Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2085-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2085-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Application of quality-controlled sea level height observation at the central East China Sea: Assessment of sea level rise
Taek-Bum Jeong
Center for Climate Physics, Institute for Basic Science, Busan, 46241, Republic of Korea
Department of Climate System, Pusan National University, Busan, 46241, Republic of Korea
Yong Sun Kim
CORRESPONDING AUTHOR
Ocean Circulation and Climate Research Department, Ocean Circulation Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
Ocean Science, University of Science and Technology, Daejeon, 34113, Republic of Korea
Ocean Science and Technology School, Korea Maritime and Ocean University, Busan, 49112, Republic of Korea
Hyeonsoo Cha
Center for Sea-Level Changes, Jeju National University, Jeju, 63243, Republic of Korea
Kwang-Young Jeong
Ocean Research Division, Korea Hydrographic and Oceanographic Agency, Busan, 49111, Republic of Korea
Jin-Yong Jeong
Marine Data and Infrastructure Department, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
Ocean Circulation and Climate Research Department, Ocean Circulation Research Center, Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
Related authors
No articles found.
Jihun Jung, Yang-Ki Cho, Gwang-Ho Seo, and Kwang-Young Jeong
EGUsphere, https://doi.org/10.5194/egusphere-2026-171, https://doi.org/10.5194/egusphere-2026-171, 2026
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study investigates coastal currents over a bank along the southern coast of Korea, focusing on their asymmetric response to alongshore wind stress. Variability is larger in the western region of the bank, driven by enhanced cross-shore sea level gradients associated with Ekman transport over bank topography. The asymmetry remains robust despite offshore currents and changes in wind conditions.
Cited articles
Calafat, F. M., Wahl, T., Tadesse, M. G., and Sparrow, S. N.: Trends in Europe storm surge extremes match the rate of sea-level rise, Nature, 603, 841–845, https://doi.org/10.1038/s41586-022-04426-5, 2022.
Caron, L., Ivins, E. R., Larour, E., Adhikari, S., Nilsson, J., and Blewitt, G.: GIA model statistics for GRACE hydrology, cryosphere, and ocean science, Geophys. Res. Lett., 45, 2203–2212, https://doi.org/10.1002/2017GL076644, 2018.
Cayan, D. R., Bromirski, P. D., Hayhoe, K., Tyree, M., Dettinger, M. D., and Flick, R. E.: Climate change projections of sea level extremes along the California coast, Climatic Change, 87, 57–73, 2008.
Cazenave, A., Meyssignac, B., Ablain, M., Balmaseda, M., Bamber, J., Barletta, V., Beckley, B., Benveniste, J., Berthier, E., and Blazquez, A.: Global sea-level budget 1993-present, Earth System Science Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018.
Cha, H., Moon, J.-H., Kim, T., and Song, Y. T.: A process-based assessment of the sea-level rise in the northwestern Pacific marginal seas, Communications, Earth Environ., 4, 300, https://doi.org/10.1038/s43247-023-00965-5, 2023.
Cha, H., Jo, S., and Moon, J.-H.: A process-based relative sea-level budget along the coast of Korean peninsula over 1993–2018, Ocean Polar Res., 46, 31–42, 2024.
Chen, X., Zhang, X., Church, J. A., Watson, C. S., King, M. A., Monselesan, D., Legresy, B., and Harig, C.: The increasing rate of global mean sea-level rise during 1993–2014, Nat. Clim. Change, 7, 492–495, https://doi.org/10.1038/nclimate3325, 2017.
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.: Improved estimates of ocean heat content from 1960 to 2015, Sci. Adv., 3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017.
Copernicus Climate Change Service: ORAS5 global ocean reanalysis monthly data from 1958 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.67e8eeb7, 2021.
Dieng, H. B., Cazenave, A., Meyssignac, B., and Ablain, M.: New estimate of the current rate of sea level rise from a sea level budget approach, Geophys. Res. Lett., 44, 3744–3751, https://doi.org/10.1002/2017GL073308, 2017.
Egbert, G. D., and Erofeeva, S. Y.: TPXO9, A New Global Tidal Model in TPXO Series, Proceedings of the Ocean Science Meeting, Portland, OR, USA, https://doi.org/10.29252/joc.10.38.11, 2018.
