Articles | Volume 21, issue 5
https://doi.org/10.5194/os-21-1933-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-1933-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Synoptic observation of a full mesoscale eddy lifetime and its secondary instabilities in the Gulf of Mexico
Charly de Marez
CORRESPONDING AUTHOR
University of Iceland, Institute of Earth Sciences, Reykjavík, Iceland
Related authors
Angel Ruiz-Angulo, Esther Portela, Charly de Marez, Andreas Macrander, Sólveig Rósa Ólafsdóttir, Thomas Meunier, Steingrímur Jónsson, and M. Dolores Pérez-Hernández
EGUsphere, https://doi.org/10.5194/egusphere-2025-2102, https://doi.org/10.5194/egusphere-2025-2102, 2025
Short summary
Short summary
The ocean around Iceland is a key region for water mass transformation that drives global ocean circulation. We use 29 years of hydrographic data to examine the spatial and temporal variability of mixed layer depth and stratification, identifying three distinct regions: South, North, and Northeast. We present a comprehensive view of seasonal to multi-decadal variability in upper ocean structure and its link to a changing North Atlantic under global warming.
Angel Ruiz-Angulo, Esther Portela, Charly de Marez, Andreas Macrander, Sólveig Rósa Ólafsdóttir, Thomas Meunier, Steingrímur Jónsson, and M. Dolores Pérez-Hernández
EGUsphere, https://doi.org/10.5194/egusphere-2025-2102, https://doi.org/10.5194/egusphere-2025-2102, 2025
Short summary
Short summary
The ocean around Iceland is a key region for water mass transformation that drives global ocean circulation. We use 29 years of hydrographic data to examine the spatial and temporal variability of mixed layer depth and stratification, identifying three distinct regions: South, North, and Northeast. We present a comprehensive view of seasonal to multi-decadal variability in upper ocean structure and its link to a changing North Atlantic under global warming.
Cited articles
AVISO/DUACS: SWOT Level-3 SSH Basic (v2.0.1) [Data set], AVISO/DUACS [data set], https://doi.org/10.24400/527896/A01-2023.017, 2023a. a
AVISO/DUACS: SWOT Level-3 SSH Unsmoothed (v2.0.1) [Data set], AVISO/DUACS [data set], https://doi.org/10.24400/527896/A01-2024.003, 2023b. a
Biggs, D. C.: Nutrients, plankton, and productivity in a warm-core ring in the western Gulf of Mexico, J. Geophys. Res.-Oceans, 97, 2143–2154, 1992. a
Brannigan, L., Marshall, D. P., Naveira Garabato, A. C., Nurser, A. G., and Kaiser, J.: Submesoscale instabilities in mesoscale eddies, J. Phys. Oceanogr., 47, 3061–3085, 2017. a
Callies, J. and Wu, W.: Some Expectations for Submesoscale Sea Surface Height Variance Spectra, J. Phys. Oceanogr., 49, 2271–2289, 2019. a
Callies, J., Flierl, G., Ferrari, R., and Fox-Kemper, B.: The role of mixed-layer instabilities in submesoscale turbulence, J. Fluid Mech., 788, 5–41, https://doi.org/10.1017/jfm.2015.700, 2016. a, b
Capet, X., Klein, P., Hua, B. L., Lapeyre, G., and Mcwilliams, J. C.: Surface kinetic energy transfer in surface quasi-geostrophic flows, J. Fluid Mech., 604, 165–174, 2008. a
Carli, E., Tranchant, Y., Siegelman, L., Le Guillou, F., Morrow, R. A., Ballarotta, M., and Vergara, O.: Small-scale eddy diagnostics around the Southern Ocean Polar Front with SWOT, Authorea Preprints, in preparation, 2025. a
Carton, X.: Instability of surface quasigeostrophic vortices, J. Atmos. Sci., 66, 1051–1062, 2009. a
