doi.org/10.1175/JCLI-D-23-0470.1, 2024. a
Rhein, M., Kieke, D., Hüttl-Kabus, S., Roessler, A., Mertens, C., Meissner, R., Klein, B., Böning, C. W., and Yashayaev, I.: Deep Water Formation, the Subpolar Gyre, and the Meridional Overturning Circulation in the Subpolar North Atlantic, Deep-Sea Res. Pt. II, 58, 1819–1832, https://doi.org/10.1016/j.dsr2.2010.10.061, 2011. a
Roach, C. J. and Speer, K.: Exchange of Water Between the Ross Gyre and ACC Assessed by Lagrangian Particle Tracking, J. Geophys. Res.-Oceans, 124, 4631–4643, https://doi.org/10.1029/2018JC014845, 2019. a
Robson, J., Sutton, R., Lohmann, K., Smith, D., and Palmer, M. D.: Causes of the Rapid Warming of the North Atlantic Ocean in the Mid-1990s, J. Climate, 25, 4116–4134, https://doi.org/10.1175/JCLI-D-11-00443.1, 2012. a, b
Robson, J., Ortega, P., and Sutton, R.: A Reversal of Climatic Trends in the North Atlantic since 2005, Nat. Geosci., 9, 513–517, https://doi.org/10.1038/ngeo2727, 2016. a
Roussenov, V. M., Williams, R. G., Lozier, M. S., Holliday, N. P., and Smith, D. M.: Historical Reconstruction of Subpolar North Atlantic Overturning and Its Relationship to Density, J. Geophys. Res.-Oceans, 127, e2021JC017732, https://doi.org/10.1029/2021JC017732, 2022. a, b
Sarafanov, A., Falina, A., Mercier, H., Sokov, A., Lherminier, P., Gourcuff, C., Gladyshev, S., Gaillard, F., and Daniault, N.: Mean Full-Depth Summer Circulation and Transports at the Northern Periphery of the Atlantic Ocean in the 2000s, J. Geophys. Res.-Oceans, 117, C01014, https://doi.org/10.1029/2011JC007572, 2012. a, b
Sgubin, G., Swingedouw, D., Drijfhout, S., Mary, Y., and Bennabi, A.: Abrupt Cooling over the North Atlantic in Modern Climate Models, Nat. Commun., 8, 14375, https://doi.org/10.1038/ncomms14375, 2017. a
Smith, D. M., Eade, R., Scaife, A. A., Caron, L.-P., Danabasoglu, G., DelSole, T. M., Delworth, T., Doblas-Reyes, F. J., Dunstone, N. J., Hermanson, L., Kharin, V., Kimoto, M., Merryfield, W. J., Mochizuki, T., Müller, W. A., Pohlmann, H., Yeager, S., and Yang, X.: Robust Skill of Decadal Climate Predictions, npj Clim. Atmos. Sci., 2, 13, https://doi.org/10.1038/s41612-019-0071-y, 2019. a
Speer, K. and Tziperman, E.: Rates of Water Mass Formation in the North Atlantic Ocean, J. Phys. Oceanogr., 22, 93–104, https://doi.org/10.1175/1520-0485(1992)022<0093:ROWMFI>2.0.CO;2, 1992. a, b
Stommel, H.: Thermohaline Convection with Two Stable Regimes of Flow, Tellus, 13, 224–230, https://doi.org/10.1111/j.2153-3490.1961.tb00079.x, 1961. a
Straneo, F. and Heimbach, P.: North Atlantic Warming and the Retreat of Greenland's Outlet Glaciers, Nature, 504, 36–43, https://doi.org/10.1038/nature12854, 2013. a
Swingedouw, D., Ifejika Speranza, C., Bartsch, A., Durand, G., Jamet, C., Beaugrand, G., and Conversi, A.: Early Warning from Space for a Few Key Tipping Points in Physical, Biological, and Social-Ecological Systems, Surv. Geophys., 41, 1237–1284, https://doi.org/10.1007/s10712-020-09604-6, 2020. a
Swingedouw, D., Bily, A., Esquerdo, C., Borchert, L. F., Sgubin, G., Mignot, J., and Menary, M.: On the Risk of Abrupt Changes in the North Atlantic Subpolar Gyre in CMIP6 Models, Ann. NY Acad. Sci., 1504, 187–201, https://doi.org/10.1111/nyas.14659, 2021. a
