Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2069-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2069-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Salinity trends and mass balances in the Mediterranean Sea: revisit the role of air-sea freshwater fluxes and oceanic exchange
University of Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale (LOPS), IUEM, Plouzané, France
Xinfeng Liang
School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Related authors
Chao Liu and Lisan Yu
Earth Syst. Sci. Data, 17, 4159–4184, https://doi.org/10.5194/essd-17-4159-2025, https://doi.org/10.5194/essd-17-4159-2025, 2025
Short summary
Short summary
A daily dataset for ocean-surface stress is synthesized for both ice-covered and ice-free Arctic and Antarctic areas. It is based on satellite data on ocean winds, ice movement, and sea surface height. Sensitivity analyses address uncertainties, including variations in sea level products and ice–water drag. The dataset's accuracy is validated against in situ measurements, showing moderate to good agreement on monthly and longer timescales.
Chao Liu and Lisan Yu
Earth Syst. Sci. Data, 17, 4159–4184, https://doi.org/10.5194/essd-17-4159-2025, https://doi.org/10.5194/essd-17-4159-2025, 2025
Short summary
Short summary
A daily dataset for ocean-surface stress is synthesized for both ice-covered and ice-free Arctic and Antarctic areas. It is based on satellite data on ocean winds, ice movement, and sea surface height. Sensitivity analyses address uncertainties, including variations in sea level products and ice–water drag. The dataset's accuracy is validated against in situ measurements, showing moderate to good agreement on monthly and longer timescales.
Yingli Zhu and Xinfeng Liang
EGUsphere, https://doi.org/10.5194/egusphere-2022-789, https://doi.org/10.5194/egusphere-2022-789, 2022
Preprint withdrawn
Short summary
Short summary
Characteristics of mesoscale eddies in the Gulf of Mexico (GoM), including how they vary with space and time, are examined using sea surface height data. Eddy characteristics in the eastern GoM are closely related to the Loop Current (LC). The LC frontal eddy formation is associated with the extent of northward movement of the LC. Eddies that are not directly related to the LC show a biannual variability associated with large-scale background currents in the western GoM.
Helen E. Phillips, Amit Tandon, Ryo Furue, Raleigh Hood, Caroline C. Ummenhofer, Jessica A. Benthuysen, Viviane Menezes, Shijian Hu, Ben Webber, Alejandra Sanchez-Franks, Deepak Cherian, Emily Shroyer, Ming Feng, Hemantha Wijesekera, Abhisek Chatterjee, Lisan Yu, Juliet Hermes, Raghu Murtugudde, Tomoki Tozuka, Danielle Su, Arvind Singh, Luca Centurioni, Satya Prakash, and Jerry Wiggert
Ocean Sci., 17, 1677–1751, https://doi.org/10.5194/os-17-1677-2021, https://doi.org/10.5194/os-17-1677-2021, 2021
Short summary
Short summary
Over the past decade, understanding of the Indian Ocean has progressed through new observations and advances in theory and models of the oceanic and atmospheric circulation. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean, describing Indian Ocean circulation patterns, air–sea interactions, climate variability, and the critical role of the Indian Ocean as a clearing house for anthropogenic heat.
Cited articles
Adcroft, A. and Campin, J. M.: Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models. Ocean Modelling, 7, 269–284, 2004.
Adcroft, A., Campin, J. M., Hill, C., and Marshall, J.: Implementation of an atmosphere–ocean general circulation model on the expanded spherical cube, Monthly Weather Review, 132, 2845–2863, https://doi.org/10.1175/mwr2823.1, 2004.
Aydogdu, A., Miraglio, P., Escudier, R., Clementi, E., and Masina, S.: The dynamical role of upper layer salinity in the Mediterranean Sea, in: 7th edition of the Copernicus Ocean State Report (OSR7), edited by: von Schuckmann, K., Moreira, L., Le Traon, P.-Y., Grégoire, M., Marcos, M., Staneva, J., Brasseur, P., Garric, G., Lionello, P., Karstensen, J., and Neukermans, G., Copernicus Publications, State Planet, 1-osr7, 6, https://doi.org/10.5194/sp-1-osr7-6-2023, 2023.
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Monthly Weather Review, 115, 1083–1126, 1987.
Bladwell, C., Holmes, R. M., and Zika, J. D.: Internal salt content: A useful framework for understanding the oceanic branch of the water cycle, J. Phys. Oceanogr., 51, 2167–2179, 2021.
