Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1709-2025
https://doi.org/10.5194/os-21-1709-2025
Review article
 | 
05 Aug 2025
Review article |  | 05 Aug 2025

Marine data assimilation in the UK: the past, the present, and the vision for the future

Jozef Skákala, David Ford, Keith Haines, Amos Lawless, Matthew J. Martin, Philip Browne, Marcin Chrust, Stefano Ciavatta, Alison Fowler, Daniel Lea, Matthew Palmer, Andrea Rochner, Jennifer Waters, Hao Zuo, Deep S. Banerjee, Mike Bell, Davi M. Carneiro, Yumeng Chen, Susan Kay, Dale Partridge, Martin Price, Richard Renshaw, Georgy Shapiro, and James While

Related authors

Improved understanding of nitrate trends, eutrophication indicators, and risk areas using machine learning
Deep S. Banerjee and Jozef Skákala
Biogeosciences, 22, 3769–3784, https://doi.org/10.5194/bg-22-3769-2025,https://doi.org/10.5194/bg-22-3769-2025, 2025
Short summary
A Digital Twin Ocean: Can we improve Coastal Ocean Forecasts using targeted Marine Autonomy?
Dale Partridge, Deep Banerjee, David Ford, Ke Wang, Jozef Skakala, Juliane Wihsgott, Prathyush Menon, Susan Kay, Daniel Clewley, Andrea Rochner, Emma Sullivan, and Matthew Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2025-3346,https://doi.org/10.5194/egusphere-2025-3346, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Hybrid machine learning data assimilation for marine biogeochemistry
Ieuan Higgs, Ross Bannister, Jozef Skákala, Alberto Carrassi, and Stefano Ciavatta
EGUsphere, https://doi.org/10.48550/arXiv.2504.05218,https://doi.org/10.48550/arXiv.2504.05218, 2025
Short summary
EAT v1.0.0: a 1D test bed for physical–biogeochemical data assimilation in natural waters
Jorn Bruggeman, Karsten Bolding, Lars Nerger, Anna Teruzzi, Simone Spada, Jozef Skákala, and Stefano Ciavatta
Geosci. Model Dev., 17, 5619–5639, https://doi.org/10.5194/gmd-17-5619-2024,https://doi.org/10.5194/gmd-17-5619-2024, 2024
Short summary
Investigating ecosystem connections in the shelf sea environment using complex networks
Ieuan Higgs, Jozef Skákala, Ross Bannister, Alberto Carrassi, and Stefano Ciavatta
Biogeosciences, 21, 731–746, https://doi.org/10.5194/bg-21-731-2024,https://doi.org/10.5194/bg-21-731-2024, 2024
Short summary

Related subject area

Approach: Data Assimilation | Properties and processes: Coastal and near-shore processes
Fusion of Lagrangian drifter data and numerical model outputs for improved assessment of turbulent dispersion
Sloane Bertin, Alexei Sentchev, and Elena Alekseenko
Ocean Sci., 20, 965–980, https://doi.org/10.5194/os-20-965-2024,https://doi.org/10.5194/os-20-965-2024, 2024
Short summary

Cited articles

Abarbanel, H. D. I., Rozdeba, P. J., and Shirman, S.: Machine learning as statistical data assimilation, Neural Comput., 30, 2025–2055, 2018. 
Allen, J. I., Eknes, M., and Evensen, G.: An Ensemble Kalman Filter with a complex marine ecosystem model: hindcasting phytoplankton in the Cretan Sea, Ann. Geophys., 21, 399–411, https://doi.org/10.5194/angeo-21-399-2003, 2003. 
Alves, O., Balmaseda, M. A., Anderson, D., and Stockdale, T.: Sensitivity of dynamical seasonal forecasts to ocean initial conditions, Q. J. Roy. Meteor. Soc., 130, 647–667, 2004. 
Anderson, L. A., Robinson, A. R., and Lozano, C. J.: Physical and biological modeling in the Gulf Stream region: I. Data assimilation methodology, Deep-Sea Res. Pt. I, 47, 1787–1827, https://doi.org/10.1016/S0967-0637(00)00019-4, 2000. 
Arcucci, R., Lamya, M., and Guo, Y.-K.: Neural assimilation, Computational Science – ICCS 2020, 20th International Conference, Amsterdam, the Netherlands, 3–5 June 2020, Proceedings, Part VI 20, Springer International Publishing, https://doi.org/10.1007/978-3-030-50433-5_13, 2020. 
Download
Short summary
UK marine data assimilation (MDA) involves a closely collaborating research community. In this paper, we offer both an overview of the state of the art and a vision for the future across all of the main areas of UK MDA, ranging from physics to biogeochemistry to coupled DA. We discuss the current UK MDA stakeholder applications, highlight theoretical developments needed to advance our systems, and reflect upon upcoming opportunities with respect to hardware and observational missions.
Share