E.U. CMEMS (Copernicus Marine Service Information): Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed Copernicus Climate Service, E.U. Copernicus Marine Service Information [data set], https://doi.org/10.48670/moi-00145, 2024.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J., Maycock, T., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., 1211–1362, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, https://doi.org/10.1017/9781009157896.011, 2021.
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., and Cheng, L.: The causes of sea-level rise since 1900, Nature, 584, 393–397, https://doi.org/10.1038/s41586-020-2591-3, 2020.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, J. Geophys. Res.-Oceans, 118, 6704–6716, https://doi.org/10.1002/2013JC009067, 2013.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., and Cozannet, G. L.: Concepts and terminology for sea level: Mean, variability and change, both local and global, Surv. Geophys., 40, 1251–1289, 2019.
Ha, K.-J., Nam, S., Jeong, J.-Y., Moon, I.-J., Lee, M., Yun, J., Jang, C. J., Kim, Y. S., Byun, D.-S., Heo, K.-Y., and Shim, J.-S.: Observations utilizing Korea ocean research stations and their applications for process studies, B. Am. Meteorol. Soc., 100, 2061–2075, https://doi.org/10.1175/BAMS-D-18-0305.1, 2019.
Hamlington, B. D., Gardner, A. S., Ivins, E., Lenaerts, J. T., Reager, J., Trossman, D. S., Zaron, E. D., Adhikari, S., Arendt, A., and Aschwanden, A.: Understanding of contemporary regional sea-level change and the implications for the future, Rev. Geophys., 58, RG000672, e2019, https://doi.org/10.1029/2019rg000672, 2020.
Han, G., Ma, Z., Bao, H., and Slangen, A.: Regional differences of relative sea level changes in the northwest Atlantic: Historical trends and future projections, J. Geophys. Res.-Oceans, 119, 156–164, https://doi.org/10.1002/2013JC009454, 2014.
Hwang, Y., Do, K., Jeong, J. Y., Lee, E., and Shin, S.: Algorithm development for quality control of rangefinder wave time series data at ocean research station, J. Coast. Disaster Prev., 9, 171–178, https://doi.org/10.20481/kscdp.2022.9.3.171, 2022.
IOC: GTSPP Real-Time Quality Control Manual; Manuals and Guides 22, Intergovernmental Oceanographic Commission, UNESCO, Paris, France, 1990.
IOC: Manual of Quality Control Procedures for Validation of Oceanographic Data; Manuals and Guides 26, Intergovernmental Oceanographic Commission, UNESCO, Paris, France, 1993.
Ishii, M., Fukuda, Y., Hirahara, S., Yasui, S., Suzuki, T., and Sato, K.: Accuracy of global upper ocean heat content estimation expected from present observational data sets, Sola, 13, 163–167, 2017.
Jean-Michel, L., Eric, G., Romain, B.-B., Gilles, G., Angélique, M., Marie, D., Clément, B., Mathieu, H., Olivier, L. G., and Charly, R.: The Copernicus global 1/12 oceanic and sea ice GLORYS12 reanalysis, Front. Earth Sci., 9, 698876, https://doi.org/10.3389/feart.2021.698876, 2021.
KHOA (Korea Hydrographic and Oceanographic Agency): Analysis and prediction of sea level change, KHOA, Busan, Korea, p.252, 2013.
Kim, D.-Y., Park, S.-H., Woo, S.-B., Jeong, K.-Y., and Lee, E.-I.: Sea level rise and storm surge around the southeastern coast of Korea, J. Coast. Res., 79, 239–243, https://doi.org/10.2112/SI79-049.1, 2017.
Kim, G.-U., Lee, K., Lee, J., Jeong, J.-Y., Lee, M., Jang, C. J., Ha, K.-J., Nam, S., Noh, J. H., and Kim, Y. S.: Record-breaking slow temperature evolution of spring water during 2020 and its impacts on spring bloom in the Yellow Sea, Front. Mar. Sci., 9, 824361, https://doi.org/10.3389/fmars.2022.824361, 2022.
Kim, G.-U., Oh, H., Kim, Y. S., Son, J.-H., and Jeong, J.-Y.: Causes for an extreme cold condition over NorthEast Asia during April 2020, Sci. Rep., 13, 3315, https://doi.org/10.1038/s41598-023-29934-w, 2023a.