Bonaduce, A., Pinardi, N., Oddo, P., Spada, G., and Larnicol, G.: Sea-Level variability in the Mediterranean Sea from altimetry and tide gauges, Clim. Dynam., 47, 2851–2866, https://doi.org/10.1007/s00382-016-3001-2, 2016.
Castro-Díez, Y., Pozo-Vázquez, D., Rodrigo, F. S., and Esteban-Parra, M. J.: NAO and winter temperature variability in southern Europe, Geophys. Res. Lett., 29, https://doi.org/10.1029/2001gl014042, 2002.
Calafat, F. M., Marcos, M., and Gomis, D.: Mass contribution to Mediterranean Sea level variability for the period 1948–2000, Global Planet. Change, 73, 193–201, 2010.
Calafat, F. M., Chambers, D. P., and Tsimplis, M. N.: Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea, J. Geophys. Res.-Oceans, 117, https://doi.org/10.1029/2012jc008285, 2012.
Campin, J. M., Marshall, J., and Ferreira, D.. Sea ice–ocean coupling using a rescaled vertical coordinate z*, Ocean Modelling, 24, https://doi.org/10.1016/j.ocemod.2008.05.005, 2008.
Chen, J. L., Wilson, C. R., Tapley, B. D., Save, H., and Cretaux, J. F.: Long-term and seasonal Caspian Sea level change from satellite gravity and altimeter measurements, J. Geophys. Res.-Solid Earth, 122, 2274–2290, 2017.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, D. P., and Bechtold, P.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, 2011.
Durack, P. J., Wijffels, S. E., and Matear, R. J.: Ocean salinities reveal strong global water cycle intensification during 1950 to 2000, Science, 336, 455–458, 2012.
Dukhovskoy, D. S., Yashayaev, I., Proshutinsky, A., Bamber, J. L., Bashmachnikov, I. L., Chassignet, E. P., Lee, C. M., and Tedstone, A. J.: Role of Greenland freshwater anomaly in the recent freshening of the subpolar North Atlantic, Journal of Geophysical Research: Oceans, 124, 3333–3360, 2019.
ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P. and Ponte, R. M.: Synopsis of the ECCO central production global ocean and sea-ice state estimate (version 4 release 4), Zenodo, https://doi.org/10.5281/zenodo.3765929, 2021.
Escudier, R., Clementi, E., Cipollone, A., Pistoia, J., Drudi, M., Grandi, A., Lyubartsev, V., Lecci, R., Aydogdu, A., Delrosso, D., and Omar, M.: A high-resolution reanalysis for the Mediterranean Sea, Front. Earth Sci., 9, 702285, https://doi.org/10.3389/feart.2021.702285, 2021.
Fekete, B. M., Vörösmarty, C. J., and Grabs, W.: High-resolution fields of global runoff combining observed river discharge and simulated water balances, Global Biogeochem. Cy., 16, 15-11–15-10, 2002.
Feng, Y., Menemenlis, D., Xue, H., Zhang, H., Carroll, D., Du, Y., and Wu, H.: Improved representation of river runoff in Estimating the Circulation and Climate of the Ocean Version 4 (ECCOv4) simulations: implementation, evaluation, and impacts to coastal plume regions, Geosci. Model Dev., 14, 1801–1819, https://doi.org/10.5194/gmd-14-1801-2021, 2021.
Fenoglio-Marc, L., Rietbroek, R., Grayek, S., Becker, M., Kusche, J., and Stanev, E.: Water mass variation in the Mediterranean and Black Seas, Journal of Geodynamics, 59, 168–182, 2012.
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015.
Fukumori, I., Menemenlis, D., and Lee, T.: A near-uniform basin-wide sea level fluctuation of the Mediterranean Sea, Journal of Physical Oceanography, 37, 338–358, 2007.
Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.: ECCO version 4 release 3, MIT edu. public server, http://hdl.handle.net/1721.1/110380 (last access: 23 February 2025), 2017.
García-García, D., Chao, B. F., and Boy, J. P.: Steric and mass-induced sea level variations in the Mediterranean Sea revisited, Journal of Geophysical Research-Oceans, 115, https://doi.org/10.1029/2009jc005928, 2010.
García-García, D., Vigo, M. I., Trottini, M., Vargas-Alemañy, J. A., and Sayol, J. M.: Hydrological cycle of the Mediterranean-Black Sea system, Climate Dynamics, 59, 1919–1938, 2022.
