Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-2019-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-2019-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The global ocean mixed layer depth derived from an energy approach based on buoyancy work
Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
Emmanuel Romero
Departamento Académico de Sistemas Computacionales, Universidad Autónoma de Baja California Sur, Carretera al sur km 55, Col. Mezquitito, La Paz, BCS, Mexico
Karina Ramos-Musalem
Departamento de Oceanografía Física, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
Leonardo Tenorio-Fernandez
Departamento de Oceanología, Instituto Politécnico Nacional-Centro Interdisciplinario de Ciencias Marinas, Av. Politécnico Nacional s/n. Col. Palo de Santa Rita, 23096, La Paz, Baja California Sur, Mexico
CONHACyT, Consejo Nacional de Humanidades, Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Demarcación Territorial Benito Juárez, 03940, Mexico City, Mexico
Related authors
Efraín Moreles, Emmanuel Romero, and Benjamín Martínez-López
EGUsphere, https://doi.org/10.5194/egusphere-2025-3359, https://doi.org/10.5194/egusphere-2025-3359, 2025
Short summary
Short summary
We propose an approach to quantify energy barriers to the vertical movement (upward-downward) of water parcels in diverse aquatic bodies, which are associated with the vertical variation in density (stratification). The approach analyzes these barriers in detail and provides an objective measure of stratification intensity in any vertical section of the water column. This approach can enhance our understanding of the effects of stratification on diverse ocean-atmosphere interaction processes.
Efraín Moreles, Emmanuel Romero, and Benjamín Martínez-López
EGUsphere, https://doi.org/10.5194/egusphere-2025-3359, https://doi.org/10.5194/egusphere-2025-3359, 2025
Short summary
Short summary
We propose an approach to quantify energy barriers to the vertical movement (upward-downward) of water parcels in diverse aquatic bodies, which are associated with the vertical variation in density (stratification). The approach analyzes these barriers in detail and provides an objective measure of stratification intensity in any vertical section of the water column. This approach can enhance our understanding of the effects of stratification on diverse ocean-atmosphere interaction processes.
Emmanuel Romero, Leonardo Tenorio-Fernandez, Esther Portela, Jorge Montes-Aréchiga, and Laura Sánchez-Velasco
Ocean Sci., 19, 887–901, https://doi.org/10.5194/os-19-887-2023, https://doi.org/10.5194/os-19-887-2023, 2023
Short summary
Short summary
In this study, we present a methodology to locate the minimum and maximum depths of the strongest thermocline, its thickness, and its strength by adjusting the sigmoid function to the temperature profiles in the global ocean. The results of the methodology are compared with the results of other methods found in the literature, and an assessment of the ocean regions where the adjustment is valid is provided. The method proposed here has shown to be robust and easy to apply.
Emmanuel Romero, Leonardo Tenorio-Fernandez, Iliana Castro, and Marco Castro
Ocean Sci., 17, 1273–1284, https://doi.org/10.5194/os-17-1273-2021, https://doi.org/10.5194/os-17-1273-2021, 2021
Short summary
Short summary
Due to the need to obtain a greater amount of data in less time in areas with little in situ hydrographic data, an algorithm based on cluster analysis is proposed. This algorithm allows real-time quality control of Argo data which has patterns similar to data in delayed mode. To test this, a study area of high scientific interest but with little concentration of in situ data was chosen. In this area 80 % of the data normally discarded because of salinity drifts was recovered.