Tooth, O. J., Johnson, H. L., and Wilson, C.: Lagrangian Overturning Pathways in the Eastern Subpolar North Atlantic, J. Climate, 36, 823–844, https://doi.org/10.1175/JCLI-D-21-0985.1, 2023a. a, b, c, d
Tooth, O. J., Johnson, H. L., Wilson, C., and Evans, D. G.: Seasonal Overturning Variability in the Eastern North Atlantic Subpolar Gyre: A Lagrangian Perspective, Ocean Sci., 19, 769–791, https://doi.org/10.5194/os-19-769-2023, 2023b. a, b, c
Tooth, O., Aitor Aldama-Campino, and Döös, K.: oj-tooth/Tracmass_v7.1: v0.1.0 (v0.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.17105628, 2025a. a
Tooth, O.: Controls on Dense Water Formation along the path of the North Atlantic Subpolar Gyre – Water Parcel Crossings of the OSNAP Array (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.14870254, 2025b. a
Tooth, O.: oj-tooth/lt_toolbox: v0.1.0 (v0.1), Zenodo [code], https://doi.org/10.5281/zenodo.15838857, 2025c. a
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W., Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack, P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C., Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J., Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.: JRA-55 Based Surface Dataset for Driving Ocean–Sea-Ice Models (JRA55-do), Ocean Model., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. a
Vancoppenolle, M., Rousset, C., Blockley, E., Aksenov, Y., Feltham, D., Fichefet, T., Garric, G., Guémas, V., Iovino, D., Keeley, S., Madec, G., Massonnet, F., Ridley, J., Schroeder, D., and Tietsche, S.: SI3, the NEMO Sea Ice Engine, Zenodo [code], https://doi.org/10.5281/ZENODO.7534900, 2023. a
Wåhlin, A. K. and Johnson, H. L.: The Salinity, Heat, and Buoyancy Budgets of a Coastal Current in a Marginal Sea, J. Phys. Oceanogr., 39, 2562–2580, https://doi.org/10.1175/2009JPO4090.1, 2009. a, b
Walin, G.: On the Relation between Sea-Surface Heat Flow and Thermal Circulation in the Ocean, Tellus A, 34, 187–195, https://doi.org/10.3402/tellusa.v34i2.10801, 1982. a
Wang, H., Zhao, J., Li, F., and Lin, X.: Seasonal and Interannual Variability of the Meridional Overturning Circulation in the Subpolar North Atlantic Diagnosed From a High Resolution Reanalysis Data Set, J. Geophys. Res.-Oceans, 126, e2020JC017130, https://doi.org/10.1029/2020JC017130, 2021. a
Xu, X., Rhines, P. B., and Chassignet, E. P.: On Mapping the Diapycnal Water Mass Transformation of the Upper North Atlantic Ocean, J. Phys. Oceanogr., 48, 2233–2258, https://doi.org/10.1175/JPO-D-17-0223.1, 2018. a
Yashayaev, I.: Hydrographic Changes in the Labrador Sea, 1960–2005, Prog. Oceanogr., 73, 242–276, https://doi.org/10.1016/j.pocean.2007.04.015, 2007. a
Yashayaev, I. and Seidov, D.: The Role of the Atlantic Water in Multidecadal Ocean Variability in the Nordic and Barents Seas, Prog. Oceanogr., 132, 68–127, https://doi.org/10.1016/j.pocean.2014.11.009, 2015. a
Yashayaev, I., Bersch, M., and Van Aken, H. M.: Spreading of the Labrador Sea Water to the Irminger and Iceland Basins, Geophys. Res. Lett., 34, 2006GL028999, https://doi.org/10.1029/2006GL028999, 2007. a