Chelton, D.: Report of the high-resolution ocean topography science working group meeting, Oregon State University, College of Oceanic and Atmospheric Sciences, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=4128e5b1c8e50bfc824dac3705a54dea4ac3b4bd (last access: 2 September 2025), 2001. a
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global observations of large oceanic eddies, Geophys. Res. Lett., 34, L15606, https://doi.org/10.1029/2007GL030812, 2007. a
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.: The Influence of Nonlinear Mesoscale Eddies on Near-Surface Oceanic Chlorophyll, Science, 334, 328–332, https://doi.org/10.1126/science.1208897, 2011a. a
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, 2011b. a
Chérubin, L. M., Morel, Y., and Chassignet, E. P.: Loop Current ring shedding: The formation of cyclones and the effect of topography, J. Phys. Oceanogr., 36, 569–591, 2006. a
Coadou-Chaventon, S., Swart, S., Novelli, G., and Speich, S.: Resolving sharper fronts of the Agulhas Current Retroflection using SWOT altimetry, Geophys. Res. Let., 52, e2025GL115203, https://doi.org/10.1029/2025GL115203, 2025. a
Courant, R., Friedrichs, K., and Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Annal., 100, 32–74, 1928. a
Damerell, G. M., Bosse, A., and Fer, I.: Merging of a mesoscale eddy into the Lofoten Vortex in the Norwegian Sea captured by an ocean glider and SWOT observations, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2025-433, 2025. a
de Marez, C. and Callies, J.: The information contained in altimetric Sea Surface Height frequency spectra, J. Phys. Oceanogr., 55, 119–129, 2025. a
de Marez, C., Meunier, T., Morvan, M., L'hégaret, P., and Carton, X.: Study of the stability of a large realistic cyclonic eddy, Ocean Model., 146, 101540, https://doi.org/10.1016/j.ocemod.2019.101540, 2020a. a
de Marez, C., Meunier, T., Tedesco, P., L'Hégaret, P., and Carton, X.: Vortex–wall interaction on the β-plane and the generation of deep submesoscale cyclones by internal Kelvin Waves–current interactions, Geophys. Astrophys. Fluid Dynam., 114, 588–606, 2020b. a
Dibarboure, G., Anadon, C., Briol, F., Cadier, E., Chevrier, R., Delepoulle, A., Faugère, Y., Laloue, A., Morrow, R., Picot, N., Prandi, P., Pujol, M.-I., Raynal, M., Tréboutte, A., and Ubelmann, C.: Blending 2D topography images from the Surface Water and Ocean Topography (SWOT) mission into the altimeter constellation with the Level-3 multi-mission Data Unification and Altimeter Combination System (DUACS), Ocean Sci., 21, 283–323, https://doi.org/10.5194/os-21-283-2025, 2025. a, b
Dibarboure, G., Faugere, Y., Delepoulle, A., Briol, F., Raynal, M., Ubelmann, C., Chevrier, R., Busche, C., Treboutte, A., and Prandi, P.: SWOT Level-3 Overview algorithms and examples, poster at SWOT Science Team 2023, https://swotst.aviso.altimetry.fr/fileadmin/user_upload/SWOTST2023/postersPI/faugere_ocean_l3_PIproject.pdf (last access: 2 September 2025), 2023. a
Dong, C., McWilliams, J. C., Liu, Y., and Chen, D.: Global heat and salt transports by eddy movement, Nat. Commun., 5, 3294, https://doi.org/10.1038/ncomms4294, 2014. a
Du, T. and Jing, Z.: Fine-Scale Eddies Detected by SWOT in the Kuroshio Extension, Remote Sens., 16, 3488, https://doi.org/10.3390/rs16183488, 2024. a
Fuglister, F. C. and Worthington, L. V.: Some Results of a Multiple Ship Survey of the Gulf Stream, Tellus, 3, 1–14, https://doi.org/10.3402/tellusa.v3i1.8614, 1951. a