Giorgi, F.: Climate change hot-spots, Geophysical Research Letters, 33, https://doi.org/10.1029/2006gl025734, 2006.
Gomis, D., Ruiz, S., Sotillo, M. G., Álvarez-Fanjul, E., and Terradas, J.: Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind, Global and Planetary Change, 63, 215–229, 2008.
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates, Journal of Geophysical Research: Oceans, 118, 6704–6716, 2013.
Greatbatch, R. J.: A note on the representation of steric sea level in models that conserve volume rather than mass, Journal of Geophysical Research: Oceans, 99, 12767–12771, 1994.
Grist, J. P., Josey, S. A., Zika, J. D., Evans, D. G., and Skliris, N.: Assessing recent air-sea freshwater flux changes using a surface temperature-salinity space framework, Journal of Geophysical Research: Oceans, 121, 8787–8806, 2016.
Hasson, A. E., Delcroix, T., and Dussin, R.: An assessment of the mixed layer salinity budget in the tropical Pacific Ocean. Observations and modelling (1990–2009), Ocean Dynamics, 63, 179–194, 2013.
Heimbach, P., Hill, C., and Giering, R.: An efficient exact adjoint of the parallel MIT general circulation model, generated via automatic differentiation, Future Generation Computer Systems, 21, 1356–1371, 2005.
Held, I. M. and Soden, B. J.: Robust responses of the hydrological cycle to global warming, J. Climate, 19, 5686–5699, 2006.
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, H., Josey, S., Larsen, K., Mulet, K., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic, Nature Communications, 11, 585, https://doi.org/10.1038/s41467-020-14474-y, 2020.
Huffman, G. J., Adler, R. F., Bolvin, D. T., and Gu, G.: Improving the global precipitation record: GPCP version 2.1, Geophysical Research Letters, 36, https://doi.org/10.1029/2009gl040000, 2009.
Huntington, T. G.: Evidence for intensification of the global water cycle: Review and synthesis, Journal of Hydrology, 319, 83–95, 2006.
Hurrell, J. W.: Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation, Science, 269, 676–679, 1995.
Ivanovic, R. F., Valdes, P. J., Gregoire, L., Flecker, R., and Gutjahr, M.: Sensitivity of modern climate to the presence, strength and salinity of Mediterranean-Atlantic exchange in a global general circulation model, Climate Dynamics, 42, 859–877, 2014.
Jarosz, E., Teague, W. J., Book, J. W., and Beşiktepe, Ş. T.: Observed volume fluxes and mixing in the Dardanelles Strait, J. Geophys. Res.-Oceans, 118, 5007–5021, https://doi.org/10.1002/jgrc.20396, 2013.
Josey, S. A., Somot, S., and Tsimplis, M.: Impacts of atmospheric modes of variability on Mediterranean Sea surface heat exchange, Journal of Geophysical Research-Oceans, 116, https://doi.org/10.1029/2010jc006685, 2011.
Jordà, G., Von Schuckmann, K., Josey, S. A., Caniaux, G., García-Lafuente, J., Sammartino, S., Özsoy, E., Polcher, j., Notarstefano, G., Poulain, P.-M., Adloff, F., Salat, J., Naranjo, C., Schroeder, K., Chiggiato, J., Sannino, G., and Macías, D.: The Mediterranean Sea heat and mass budgets: Estimates, uncertainties and perspectives, Progress in Oceanography, 156, 174–208, 2017b.
Kara, A. B., Wallcraft, A. J., Metzger, E. J., and Gunduz, M.: Impacts of freshwater on the seasonal variations of surface salinity and circulation in the Caspian Sea, Continental Shelf Research, 30, 1211–1225, 2010.
Krichak, S., Kishcha, P., and Alpert, P.: Decadal trends of main Eurasian oscillations and the Eastern Mediterranean precipitation, Theor. Appl. Climatol., 72, 209–220, 2002.
Landerer, F. W. and Volkov, D. L.: The anatomy of recent large sea level fluctuations in the Mediterranean Sea, Geophysical Research Letters, 40, 553–557, 2013.
Llasses, J., Jordà, G., Gomis, D., Adloff, F., Macías, D., Harzallah, A., Arsouze, T., Akthar, N., Li, L., Elizalde, A., and Sannino, G.: Heat and salt redistribution within the Mediterranean Sea in the Med-CORDEX model ensemble, Clim. Dynam., 51, 1119–1143, https://doi.org/10.1007/s00382-016-3242-0, 2018.