Cited articles
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC) [data set], https://doi.org/10.17882/42182, 2024. a
Bopp, L., Lévy, M., Resplandy, L., and Sallée, J. B.: Pathways of anthropogenic carbon subduction in the global ocean, Geophysical Research Letters, 42, 6416–6423, https://doi.org/10.1002/2015GL065073, 2015. a
Bouman, H. A., Jackson, T., Sathyendranath, S., and Platt, T.: Vertical structure in chlorophyll profiles: influence on primary production in the Arctic Ocean, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 378, 20190351, https://doi.org/10.1098/rsta.2019.0351, 2020. a, b
Brainerd, K. E. and Gregg, M. C.: Surface mixed and mixing layer depths, Deep Sea Research Part I: Oceanographic Research Papers, 42, 1521–1543, https://doi.org/10.1016/0967-0637(95)00068-H, 1995. a, b, c
Briseño Avena, C., Prairie, J. C., Franks, P. J. S., and Jaffe, J. S.: Comparing Vertical Distributions of Chl-a Fluorescence, Marine Snow, and Taxon-Specific Zooplankton in Relation to Density Using High-Resolution Optical Measurements, Frontiers in Marine Science, 7, 602, https://doi.org/10.3389/fmars.2020.00602, 2020. a, b
Caneill, R., Roquet, F., and Nycander, J.: The Southern Ocean deep mixing band emerges from a competition between winter buoyancy loss and upper stratification strength, Ocean Sci., 20, 601–619, https://doi.org/10.5194/os-20-601-2024, 2024. a, b, c
Carvalho, F., Kohut, J., Oliver, M. J., and Schofield, O.: Defining the ecologically relevant mixed‐layer depth for Antarctica's coastal seas, Geophysical Research Letters, 44, 338–345, https://doi.org/10.1002/2016GL071205, 2017. a, b, c, d
Chu, P. C. and Fan, C.: Optimal Linear Fitting for Objective Determination of Ocean Mixed Layer Depth from Glider Profiles, Journal of Atmospheric and Oceanic Technology, 27, 1893–1898, https://doi.org/10.1175/2010JTECHO804.1, 2010. a
Chu, P. C. and Fan, C.: Maximum angle method for determining mixed layer depth from seaglider data, Journal of Oceanography, 67, 219–230, https://doi.org/10.1007/s10872-011-0019-2, 2011. a, b
D'Asaro, E. A.: Turbulence in the Upper-Ocean Mixed Layer, Annual Review of Marine Science, 6, 101–115, https://doi.org/10.1146/annurev-marine-010213-135138, 2014. a, b, c
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: An examination of profile data and a profile‐based climatology, Journal of Geophysical Research: Oceans, 109, 2004JC002378, https://doi.org/10.1029/2004JC002378, 2004. a, b, c, d, e, f, g, h, i, j, k, l
Deser, C., Alexander, M. A., Xie, S.-P., and Phillips, A. S.: Sea Surface Temperature Variability: Patterns and Mechanisms, Annual Review of Marine Science, 2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010. a
Dong, S., Sprintall, J., Gille, S. T., and Talley, L.: Southern Ocean mixed-layer depth from Argo float profiles, Journal of Geophysical Research: Oceans, 113, https://doi.org/10.1029/2006JC004051, 2008. a
Faure, V. and Kawai, Y.: Heat and salt budgets of the mixed layer around the Subarctic Front of the North Pacific Ocean, Journal of Oceanography, 71, 527–539, https://doi.org/10.1007/s10872-015-0318-0, 2015. a
Franks, P. J. S.: Has Sverdrup's critical depth hypothesis been tested? Mixed layers vs. turbulent layers, ICES Journal of Marine Science, 72, 1897–1907, https://doi.org/10.1093/icesjms/fsu175, 2014. a, b, c