Gent, P. R. and McWilliams, J. C.: The instability of barotropic circular vortices, Geophys. Astrophys. Fluid Dynam., 35, 209–233, 1986. a
Gentil, M., Pallàs-Sanz, E., Middleton, L., Ruiz-Angulo, A., Meunier, T., Durante, G., Tenreiro, M., Allis Estrada, S. N., and Sheinbaum, J.: Distribution, mixing, and transformation of a Loop Current Ring waters: The case of Gulf of Mexico, Geophys. Res. Lett., 51, e2024GL110845, https://doi.org/10.1029/2024GL110845, 2024. a
Goni, G. J., Trinanes, J. A., MacFadyen, A., Streett, D., Olascoaga, M. J., Imhoff, M. L., Muller-Karger, F., and Roffer, M. A.: Variability of the Deepwater Horizon surface oil spill extent and its relationship to varying ocean currents and extreme weather conditions, in: Mathematical modelling and numerical simulation of oil pollution problems, Springer, 1–22, https://doi.org/10.1007/978-3-319-16459-5_1, 2015. a
Hall, C. A. and Leben, R. R.: Observational evidence of seasonality in the timing of loop current eddy separation, Dynam. Atmos. Oceans, 76, 240–267, 2016. a
Hiron, L., Nolan, D. S., and Shay, L. K.: Study of ageostrophy during strong, nonlinear eddy-front interaction in the Gulf of Mexico, J. Phys. Oceanogr., 51, 745–755, 2021. a
Ikeda, M.: Instability and splitting of mesoscale rings using a two-layer quasi-geostrophic model on an f-plane, J. Phys. Oceanogr., 11, 987–998, 1981. a
Ioannou, A., Stegner, A., Tuel, A., Le Vu, B., Dumas, F., and Speich, S.: Cyclostrophic corrections of AVISO/DUACS surface velocities and its application to mesoscale eddies in the Mediterranean Sea, J. Geophys. Res.-Oceans, 124, 8913–8932, 2019. a
Le Hénaff, M., Kourafalou, V. H., Dussurget, R., and Lumpkin, R.: Cyclonic activity in the eastern Gulf of Mexico: Characterization from along-track altimetry and in situ drifter trajectories, Prog. Oceanogr., 120, 120–138, 2014. a
Lévy, M., Franks, P. J., and Smith, K. S.: The role of submesoscale currents in structuring marine ecosystems, Nat. Commun., 9, 4758, https://doi.org/10.1038/s41467-018-07059-3, 2018. a
Li, L., Nowlin, W. D., and Jilan, S.: Anticyclonic rings from the Kuroshio in the South China Sea, Deep-Sea Res. Pt. I, 45, 1469–1482, https://doi.org/10.1016/S0967-0637(98)00026-0, 1998. a
Manta, G., Durante, G., Candela, J., Send, U., Sheinbaum, J., Lankhorst, M., and Laxenaire, R.: Predicting the Loop Current dynamics combining altimetry and deep flow measurements through the Yucatan Channel, Front. Mar. Sci., 10, 1156159, https://doi.org/10.3389/fmars.2023.1156159, 2023. a
Mason, E., Pascual, A., and McWilliams, J. C.: A new sea surface height–based code for oceanic mesoscale eddy tracking, J. Atmos. Ocean. Tech., 31, 1181–1188, 2014. a
McWilliams, J. C.: A survey of submesoscale currents, Geosci. Lett., 6, 3, https://doi.org/10.1186/s40562-019-0133-3, 2019. a
Meunier, T., Pallas-Sanz, E., Tenreiro, M., Portela, E., Ochoa, J., Ruiz-Angulo, A., and Cusí, S.: The vertical structure of a Loop Current Eddy, J. Geophys. Res.-Oceans, 123, 6070–6090, https://doi.org/10.1029/2018JC013801, 2018. a, b
Meunier, T., Sanz, E. P., Tenreiro, M., Ochoa, J., Angulo, A. R., and Buckingham, C.: Observations of layering under a warm-core ring in the Gulf of Mexico, J. Phys. Oceanogr., 49, 3145–3162, 2019. a