Lim, Y. K.: The East Atlantic/West Russia (EA/WR) teleconnection in the North Atlantic: climate impact and relation to Rossby wave propagation, Climate Dynamics, 44, 3211–3222, 2015.
Liu, C., Liang, X., Ponte, R. M., Vinogradova, N., and Wang, O.: Vertical redistribution of salt and layered changes in global ocean salinity, Nature Communications, 10, 3445, https://doi.org/10.1038/s41467-019-11436-x, 2019.
Liu, C., Liang, X., Chambers, D. P., and Ponte, R. M.: Global patterns of spatial and temporal variability in salinity from multiple gridded Argo products, J. Climate, 33, 8751–8766, 2020.
Liu, C., Liang, X., Ponte, R. M., and Chambers, D. P.: “Salty Drift” of Argo Floats Affects the Gridded Ocean Salinity Products, Journal of Geophysical Research-Oceans, 129, e2023JC020871, https://doi.org/10.1029/2023jc020871, 2024.
Lu, Y., Li, Y., Lin, P. Cheng, L., Ge, K., Liu, H., Duan, J. and Wang, F.: North Atlantic–Pacific salinity contrast enhanced by wind and ocean warming, Nat. Clim. Change, 14, 723–731, 2024.
Mamoutos, I. G., Potiris, E., Androulidakis, Y., Tragou, E., and Zervakis, V.: Evidence for reduced Black Sea water outflow to the North Aegean, Earth and Space Science, 11, e2024EA003674, https://doi.org/10.1029/2024ea003674, 2024.
Mariotti, A., Struglia, M. V., Zeng, N., and Lau, K. M.: The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea, J. Climate, 15, 1674–1690, https://doi.org/10.1175/1520-0442(2002)015<1674:thcitm>2.0.co;2, 2002.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, Journal of Geophysical Research-Oceans, 102, 5753–5766, 1997.
Mauri, E., Sitz, L., Gerin, R., Poulain, P.-M., Hayes, D., and Gildor, H.: On the variability of the circulation and water mass properties in the Eastern Levantine Sea between September 2016–August 2017, Water, 11, 1741, https://doi.org/10.3390/w11091741, 2019.
Meli, M., Camargo, C. M., Olivieri, M., Slangen, A. B., and Romagnoli, C.: Sea-level trend variability in the Mediterranean during the 1993–2019 period, Frontiers in Marine Science, 10, 1150488, https://doi.org/10.3389/fmars.2023.1150488, 2023.
Menemenlis, D., Fukumori, I., and Lee, T.: Atlantic to Mediterranean sea level difference driven by winds near Gibraltar Strait, Journal of Physical Oceanography, 37, 359–376, 2007.
Menna, M., Poulain, P.-M., Zodiatis, G., and Gertman, I.: On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data, Deep Sea Research Part I: Oceanographic Research Papers, 65, 46–58, https://doi.org/10.1016/j.dsr.2012.02.008, 2012.
Menna, M., Reyes-Suarez, N. C., Civitarese, G., Gačić, M., Poulain, P.-M., and Rubino, A.: Decadal variations of circulation in the central Mediterranean and its interactions with the mesoscale gyres, Deep Sea Research Part II: Topical Studies in Oceanography, 164, 14–24, https://doi.org/10.1016/j.dsr2.2019.02.004, 2019.
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea. The Mediterranean Sea, Springer Berlin Heidelberg, Berlin, Heidelberg, 29–66, https://doi.org/10.1007/b107143, 2005.
Millot, C., Candela, J., Fuda, J. L., and Tber, Y.: Large warming and salinification of the Mediterranean outflow due to changes in its composition, Deep Sea Research Part I: Oceanographic Research Papers, 53, 656–666, 2006.
Mohamed, B., Abdallah, A. M., Alam El-Din, K., Nagy, H., and Shaltout, M.: Inter-annual variability and trends of sea level and sea surface temperature in the Mediterranean Sea over the last 25 years, Pure and Applied Geophysics, 176, 3787–3810, https://doi.org/10.1007/s00024-019-02156-w, 2019.
Myers, P. G. and Haines, K.: Stability of the Mediterranean's thermohaline circulation under modified surface evaporative fluxes, Journal of Geophysical Research-Oceans, 107, https://doi.org/10.1029/2000jc000550, 2002.
Nan, F., Yu, F., Xue, H., Wang, R., and Si, G.: Ocean salinity changes in the northwest Pacific subtropical gyre: The quasi-decadal oscillation and the freshening trend, Journal of Geophysical Research: Oceans, 120, 2179–2192, 2015.
