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Abstract. In the last 2 decades, UK research institutes have
led a wide range of developments in marine data assimila-
tion (MDA), covering areas from operational applications
in physics and biogeochemistry to fundamental theory. We
highlight the emergence of strong collaboration in the UK
MDA community over this period and the increasing unifi-
cation of its tools. We focus on identifying the MDA stake-
holder community and current/future areas of impact, as well
as current trends and future opportunities. This includes the
rapid growth of machine learning (ML)/artificial intelligence
(AI) and digital-twin applications. We articulate a vision for
the future, including the need for future types of observa-
tional data (whether planned missions or hypothetical) and
how the community should respond to increases in compu-
tational power and new computer architectures (e.g. exas-
cale computing). We contrast the requirements of different
MDA areas, including physics, biogeochemistry, and cou-
pled data assimilation (DA). Although the specifics of the vi-
sion depend on each area, common themes emerge. We advo-
cate for balanced redistribution of new computational capa-
bility among increased model resolution, model complexity,

more sophisticated DA algorithms, and uncertainty represen-
tation (e.g. ensembles). We also advocate for integrated ap-
proaches, such as strongly coupled DA (ocean–atmosphere,
physics–biogeochemistry, and ocean–sea ice) and the use
of ML/AI components (e.g. for multivariate increment bal-
ancing, bias correction, model emulation, observation re-
gridding, or fusion).

1 Introduction

Marine data assimilation (MDA) is the process of combining
observations and model information to produce an estimate
of the state of the ocean. Such estimates can provide a view
of the history of the ocean (reanalysis) or provide the best
available initial conditions from which predictions can be
made. MDA is, therefore, a pillar of a “predictable ocean”,
one of the major challenges addressed by the United Na-
tions (UN) Decade of Ocean Science for Sustainable Devel-
opment (2021–2030) (https://oceandecade.org/, last access:
16 July 2025). At the same time, ocean reanalyses are es-
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sential benchmarks for climate studies and are used to assess
trends in the state of the ocean and derived services. Fur-
thermore, as data assimilation (DA) is a tool at the interface
of modelling and observation, it can provide essential infor-
mation across the disciplinary boundaries, such as informing
observational scientists on observing network design or in-
forming modellers on how to improve model configurations,
forcing, and parameterisations.

The UK plays a leading role in the international MDA
community, hosting, or partly hosting, two major operational
forecasting centres: the Met Office and the European Centre
for Medium-Range Weather Forecasts (ECMWF). The UK
also has a strong reputation in DA theory, e.g. provided by the
Data Assimilation Research Centre (DARC) of the Univer-
sity of Reading. The influence of the UK community extends
internationally through organisations such as OceanPredict
(including being instrumental in setting up the OceanPredict
Data Assimilation Task Team and contributing to other Task
Teams); its strong participation in expert groups (e.g. the
Mercator Ocean International DA expert group with impact
on the Copernicus Marine Service); and through a range
of international collaborations, such as the Met Office Uni-
fied Model (UM) Partnership, and a wide range of European
Union (EU) Horizon and European Space Agency (ESA)
projects. UK MDA is also a critical part of systems used
to generate ocean products exploited for national and inter-
national marine policy and services, including the UN Sus-
tainable Development Goals, the EU Marine Strategy Frame-
work Directive, Blue Growth, marine safety, and national se-
curity (e.g. underwater operations).

UK MDA is a closely collaborating community, with the
collaboration largely facilitated by the UK National Partner-
ship for Ocean Prediction (NPOP) and its MDA group. The
role of this paper, prepared by the NPOP MDA group, is to
both highlight the history of the ever-increasing collabora-
tion within the UK community and formulate a unified vision
for future developments. Whilst the paper is UK-focused, it
should also be of interest to the broader international com-
munity, as it provides both a useful example of a successful
national collaboration and the UK vision will feed into in-
ternational MDA developments due to the UK’s leading role
in this area. Furthermore, such focus allows topics to be ex-
plored with greater detail and synergy, complementing rela-
tively recent international community reviews (e.g. Moore et
al., 2019; Fennel et al., 2019; Martin et al., 2025), as well as
going beyond by discussing topics that have emerged since
some of those reviews were written. In this paper, we first
provide an overview of the main contributors to UK MDA
and how they collaborate, together with a range of stake-
holder applications. Then, we review developments of MDA
in the UK in the last 2 decades, highlighting the increase in
collaboration and the convergence of tools. Furthermore, we
provide a unifying vision for the near- and longer-term fu-
ture. The vision also reflects upon new or currently acceler-
ating areas, such as machine learning (ML)/artificial intelli-

gence (AI) and digital twins of the ocean, that could be com-
bined with MDA for a substantial mutual benefit.1 Finally,
a vision is formulated for the infrastructure providing the re-
sources for MDA, such as ocean observations, computer soft-
ware and hardware, and people.

2 The UK MDA community and its
stakeholders/beneficiaries

The UK MDA community includes DA scientists as well
as ocean modelling and observational scientists providing
inputs to MDA development. The UK institutes that have
directly contributed to MDA developments in recent his-
tory are shown in Fig. 1. These institutions interact closely
through NPOP and its MDA activity group, with NPOP also
providing broader interaction with other model developers
and observational scientists. These include institutes such as
the Centre for Environment, Fisheries and Aquaculture (Ce-
fas) and the Marine Directorate. Some of the MDA partners
also interact through the National Centre for Earth Obser-
vation (NCEO), with NCEO providing additional links to
the broader environmental (e.g. atmospheric and terrestrial)
community. The areas of expertise of each MDA institution
from Fig. 1 are listed in Table 1. Figure 2 provides a simpli-
fied flow diagram of collaboration for the main UK institutes
currently developing and running MDA software.

