Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1787-2025
https://doi.org/10.5194/os-21-1787-2025
Research article
 | 
25 Aug 2025
Research article |  | 25 Aug 2025

Multiscale phytoplankton dynamics in a coastal system of the eastern English Channel: the Boulogne-sur-Mer coastal area

Kévin Robache, Zéline Hubert, Clémentine Gallot, Alexandre Epinoux, Arnaud P. Louchart, Jean-Valéry Facq, Alain Lefebvre, Michel Répécaud, Vincent Cornille, Florine Verhaeghe, Yann Audinet, Laurent Brutier, François G. Schmitt, and Luis Felipe Artigas

Related authors

Multiscale statistical analysis of thermal and non-thermal components of seawater pCO2 in the Western English Channel: scaling, time-reversibility, and dependence
Kévin Robache and François G. Schmitt
EGUsphere, https://doi.org/10.5194/egusphere-2025-972,https://doi.org/10.5194/egusphere-2025-972, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Decadal changes in phytoplankton functional composition in the Eastern English Channel: possible upcoming major effects of climate change
Zéline Hubert, Arnaud P. Louchart, Kévin Robache, Alexandre Epinoux, Clémentine Gallot, Vincent Cornille, Muriel Crouvoisier, Sébastien Monchy, and Luis Felipe Artigas
Ocean Sci., 21, 679–700, https://doi.org/10.5194/os-21-679-2025,https://doi.org/10.5194/os-21-679-2025, 2025
Short summary
Scaling and intermittent properties of oceanic and atmospheric pCO2 time series and their difference in a turbulence framework
Kévin Robache, François G. Schmitt, and Yongxiang Huang
Nonlin. Processes Geophys., 32, 35–49, https://doi.org/10.5194/npg-32-35-2025,https://doi.org/10.5194/npg-32-35-2025, 2025
Short summary

Cited articles

Agawin, N. S. R., Duarte, C. M., and Agustí, S.: Nutrient and Temperature Control of the Contribution of Picoplankton to Phytoplankton Biomass and Production, Limnol. Oceanogr., 45, 591–600, https://doi.org/10.4319/lo.2000.45.3.0591, 2000. a
André, J.-M., Navarette, C., Blanchot, J., and Radenac, M.-H.: Picophytoplankton Dynamics in the Equatorial Pacific: Growth and Grazing Rates from Cytometric Counts, J. Geophys. Res.-Oceans, 104, 3369–3380, https://doi.org/10.1029/1998JC900005, 1999. a
Bar-On, Y. M. and Milo, R.: The Biomass Composition of the Oceans: A Blueprint of Our Blue Planet, Cell, 179, 1451–1454, https://doi.org/10.1016/j.cell.2019.11.018, 2019. a
Bar-On, Y. M., Phillips, R., and Milo, R.: The Biomass Distribution on Earth, P. Natl. Acad. Sci. USA, 115, 6506–6511, https://doi.org/10.1073/pnas.1711842115, 2018. a
Barrillon, S., Fuchs, R., Petrenko, A. A., Comby, C., Bosse, A., Yohia, C., Fuda, J.-L., Bhairy, N., Cyr, F., Doglioli, A. M., Grégori, G., Tzortzis, R., d'Ovidio, F., and Thyssen, M.: Phytoplankton Reaction to an Intense Storm in the North-Western Mediterranean Sea, Biogeosciences, 20, 141–161, https://doi.org/10.5194/bg-20-141-2023, 2023. a
Download
Short summary
By deploying an automated flow cytometer at a coastal monitoring station in France, we tracked phytoplankton changes every 2 h during spring (2021 and 2022) and summer (2022). Our study revealed distinct seasonal shifts, e.g., with diatoms and haptophytes in spring. Rare weather events rapidly altered community composition. We found that most variability occurred on short timescales, underscoring the importance of high-frequency monitoring for understanding marine phytoplankton dynamics.
Share