Yeager, S.: The Abyssal Origins of North Atlantic Decadal Predictability, Clim. Dynam., 55, 2253–2271, https://doi.org/10.1007/s00382-020-05382-4, 2020. a, b
Yeager, S. and Danabasoglu, G.: The Origins of Late-Twentieth-Century Variations in the Large-Scale North Atlantic Circulation, J. Climate, 27, 3222–3247, https://doi.org/10.1175/JCLI-D-13-00125.1, 2014. a
Yeager, S., Castruccio, F., Chang, P., Danabasoglu, G., Maroon, E., Small, J., Wang, H., Wu, L., and Zhang, S.: An Outsized Role for the Labrador Sea in the Multidecadal Variability of the Atlantic Overturning Circulation, Sci. Adv., 7, eabh3592, https://doi.org/10.1126/sciadv.abh3592, 2021. a, b, c, d
Yeager, S. G. and Robson, J. I.: Recent Progress in Understanding and Predicting Atlantic Decadal Climate Variability, Curr. Clim. Change Rep., 3, 112–127, https://doi.org/10.1007/s40641-017-0064-z, 2017. a, b
Yeager, S. G., Karspeck, A. R., and Danabasoglu, G.: Predicted Slowdown in the Rate of Atlantic Sea Ice Loss, Geophys. Res. Lett., 42, 10704–10713, https://doi.org/10.1002/2015GL065364, 2015. a, b
Zantopp, R., Fischer, J., Visbeck, M., and Karstensen, J.: From Interannual to Decadal: 17 Years of Boundary Current Transports at the Exit of the Labrador Sea, J. Geophys. Res.-Oceans, 122, 1724–1748, https://doi.org/10.1002/2016JC012271, 2017. a, b, c
Zhang, R.: Mechanisms for Low-Frequency Variability of Summer Arctic Sea Ice Extent, P. Natl. Acad. Sci. USA, 112, 4570–4575, https://doi.org/10.1073/pnas.1422296112, 2015. a
Zhang, R., Delworth, T. L., and Held, I. M.: Can the Atlantic Ocean Drive the Observed Multidecadal Variability in Northern Hemisphere Mean Temperature?, Geophys. Res. Lett., 34, 2006GL028683, https://doi.org/10.1029/2006GL028683, 2007. a
Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y.-O., Marsh, R., Yeager, S. G., Amrhein, D. E., and Little, C. M.: A Review of the Role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and Associated Climate Impacts, Rev. Geophys., 57, 316–375, https://doi.org/10.1029/2019RG000644, 2019. a, b
Zou, S. and Lozier, M. S.: Breaking the Linkage Between Labrador Sea Water Production and Its Advective Export to the Subtropical Gyre, J. Phys. Oceanogr., 46, 2169–2182, https://doi.org/10.1175/JPO-D-15-0210.1, 2016. a
Zou, S., Lozier, M. S., Li, F., Abernathey, R., and Jackson, L.: Density-Compensated Overturning in the Labrador Sea, Nat. Geosci., 13, 121–126, https://doi.org/10.1038/s41561-019-0517-1, 2020. a
Short summary
The North Atlantic subpolar gyre (SPG) forms dense water as part of the Atlantic Meridional Overturning Circulation. To explore the factors controlling dense-water formation around the SPG, we trace the pathways of virtual water parcels in a high-resolution ocean model. We show that the amount of dense water formed around the SPG depends principally on the availability of light waters flowing northward, such that a stronger SPG circulation results in more dense-water formation along-stream.
The North Atlantic subpolar gyre (SPG) forms dense water as part of the Atlantic Meridional...