Kim, G.-U., Lee, J., Kim, Y. S., Noh, J. H., Kwon, Y. S., Lee, H., Lee, M., Jeong, J., Hyun, M. J., Won, J., and Jeong, J.-Y.: Impact of vertical stratification on the 2020 spring bloom in the Yellow Sea, Sci. Rep., 13, 14320, https://doi.org/10.1038/s41598-023-40503-z, 2023b.
Kim, K.-Y. and Kim, Y.: A comparison of sea level projections based on the observed and reconstructed sea level data around the Korean Peninsula, Climatic Change, 142, 23–36, 2017.
Kim, Y. S., Jang, C. J., Noh, J. H., Kim, K.-T., Kwon, J.-I., Min, Y., Jeong, J., Lee, J., Min, I.-K., Shim, J.-S., Byun, D.-S., Kim, J., and Jeong, J.-Y.: A Yellow Sea monitoring platform and its scientific applications, Front. Mar. Sci., 6, 601, https://doi.org/10.3389/fmars.2019.00601, 2019.
Kim, Y. S., Jeong, T. B., Lee, J. H., Jang, M. J., Jeong, J. Y., and Min, Y. C.: I-ORS observation data of sea level height from 2003 to 2022, ScienceWatch@KIOST [data set], https://doi.org/10.22808/DATA-2024-8, 2024.
Kulp, S. A. and Strauss, B. H.: New elevation data triple estimates of global vulnerability to sea-level rise and coastal flooding, Nat. Commun., 10, 1–12, 2019.
Lee, J. H., Lozovatsky, I., Jang, S. T., Jang, C. J., Hong, C. S., and Fernando, H. J. S.: Episodes of nonlinear internal waves in the northern East China Sea, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL027136, 2006.
Lee, K., Nam, S., Cho, Y.-K., Jeong, K.-Y., and Byun, D.-S.: Determination of long-term (1993–2019) sea level rise trends around the Korean peninsula using ocean tide-corrected, multi-mission satellite altimetry data, Front. Mar. Sci., 9, 810549, https://doi.org/10.3389/fmars.2022.810549, 2022.
Li, Y., Feng, J., Yang, X., Zhang, S., Chao, G., Zhao, L., and Fu, H.: Analysis of sea level variability and its contributions in the Bohai, Yellow Sea, and East China Sea, Front. Mar. Sci., 11, 1381187, https://doi.org/10.3389/fmars.2024.1381187, 2024.
Lin-Ye, J., Pérez Gómez, B., Gallardo, A., Manzano, F., de Alfonso, M., Bradshaw, E., and Hibbert, A.: Delayed-mode reprocessing of in situ sea level data for the Copernicus Marine Service, Ocean Sci., 19, 1743–1751, https://doi.org/10.5194/os-19-1743-2023, 2023.
Ludwigsen, C. B., Andersen, O. B., Marzeion, B., Malles, J.-H., Müller Schmied, H., Döll, P., Watson, C., and King, M. A.: Global and regional ocean mass budget closure since 2003, Nat. Commun., 15, 1416, https://doi.org/10.1038/s41467-024-45726-w, 2024.
Min, Y., Jeong, J.-Y., Jang, C. J., Lee, J., Jeong, J., Min, I.-K., Shim, J.-S., and Kim, Y. S.: Quality control of observed temperature time series from the Korea ocean research stations: Preliminary application of ocean observation initiative's approach and its limitation, Ocean Polar Res., 42, 195–210, 2020.
Min, Y., Jun, H., Jeong, J.-Y., Park, S.-H., Lee, J., Jeong, J., Min, I., and Kim, Y. S.: Evaluation of international quality control procedures for detecting outliers in water temperature time-series at Ieodo ocean research station, Ocean Polar Res., 43, 229–243, 2021.
Moon, I.-J., Shim, J.-S., Lee, D. Y., Lee, J. H., Min, I.-K., and Lim, K. C.: Typhoon researches using the Ieodo Ocean Research Station: Part I. Importance and present status of typhoon observation, Atmosphere, 20, 247–260, 2010.
Nerem, R. S., Beckley, B. D., Fasullo, J. T., Hamlington, B. D., Masters, D., and Mitchum, G. T.: Climate-change–driven accelerated sea-level rise detected in the altimeter era, P. Natl. Acad. Sci. USA, 115, 2022–2025, https://doi.org/10.1073/pnas.1717312115, 2018.