Piecuch, C. G.: A note on practical evaluation of budgets in ECCO version 4 release 3, MIT edu. public server, https://dspace.mit.edu/handle/1721.1/111094 (last access: 23 February 2025), 2017.
Piecuch, C. G. and Ponte, R. M.: Nonseasonal mass fluctuations in the midlatitude North Atlantic Ocean, Geophysical Research Letters, 41, 4261–4269, 2014.
Pinardi, N., Bonaduce, A., Navarra, A., Dobricic, S., and Oddo, P.: The mean sea level equation and its application to the Mediterranean Sea, J. Climate, 27, 442–447, https://doi.org/10.1175/JCLI-D-13-00139.1, 2014.
Ponte, R. M., Sun, Q., Liu, C., and Liang, X.: How salty is the global ocean: weighing it all or tasting it a sip at a time?, Geophysical Research Letters, 48, e2021GL092935, https://doi.org/10.1029/2021gl092935, 2021.
Potiris, M., Mamoutos, I. G., Tragou, E., Zervakis, V., Kassis, D., and Ballas, D.: Dense water formation in the North–central Aegean Sea during winter 2021–2022, Journal of Marine Science and Engineering, 12, 221, https://doi.org/10.3390/jmse12020221, 2024.
Poulain, P. M., Centurioni, L., Özgökmen, T., Tarry, D., Pascual, A., Ruiz, S., Mauri, E., Menna, M., and Notarstefano, G.: On the structure and kinematics of an Algerian eddy in the southwestern Mediterranean Sea, Remote Sensing, 13, 3039, https://doi.org/10.3390/rs13153039, 2021.
Reid, J. L.: On the contribution of the Mediterranean Sea outflow to the Norwegian-Greenland Sea, Deep Sea Research Part A: Oceanographic Research Papers, 26, 1199–1223, 1979.
Sanchez-Roman, A., Jorda, G., Sannino, G., and Gomis, D.: Modelling study of transformations of the exchange flows along the Strait of Gibraltar, Ocean Sci., 14, 1547–1566, https://doi.org/10.5194/os-14-1547-2018, 2018
Schauer, U. and Losch, M.: “Freshwater” in the ocean is not a useful parameter in climate research, Journal of Physical Oceanography, 49, 2309–2321, 2019.
Sukhonos, P., Gusev, A., and Diansky, N. L.: Investigation of North Atlantic salinity long-term trends based on historical datasets, Journal of Marine Science and Engineering, 12, 1404, https://doi.org/10.3390/jmse12081404, 2024.
Schroeder, K., Garcìa-Lafuente, J., Josey, S. A., Artale, V., Buongiorno Nardelli, B., Carrillo, A., Gacic, M., Gasparini, G. P., Marine, H., Lionello, P., Ludwig, W., Millot, C., Ozsoy, E., Pisacane, G., Sánchez-Garrido, J. C., Sannino, G., Santoleri, R., Somot, S., Struglia, M., Stanev, E., Taupier-Letage, I., Tsimplis, M. N., Vargas-Yanez, M., Zervakis, V., and Zodiatis, G.: Circulation of the Mediterranean Sea and its variability. The Climate of the Mediterranean Region: From the Past to the Future, edited by: Lionello, P., Elsevier Insights, Amsterdam, Elsevier, 187–256, ISBN 978-0-12-416042-2, 2012.
Siddiqui, A. H., Haine, T. W., Nguyen, A. T., and Buckley, M. W.: Controls on upper ocean salinity variability in the eastern subpolar North Atlantic during 1992–2017, J. Geophys. Res.-Oceans, 129, e2024JC020887, https://doi.org/10.1029/2024jc020887, 2024.
Skliris, N., Marsh, R., Josey, S. A., Good, S. A., Liu, C., and Allan, R. P.: Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes, Clim. Dynam., 43, 709–736, 2014.
Skliris, N., Marsh, R., Breedon, M., and Josey, S. A.: Accelerated Warming and Salinification of the Mediterranean Sea: Implications for Dense Water Formation, J. Mar. Sci. Eng., 13, https://doi.org/10.3390/jmse13010025, 2024.
Soto-Navarro, J., Criado-Aldeanueva, F., García-Lafuente, J., and Sánchez-Román, A.: Estimation of the Atlantic inflow through the Strait of Gibraltar from climatological and in situ data, J. Geophys. Res.-Oceans, 115, https://doi.org/10.1029/2010jc006302, 2010.