Meunier, T., Sheinbaum, J., Pallàs-Sanz, E., Tenreiro, M., Ochoa, J., Ruiz-Angulo, A., Carton, X., and de Marez, C.: Heat content anomaly and decay of warm-core rings: The case of the Gulf of Mexico, Geophys. Res. Lett., 47, e2019GL085600, https://doi.org/10.1029/2019GL085600, 2020. a, b
Meunier, T., Bower, A., Pérez-Brunius, P., Graef, F., and Mahadevan, A.: The energy decay of warm-core eddies in the gulf of Mexico, Geophys. Res. Lett., 51, e2023GL106246, https://doi.org/10.1029/2023GL106246, 2024. a
Morel, Y. G. and Carton, X. J.: Multipolar vortices in two-dimensional incompressible flows, J. Fluid Mech., 267, 23–51, 1994. a
Morrow, R., Fu, L. L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E., d'Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., and Le Traon, P. Y.: Global observations of fine-scale ocean surface topography with the Surface Water and Ocean Topography (SWOT) mission, Front. Mar. Sci., 6, 232, https://doi.org/10.3389/fmars.2019.00232, 2019. a, b
Oey, L.-Y., Lee, H.-C., and Schmitz Jr, W. J.: Effects of winds and Caribbean eddies on the frequency of Loop Current eddy shedding: A numerical model study, J. Geophys. Res.-Oceans, 108, https://doi.org/10.1029/2002JC001698, 2003. a
Olson, D. B. and Evans, R. H.: Rings of the Agulhas current, Deep-Sea Res. Pt. A, 33, 27–42, https://doi.org/10.1016/0198-0149(86)90106-8, 1986. a
Palter, J. B.: The Role of the Gulf Stream in European Climate, Annu. Rev. Mar. Sci., 7, 113–137, https://doi.org/10.1146/annurev-marine-010814-015656, 2015. a
Pérez, J., Pallàs-Sanz, E., Tenreiro, M., Meunier, T., Jouanno, J., and Ruiz-Angulo, A.: Overturning instabilities across a warm core ring from glider observations, J. Geophys. Res.-Oceans, 127, e2021JC017527, https://doi.org/10.1029/2021JC017527, 2022. a
Richardson, P. L.: Gulf Stream Rings, in: Eddies in Marine Science, edited by: Robinson, A. R., Springer, Berlin, 19–45, ISBN 978-3-642-69005-1, https://doi.org/10.1007/978-3-642-69003-7_2, 1983. a
Richardson, P. L., Strong, A. E., and Knauss, J. A.: Gulf Stream Eddies: Recent Observations in the Western Sargasso Sea, J. Phys. Oceanogr., 3, 297–301, https://doi.org/10.1175/1520-0485(1973)003<0297:GSEROI>2.0.CO;2, 1973. a
Shay, L. K., Goni, G. J., and Black, P. G.: Effects of a warm oceanic feature on Hurricane Opal, Mon. Weather Rev., 128, 1366–1383, 2000. a
Sheinbaum, J., Chassignet, E., Morey, S. L., and He, R.: Understanding and Predicting the Gulf of Mexico Ocean Dynamics, Frontiers Media SA, https://www.frontiersin.org/research-topics/38158/understanding-and-predicting-the-gulf-of-mexico-ocean-dynamics/magazine?utm_source=copy_link&utm_medium=social&utm_campaign=rt_magazine_share&utm_content=rt38158 (last access: 2 September 2025), 2024. a
Small, R., deSzoeke, S., Xie, S., O'Neill, L., Seo, H., Song, Q., Cornillon, P., Spall, M., and Minobe, S.: Air–sea interaction over ocean fronts and eddies, Dynam. Atmos. Oceans, 45, 274–319, https://doi.org/10.1016/j.dynatmoce.2008.01.001, 2008. a
Tchilibou, M., Carrere, L., Lyard, F., Ubelmann, C., Dibarboure, G., Zaron, E. D., and Arbic, B. K.: Internal tides off the Amazon shelf in the western tropical Atlantic: analysis of SWOT Cal/Val mission data, Ocean Sci., 21, 325–342, https://doi.org/10.5194/os-21-325-2025, 2025. a
Tenreiro, M., Candela, J., Sanz, E. P., Sheinbaum, J., and Ochoa, J.: Near-surface and deep circulation coupling in the western Gulf of Mexico, J. Phys. Oceanogr., 48, 145–161, 2018. a