NOAA: NDBC Handbook of Automated Data Quality Control Checks and Procedures, National Data Buoy Center, National Oceanic and Atmospheric Administration, 2009.
OOI: Protocols and procedures for OOI data products: QA, QC, calibration, physical samples, version 1-22. Consortium for Ocean Leadership, https://oceanobservatories.org/wp-content/uploads/2015/09/1102-00300_Protocols_Procedures_Data_Products_QAQC_Cal_Physical_Samples_OOI (last access: 30 September 2019), 2013.
Park, J. H., Yeo, D. E., Lee, K., Lee, H., Lee, S. W., Noh, S., Kim, S., Shin, J., Choi, Y., and Nam, S.: Rapid decay of slowly moving Typhoon Soulik (2018) due to interactions with the strongly stratified northern East China Sea, Geophys. Res. Lett., 46, 14595–14603, 2019.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.
Pirooznia, M., Rouhollah Emadi, S., and Najafi Alamdari, M.: Caspian Sea tidal modelling using coastal tide gauge data, J. Geol. Res., 2016, 1–10, https://doi.org/10.1155/2016/6416917, 2016.
Pirooznia, M., Raoofian Naeeni, M., and Amerian, Y.: A Comparative Study Between Least Square and Total Least Square Methods for Time–Series Analysis and Quality Control of Sea Level Observations, Mar. Geod., 42, 104–129, https://doi.org/10.1080/01490419.2018.1553806, 2019.
Pugh, D.: Tides, surges and mean sea-level, John Wiley & Sons, Chichester, UK, 486, ISBN 047191505X, 1996.
Pugh, D. T., Abualnaja, Y., and Jarosz, E.: The tides of the Red Sea, in: Oceanographic and Biological Aspects of the Red Sea, edited by: Rasul, N. M. A. and Stewart, I. C. F., 11–40, Springer, Cham, https://doi.org/10.1007/978-3-319-99417-8_2, 2019.
Pytharouli, S., Chaikalis, S., and Stiros, S. C.: Uncertainty and bias in electronic tide-gauge records: Evidence from collocated sensors, Measurement, 125, 496–508, 2018.
Roemmich, D., Gilson, J., Davis, R., Sutton, P., Wijffels, S., and Riser, S.: Decadal spinup of the South Pacific subtropical gyre, J. Phys. Oceanogr., 37, 162–173, https://doi.org/10.1175/JPO3004.1, 2007.
Royston, S., Dutt Vishwakarma, B., Westaway, R., Rougier, J., Sha, Z., and Bamber, J.: Can we resolve the basin-scale sea level trend budget from GRACE ocean mass?, J. Geophys. Res.-Oceans, 125, JC015535, https://doi.org/10.1029/2019JC015535, 2020.
Saranya, J. S., Dasgupta, P., and Nam, S.: Interaction between typhoon, marine heatwaves, and internal tides: Observational insights from Ieodo Ocean Research Station in the northern East China Sea, Geophys. Res. Lett., 51, GL109497, https://doi.org/10.1029/2024GL109497, 2024.
Yang, S., Moon, I.-J., Bae, H.-J., Kim, B.-M., Byun, D.-S., and Lee, H.-Y.: Intense atmospheric frontogenesis by air–sea coupling processes during the passage of Typhoon Lingling captured at Ieodo Ocean Research Station, Scientific Reports, Sci. Rep., 12, 15513, https://doi.org/10.1038/s41598-022-19359-2, 2022.
Yin, J., Griffies, S. M., Winton, M., Zhao, M., and Zanna, L.: Response of storm-related extreme sea level along the US Atlantic coast to combined weather and climate forcing, J. Climate, 33, 3745–3769, https://doi.org/10.1175/JCLI-D-19-0551.1, 2020.
Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer, M.: The ECMWF operational ensemble reanalysis–analysis system for ocean and sea ice: a description of the system and assessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-15-779-2019, 2019.
Short summary
This study presents a new method to improve the accuracy of sea level height from the Ieodo Ocean Research Station in the East China Sea. The method helps identify data errors, such as repeated or unusual values, and flags extreme weather events. The analysis found that sea level rise is mostly due to ocean mass changes, with local ground subsidence also playing a role. These high-quality data support research on short- and long-term events, helping coastal monitoring and planning efforts.
This study presents a new method to improve the accuracy of sea level height from the Ieodo...