Griffies, S. M., Danabasoglu, G., Durack, P. J., Adcroft, A. J., Balaji, V., Böning, C. W., Chassignet, E. P., Curchitser, E., Deshayes, J., Drange, H., Fox-Kemper, B., Gleckler, P. J., Gregory, J. M., Haak, H., Hallberg, R. W., Heimbach, P., Hewitt, H. T., Holland, D. M., Ilyina, T., Jungclaus, J. H., Komuro, Y., Krasting, J. P., Large, W. G., Marsland, S. J., Masina, S., McDougall, T. J., Nurser, A. J. G., Orr, J. C., Pirani, A., Qiao, F., Stouffer, R. J., Taylor, K. E., Treguier, A. M., Tsujino, H., Uotila, P., Valdivieso, M., Wang, Q., Winton, M., and Yeager, S. G.: OMIP contribution to CMIP6: experimental and diagnostic protocol for the physical component of the Ocean Model Intercomparison Project, Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, 2016. a, b, c, d
Groeskamp, S., Griffies, S. M., Iudicone, D., Marsh, R., Nurser, A. G., and Zika, J. D.: The Water Mass Transformation Framework for Ocean Physics and Biogeochemistry, Annual Review of Marine Science, 11, 271–305, https://doi.org/10.1146/annurev-marine-010318-095421, 2019. a
Hanawa, K. and Talley, L. D.: Mode waters, in: International Geophysics Series, edited by: Siedler, G., Church, J., and Gould, J., Vol. 77 of Ocean Circulation and Climate: Observing and Modelling the Global Ocean, 373–386, Academic Press, https://doi.org/10.1016/S0074-6142(01)80129-7, 2001. a
Herrmann, M., Somot, S., Sevault, F., Estournel, C., and Déqué, M.: Modeling the deep convection in the northwestern Mediterranean Sea using an eddy-permitting and an eddy-resolving model: Case study of winter 1986–1987, Journal of Geophysical Research: Oceans, 113, https://doi.org/10.1029/2006JC003991, 2008. a
Holte, J. and Talley, L.: A New Algorithm for Finding Mixed Layer Depths with Applications to Argo Data and Subantarctic Mode Water Formation, Journal of Atmospheric and Oceanic Technology, 26, 1920–1939, https://doi.org/10.1175/2009JTECHO543.1, 2009. a, b, c
Kara, A. B., Rochford, P. A., and Hurlburt, H. E.: An optimal definition for ocean mixed layer depth, Journal of Geophysical Research: Oceans, 105, 16803–16821, https://doi.org/10.1029/2000JC900072, 2000. a, b, c, d
Katsura, S., Sprintall, J., Farrar, J. T., Zhang, D., and Cronin, M. F.: The Barrier Layer Effect on the Heat and Freshwater Balance from Moored Observations in the Eastern Pacific Fresh Pool, Journal of Physical Oceanography, 52, 1705–1730, https://doi.org/10.1175/JPO-D-21-0243.1, 2022. a
Kirillin, G., Grossart, H.-P., and Tang, K. W.: Modeling sinking rate of zooplankton carcasses: Effects of stratification and mixing, Limnology and Oceanography, 57, 881–894, https://doi.org/10.4319/lo.2012.57.3.0881, 2012. a
Large, W. G., Danabasoglu, G., Doney, S. C., and McWilliams, J. C.: Sensitivity to Surface Forcing and Boundary Layer Mixing in a Global Ocean Model: Annual-Mean Climatology, Journal of Physical Oceanography, 27, 2418–2447, https://doi.org/10.1175/1520-0485(1997)027<2418:STSFAB>2.0.CO;2, 1997. a
Lascaratos, A. and Nittis, K.: A high-resolution three-dimensional numerical study of intermediate water formation in the Levantine Sea, Journal of Geophysical Research: Oceans, 103, 18497–18511, https://doi.org/10.1029/98JC01196, 1998. a
Lee, M.-M., Nurser, A. J. G., Stevens, I., and Sallée, J.-B.: Subduction over the Southern Indian Ocean in a High-Resolution Atmosphere–Ocean Coupled Model, Journal of Climate, 24, 3830–3849, https://doi.org/10.1175/2011JCLI3888.1, 2011. a
Levitus, S.: Climatological Atlas of the World Ocean, U.S. Department of Commerce, National Oceanic and Atmospheric Administration, https://doi.org/10.1029/EO064i049p00962-02, 1982. a, b, c
Lorbacher, K., Dommenget, D., Niiler, P. P., and Köhl, A.: Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability, Journal of Geophysical Research: Oceans, 111, https://doi.org/10.1029/2003JC002157, 2006. a, b, c, d
Lukas, R. and Lindstrom, E.: The mixed layer of the western equatorial Pacific Ocean, Journal of Geophysical Research: Oceans, 96, 3343–3357, https://doi.org/10.1029/90JC01951, 1991. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, Scor/iapso WG, 127, 1–28, ISBN 9780646556215, 2011. a
