Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2101-2025
https://doi.org/10.5194/os-21-2101-2025
Research article
 | 
26 Sep 2025
Research article |  | 26 Sep 2025

Controls on dense-water formation along the path of the North Atlantic subpolar gyre

Oliver J. Tooth, Helen L. Johnson, and Chris Wilson

Related authors

Observed change and the extent of coherence in the Gulf Stream system
Helene Asbjørnsen, Tor Eldevik, Johanne Skrefsrud, Helen L. Johnson, and Alejandra Sanchez-Franks
Ocean Sci., 20, 799–816, https://doi.org/10.5194/os-20-799-2024,https://doi.org/10.5194/os-20-799-2024, 2024
Short summary
Surface factors controlling the volume of accumulated Labrador Sea Water
Yavor Kostov, Marie-José Messias, Herlé Mercier, David P. Marshall, and Helen L. Johnson
Ocean Sci., 20, 521–547, https://doi.org/10.5194/os-20-521-2024,https://doi.org/10.5194/os-20-521-2024, 2024
Short summary
Seasonal overturning variability in the eastern North Atlantic subpolar gyre: a Lagrangian perspective
Oliver John Tooth, Helen Louise Johnson, Chris Wilson, and Dafydd Gwyn Evans
Ocean Sci., 19, 769–791, https://doi.org/10.5194/os-19-769-2023,https://doi.org/10.5194/os-19-769-2023, 2023
Short summary
High-frequency variability dominates potential connectivity between remote coral reefs
Noam S. Vogt-Vincent, Satoshi Mitarai, and Helen L. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2023-778,https://doi.org/10.5194/egusphere-2023-778, 2023
Preprint archived
Short summary
Multidecadal and climatological surface current simulations for the southwestern Indian Ocean at 1∕50° resolution
Noam S. Vogt-Vincent and Helen L. Johnson
Geosci. Model Dev., 16, 1163–1178, https://doi.org/10.5194/gmd-16-1163-2023,https://doi.org/10.5194/gmd-16-1163-2023, 2023
Short summary

Cited articles

Aldama-Campino, A., Döös, K., Kjellsson, J., and Jönsson, B.: TRACMASS: Formal Release of Version 7.0, Zenodo [code], https://doi.org/10.5281/zenodo.4337926, 2020. a, b
Archibald, A. T., Sinha, B., Russo, M. R., Matthews, E., Squires, F. A., Abraham, N. L., Bauguitte, S. J.-B., Bannan, T. J., Bell, T. G., Berry, D., Carpenter, L. J., Coe, H., Coward, A., Edwards, P., Feltham, D., Heard, D., Hopkins, J., Keeble, J., Kent, E. C., King, B. A., Lawrence, I. R., Lee, J., Macintosh, C. R., Megann, A., Moat, B. I., Read, K., Reed, C., Roberts, M. J., Schiemann, R., Schroeder, D., Smyth, T. J., Temple, L., Thamban, N., Whalley, L., Williams, S., Wu, H., and Yang, M.: Data Supporting the North Atlantic Climate System Integrated Study (ACSIS) Programme, Including Atmospheric Composition; Oceanographic and Sea-Ice Observations (2016–2022); and Output from Ocean, Atmosphere, Land, and Sea-Ice Models (1950–2050), Earth Syst. Sci. Data, 17, 135–164, https://doi.org/10.5194/essd-17-135-2025, 2025. a
Årthun, M. and Eldevik, T.: On Anomalous Ocean Heat Transport toward the Arctic and Associated Climate Predictability, J. Climate, 29, 689–704, https://doi.org/10.1175/JCLI-D-15-0448.1, 2016. a, b
Årthun, M., Eldevik, T., Viste, E., Drange, H., Furevik, T., Johnson, H. L., and Keenlyside, N. S.: Skillful Prediction of Northern Climate Provided by the Ocean, Nat. Commun., 8, 15875, https://doi.org/10.1038/ncomms15875, 2017. a, b
Bebieva, Y. and Lozier, M. S.: Fresh Water and Atmospheric Cooling Control on Density-Compensated Overturning in the Labrador Sea, J. Phys. Oceanogr., 53, 2575–2589, https://doi.org/10.1175/JPO-D-22-0238.1, 2023. a
Download
Short summary
The North Atlantic subpolar gyre (SPG) forms dense water as part of the Atlantic Meridional Overturning Circulation. To explore the factors controlling dense-water formation around the SPG, we trace the pathways of virtual water parcels in a high-resolution ocean model. We show that the amount of dense water formed around the SPG depends principally on the availability of light waters flowing northward, such that a stronger SPG circulation results in more dense-water formation along-stream.
Share