Stammer, D., Ueyoshi, K., Köhl, A., Large, W. G., Josey, S. A., and Wunsch, C.: Estimating air-sea fluxes of heat, freshwater, and momentum through global ocean data assimilation, J. Geophys. Res.-Oceans, 109, https://doi.org/10.1029/2003jc002082, 2004.
Storto, A., Bonaduce, A., Feng, X., and Yang, C.: Steric sea level changes from ocean reanalyses at global and regional scales, Water, 11, 1987, https://doi.org/10.3390/w11101987, 2019.
Tesdal, J. E. and Abernathey, R. P.: Drivers of local ocean heat content variability in ECCOv4, J. Climate, 34, 2941–2956, 2021.
Tsimplis, M. N., Marcos, M., and Somot, S.: 21st century Mediterranean sea level rise: steric and atmospheric pressure contributions from a regional model, Global Planet. Change, 63, 105–111, 2008.
Tsubouchi, T., Bacon, S., Naveira Garabato, A. C., Aksenov, Y., Laxon, S. W., Fahrbach, E., Beszczynska‐Möller, A., Hansen, E., Lee, C. M., and Ingvaldsen, R. B.: The Arctic Ocean in summer: A quasi-synoptic inverse estimate of boundary fluxes and water mass transformation, J. Geophys. Res., 117, C01024, https://doi.org/10.1029/2011jc007174, 2012.
Turuncoglu, U. U.: Identifying the sensitivity of precipitation of Anatolian peninsula to Mediterranean and Black Sea surface temperature, Clim. Dynam., 44, 1993–2015, 2015.
Ünlülata, Ü., Oğuz, T., Latif, M. A., and Özsoy, E.: On the physical oceanography of the Turkish Straits, The Physical Oceanography of Sea Straits, 25–60, https://doi.org/10.1007/978-94-009-0677-8_2, 1990.
Vigo, M. I., Sanchez-Reales, J. M., Trottini, M., and Chao, B. F.: Mediterranean sea level variations: analysis of the satellite altimetric data, 1992–2008, J. Geodyn., 52, 271–278, 2011.
Vinogradova, N. T. and Ponte, R. M.: Clarifying the link between surface salinity and freshwater fluxes on monthly to interannual time scales, J. Geophys. Res.-Oceans, 118, 3190–3201, 2013.
Vinogradova, N. T. and Ponte, R. M.: In search of fingerprints of the recent intensification of the ocean water cycle, J. Climate, 30, 5513–5528, 2017.
Volkov, D. L. and Landerer, F. W.: Internal and external forcing of sea level variability in the Black Sea, Clim. Dynam., 45, 2633–2646, 2015.
Wallace, J. M. and Gutzler, D. S.: Teleconnections in the geopotential height field during the Northern Hemisphere winter, Monthly Weather Review, 109, 784–812, 1981.
Wunsch, C. and Heimbach, P.: Practical global oceanic state estimation, Physica D: Nonlinear Phenom., 230, 197–208, 2007.
Wunsch, C. and Heimbach, P.: Dynamically and kinematically consistent global ocean circulation and ice state estimates, in: International Geophysics, Vol. 103, Academic Press, 553–579, https://doi.org/10.1016/b978-0-12-391851-2.00021-0, 2013.
Wunsch, C., Heimbach, P., Ponte, R. M., Fukumori, I., and ECCO-GODAE consortium members: The global general circulation of the ocean estimated by the ECCO-Consortium, Oceanography, 22, 88–103, 2009.
Yu, L.: A global relationship between the ocean water cycle and near-surface salinity, J. Geophys. Res.-Oceans, 116, https://doi.org/10.1029/2010jc006937, 2011.
Yu, L. and Weller, R. A.: bjectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005), B. Am. Meteorol. Soc., 88, 527–540, 2007.
Zveryaev, I. I. and Hannachi, A. A.: Interannual variability of Mediterranean evaporation and its relation to regional climate, Clim. Dynam., 38, 495–512, 2012.
Short summary
We investigated what drives long-term changes in the Mediterranean Sea's salt and water balance. We found that shifts in freshwater input from rainfall and evaporation, along with water exchange through the Strait of Gibraltar, control these variations. Our results show that changes in freshwater fluxes, rather than water exchange, have a stronger influence on long-term trends. Understanding these processes helps predict how the Mediterranean might respond to future climate change.
We investigated what drives long-term changes in the Mediterranean Sea's salt and water balance....