Moreles, E. and Romero, E.: moreles86/buoyancy_potential_work: Buoyancy Potential Work (v1.1.0), Zenodo [code], https://doi.org/10.5281/zenodo.15686399, 2025. a
Moreles, E., Romero, E., Ramos-Musalem, K., and Tenorio-Fernandez, L.: Global ocean mixed layer depth and derived variables obtained from an energy-based methodology, SEANOE [data set], https://doi.org/10.17882/106181, 2025. a
Omand, M. M., D'Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N., Cetinić, I., and Mahadevan, A.: Eddy-driven subduction exports particulate organic carbon from the spring bloom, Science, 348, 222–225, https://doi.org/10.1126/science.1260062, 2015. a
Omand, M. M., Govindarajan, R., He, J., and Mahadevan, A.: Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics, Scientific Reports, 10, 5582, https://doi.org/10.1038/s41598-020-60424-5, 2020. a
Parzen, E.: On Estimation of a Probability Density Function and Mode, The Annals of Mathematical Statistics, 33, 1065–1076, https://doi.org/10.1214/aoms/1177704472, 1962. a
Peralta-Ferriz, C. and Woodgate, R. A.: Seasonal and interannual variability of pan-Arctic surface mixed layer properties from 1979 to 2012 from hydrographic data, and the dominance of stratification for multiyear mixed layer depth shoaling, Progress in Oceanography, 134, 19–53, 2015. a
Romero, E., Tenorio-Fernandez, L., Portela, E., Montes-Aréchiga, J., and Sánchez-Velasco, L.: Improving the thermocline calculation over the global ocean, Ocean Sci., 19, 887–901, https://doi.org/10.5194/os-19-887-2023, 2023. a, b
Rosenblatt, M.: Remarks on Some Nonparametric Estimates of a Density Function, The Annals of Mathematical Statistics, 27, 832–837, https://doi.org/10.1214/aoms/1177728190, 1956. a
Sallée, J.-B., Pellichero, V., Akhoudas, C., Pauthenet, E., Vignes, L., Schmidtko, S., Garabato, A. N., Sutherland, P., and Kuusela, M.: Summertime increases in upper-ocean stratification and mixed-layer depth, Nature, 591, 592–598, https://doi.org/10.1038/s41586-021-03303-x, 2021. a, b, c, d
Schofield, O., Miles, T., Alderkamp, A.-C., Lee, S., Haskins, C., Rogalsky, E., Sipler, R., Sherrell, R. M., and Yager, P. L.: In situ phytoplankton distributions in the Amundsen Sea Polynya measured by autonomous gliders, Elementa: Science of the Anthropocene, 3, 000073, https://doi.org/10.12952/journal.elementa.000073, 2015. a
Shen, W. and Ginis, I.: Effects of surface heat flux-induced sea surface temperature changes on tropical cyclone intensity, Geophysical Research Letters, 30, https://doi.org/10.1029/2003GL017878, 2003. a
Small, R. J., DuVivier, A. K., Whitt, D. B., Long, M. C., Grooms, I., and Large, W. G.: On the control of subantarctic stratification by the ocean circulation, Climate Dynamics, 56, 299–327, https://doi.org/10.1007/s00382-020-05473-2, 2021. a
Sutherland, G., Ward, B., and Christensen, K. H.: Wave-turbulence scaling in the ocean mixed layer, Ocean Sci., 9, 597–608, https://doi.org/10.5194/os-9-597-2013, 2013. a
Sutherland, G., Reverdin, G., Marié, L., and Ward, B.: Mixed and mixing layer depths in the ocean surface boundary layer under conditions of diurnal stratification, Geophysical Research Letters, 41, 8469–8476, https://doi.org/10.1002/2014GL061939, 2014. a, b, c
Tang, H., Wang, C., Li, H., and He, Y.: Ocean mixed layer depth 2000–2020: Estimation assessment and long-term trends, Progress in Oceanography, 234, 103467, https://doi.org/10.1016/j.pocean.2025.103467, 2025. a, b, c, d