Tranchant, Y.-T., Legresy, B., Foppert, A., Pena-Molino, B., and Phillips, H. E.: SWOT reveals fine-scale balanced motions and dispersion properties in the Antarctic Circumpolar Current, Authorea Preprints, in preparation, https://doi.org/10.1029/2025EA004248, 2025. a
Valcke, S. and Verron, J.: Interactions of baroclinic isolated vortices: The dominant effect of shielding, J. Phys. Oceanogr., 27, 524–541, 1997. a
Verger-Miralles, E., Mourre, B., Gómez-Navarro, L., Barceló-Llull, B., Casas, B., Cutolo, E., Díaz-Barroso, L., d'Ovidio, F., Tarry, D. R., Zarokanellos, N. D., and Pascual, A.: SWOT enhances small-scale intrathermocline eddy detection, Authorea Preprints, in preparation, https://doi.org/10.22541/essoar.173315547.75973902/v2, 2024. a
Wang, J., Archer, M., Klein, P., and Fu, L.-L.: Global Submesoscale Ocean Dynamics Unveiled by Wide-Swath Satellite Altimetry, https://doi.org/10.1038/s41586-025-08722-8, 2025a. a
Wang, J., Lucas, A., Stalin, S., Lankhorst, M., Send, U., Schofield, O., Kachelein, L., Haines, B., Meinig, C., Pinkel, R., Farrar, J., and Fu, L.: SWOT Mission Validation of Sea Surface Height Measurements at Sub‐100 km Scales, Geophys. Res. Lett., 52, e2025GL114936, https://doi.org/10.1029/2025GL114936, 2025b. a
Zhang, L., Hwang, C., Liu, H.-Y., Chang, E. T., and Yu, D.: Automated Eddy Identification and Tracking in the Northwest Pacific Based on Conventional Altimeter and SWOT Data, Remote Sens., 17, 1665, https://doi.org/10.3390/rs17101665, 2025a. a
Zhang, X., Liu, L., Fei, J., Li, Z., Wei, Z., Zhang, Z., Jiang, X., Dong, Z., and Xu, F.: Advances in surface water and ocean topography for fine-scale eddy identification from altimeter sea surface height merging maps in the South China Sea, Ocean Sci., 21, 1033–1045, https://doi.org/10.5194/os-21-1033-2025, 2025b. a
Zhang, Z., Miao, M., Qiu, B., Tian, J., Jing, Z., Chen, G., Chen, Z., and Zhao, W.: Submesoscale eddies detected by SWOT and moored observations in the Northwestern Pacific, Geophys. Res. Lett., 51, e2024GL110000, https://doi.org/10.1029/2024GL110000, 2024. a
Co-editor-in-chief
The authors present the first synoptic characterisation of an oceanic mesoscale eddy’s full life cycle using groundbreaking SWOT satellite altimetry. This unprecedented view challenges the long-standing perception of eddies as simple, elliptical structures, revealing the crucial role of mesoscale interactions in their evolution. The SWOT results capture intense submesoscale turbulence at the eddy’s rim, exposing secondary instabilities that likely drive its dissipation. These findings not only validate decades of vortex theory but also open new frontiers in our understanding of oceanic turbulence.
The authors present the first synoptic characterisation of an oceanic mesoscale eddy’s full...
Short summary
Oceanic eddies are giant swirling currents that help transport heat, nutrients, and pollutants across the ocean. However, their life cycle has never been observed in detail. Using new satellite data, we tracked an intense eddy in the Gulf of Mexico, describing its life cycle from birth during a 6-month period. Our observations reveal small-scale turbulence surrounding it and interactions with other structures that shape its evolution, validating decades of numerical studies.
Oceanic eddies are giant swirling currents that help transport heat, nutrients, and pollutants...