Toyoda, T., Fujii, Y., Kuragano, T., Kamachi, M., Ishikawa, Y., Masuda, S., Sato, K., Awaji, T., Hernandez, F., Ferry, N., Guinehut, S., Martin, M. J., Peterson, K. A., Good, S. A., Valdivieso, M., Haines, K., Storto, A., Masina, S., Köhl, A., Zuo, H., Balmaseda, M., Yin, Y., Shi, L., Alves, O., Smith, G., Chang, Y.-S., Vernieres, G., Wang, X., Forget, G., Heimbach, P., Wang, O., Fukumori, I., and Lee, T.: Intercomparison and validation of the mixed layer depth fields of global ocean syntheses, Climate Dynamics, 49, 753–773, https://doi.org/10.1007/s00382-015-2637-7, 2017. a
Treguier, A. M., de Boyer Montégut, C., Bozec, A., Chassignet, E. P., Fox-Kemper, B., McC. Hogg, A., Iovino, D., Kiss, A. E., Le Sommer, J., Li, Y., Lin, P., Lique, C., Liu, H., Serazin, G., Sidorenko, D., Wang, Q., Xu, X., and Yeager, S.: The mixed-layer depth in the Ocean Model Intercomparison Project (OMIP): impact of resolving mesoscale eddies, Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, 2023. a, b, c, d, e, f, g, h, i, j
Vallis, G. K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 1st edn., Cambridge University Press, ISBN 9780511790447, https://doi.org/10.1017/CBO9780511790447, 2006. a
Whitt, D. B., Nicholson, S. A., and Carranza, M. M.: Global Impacts of Subseasonal (<60 Day) Wind Variability on Ocean Surface Stress, Buoyancy Flux, and Mixed Layer Depth, Journal of Geophysical Research: Oceans, 124, 8798–8831, https://doi.org/10.1029/2019JC015166, 2019. a
Wong, A. P. S., Wijffels, S. E., Riser, S. C., Pouliquen, S., Hosoda, S., Roemmich, D., Gilson, J., Johnson, G. C., Martini, K., Murphy, D. J., Scanderbeg, M., Bhaskar, T. V. S. U., Buck, J. J. H., Merceur, F., Carval, T., Maze, G., Cabanes, C., André, X., Poffa, N., Yashayaev, I., Barker, P. M., Guinehut, S., Belbéoch, M., Ignaszewski, M., Baringer, M. O., Schmid, C., Lyman, J. M., McTaggart, K. E., Purkey, S. G., Zilberman, N., Alkire, M. B., Swift, D., Owens, W. B., Jayne, S. R., Hersh, C., Robbins, P., West-Mack, D., Bahr, F., Yoshida, S., Sutton, P. J. H., Cancouët, R., Coatanoan, C., Dobbler, D., Juan, A. G., Gourrion, J., Kolodziejczyk, N., Bernard, V., Bourlès, B., Claustre, H., D'Ortenzio, F., Le Reste, S., Le Traon, P.-Y., Rannou, J.-P., Saout-Grit, C., Speich, S., Thierry, V., Verbrugge, N., Angel-Benavides, I. M., Klein, B., Notarstefano, G., Poulain, P.-M., Vélez-Belchí, P., Suga, T., Ando, K., Iwasaska, N., Kobayashi, T., Masuda, S., Oka, E., Sato, K., Nakamura, T., Sato, K., Takatsuki, Y., Yoshida, T., Cowley, R., Lovell, J. L., Oke, P. R., van Wijk, E. M., Carse, F., Donnelly, M., Gould, W. J., Gowers, K., King, B. A., Loch, S. G., Mowat, M., Turton, J., Rama Rao, E. P., Ravichandran, M., Freeland, H. J., Gaboury, I., Gilbert, D., Greenan, B. J. W., Ouellet, M., Ross, T., Tran, A., Dong, M., Liu, Z., Xu, J., Kang, K., Jo, H., Kim, S.-D., and Park, H.-M.: Argo Data 1999–2019: Two Million Temperature-Salinity Profiles and Subsurface Velocity Observations From a Global Array of Profiling Floats, Frontiers in Marine Science, 7, https://doi.org/10.3389/fmars.2020.00700, 2020. a, b
Zippel, S. F., Farrar, J. T., Zappa, C. J., and Plueddemann, A. J.: Parsing the Kinetic Energy Budget of the Ocean Surface Mixed Layer, Geophysical Research Letters, 49, e2021GL095920, https://doi.org/10.1029/2021GL095920, 2022. a, b
Short summary
The mixed layer, where ocean properties are uniform, is key to ocean dynamics and ocean-atmosphere interactions. We propose an alternative definition of the mixed layer as the layer in which water parcels can move with little or no work. This approach provides realistic estimates of mixed-layer depth across space and time under diverse ocean conditions. It has potential implications for improving our understanding of various ocean-atmosphere phenomena, including dynamic and thermodynamic ones.
The mixed layer, where ocean properties are uniform, is key to ocean dynamics and...