UK MDA supports a wide range of stakeholder applica-
tions across the public and private sectors. It contributes to
operational forecasts and reanalyses of key marine variables,
both globally and regionally with higher fidelity, as well as to
underlying scientific research. Key stakeholder applications
of UK MDA are split below into end-user and scientific ap-
plications.

2.1 End-user applications

Real-time forecasts, initialised using MDA, are produced
each day with various time ranges from a few hours to sea-
sons ahead. Reanalyses are also produced which give infor-
mation about the past state of the ocean. Ocean physics, sea
ice, biogeochemistry, surface waves, and weather data are all
made available routinely to both specific users and the wider
public. Existing and potential applications include the fol-
lowing:

– Marine environment monitoring and prediction. This is
of interest to national government departments (e.g. the
Department for Environment, Food & Rural Affairs)
and agencies (e.g. the Environment Agency), local

1Digital twins are understood here in a quite specific sense, as
systems interacting in a two-way manner (exchanging information
in both directions) with the twinned physical object, whilst operat-
ing as a real-time decision-making tool. The fully autonomous ob-
serving systems described here fulfil this operational definition of
digital twin.
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Table 1. The UK institutions with major past and present involvement in UK MDA and their areas of expertise. The orange ticks mark
past-only contributions to the specific area, whereas the dark ticks mark both past and ongoing present contributions to the area. The table
represents the situation as of 2025.

Figure 1. The UK institutions that have directly contributed to UK
MDA developments in recent history. The abbreviations are as fol-
lows: University of Plymouth (UoP), Plymouth Marine Laboratory
(PML), Met Office (MO), University of Exeter (UoE), University of
Reading (UoR), European Centre for Medium-Range Weather Fore-
casts (ECMWF), and National Oceanography Centre (NOC). The
PML and University of Reading research is also done and funded
as part of the NCEO. It should be emphasised that ECMWF is a
European institution rather than a UK one, but it is partly based in
the UK and has a significant impact on UK MDA.

councils, and industries (including aquaculture and fish-
eries). Uses include the assessment of risk and the
planning of responses to extreme events such as hy-
poxia, harmful algal blooms, and marine heatwaves.
Products providing information about water quality and
ocean health are also used, as are longer-term cli-
mate projections. Examples include spatial maps of
oxygen-deficient areas from Ciavatta et al. (2016),
which were included in an OSPAR assessment report

on good environmental status (https://oap.ospar.org/en/
ospar-assessments/quality-status-reports/, last access:
16 July 2025), and an analysis of trends in marine heat-
waves by Berthou et al. (2023).

– Marine safety and offshore industry (including energy
and net zero) applications. Applications in this field in-
clude beach safety; safe and efficient ship navigation;
and the design and operation of offshore oil, gas, and re-
newables, including providing ambient water character-
istics for management of import/export capacity for UK
energy sources using underwater cables and pipelines.
Examples include work by Stephens et al. (2018) and
Copernicus products, such as https://marine.copernicus.
eu/services/use-cases/safe-transport-gas-north-sea (last
access: 16 July 2025).

– Coastal flooding forecasts. Application in this field
can help prevent loss of life and infrastructure/property
damage.

– Near-real time products for national defence applica-
tions. These products are derived from variables includ-
ing temperature, salinity, currents, and visibility.

– Marine accident response. Applications in this field in-
clude search-and-rescue applications and marine pol-
lution incident response. Examples include pollution-
tracking systems run by Cefas using ocean currents
from regional analyses and forecasts (https://www.
cefas.co.uk/science/emergency-response/, last access:
16 July 2025).

– Climate change projections contributing to the Inter-
governmental Panel on Climate Change (IPCC) re-
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Figure 2. A simplified diagram showing the main lines of collaboration between the largest UK institutes currently involved in developing and
running MDA software. The blue lines indicate the collaborative workflow, with the University of Reading providing the theoretical underpin-
nings for many developments across all MDA areas, which are split into two groups: (i) physical, coupled air–sea and sea–ice MDA developed
in collaborative efforts involving the Met Office and ECMWF and (ii) biogeochemistry and coupled physics–biogeochemistry MDA devel-
oped largely in a collaboration involving the Met Office and PML. There is also a wider international input into the physics DA collaboration
from the NEMOVAR consortium involving the Centre Européen de Recherche et de Formation Avancée en Calcul Scientifique (CERFACS)
and Institut national de recherche en sciences et technologies du numérique (INRIA). CMEMS denotes the Copernicus Marine Environmen-
tal Monitoring Service. The Met Office logo is “© Crown Copyright 2025, Met Office” and has been included with Met Office permission.
The Copernicus Marine Service logo has been taken from Copernicus Marine Service Information (2025, https://marine.copernicus.eu, last
access: 16 July 2025) and has the following copyright: “© Mercator Ocean”. It has been obtained with permission from the copyright holder.
The other logos are copyright-protected by the University of Reading and Plymouth Marine Laboratory and permission has been grated to
use them in this figure.

ports. UK MDA already contributes to initialisation of
such projections, but it could, in the future, improve cli-
mate projections through better model parameter esti-
mates, as a traceable set of models is jointly used for
short-range forecasts, seasonal predictions, and climate
projections (e.g. Storkey et al., 2018).

– Coupled ocean–atmosphere weather forecasts at short-
range and seasonal timescales and at global and re-
gional scales. This includes forecasting events over the
UK and Europe, such as storms, tropical cyclones, mon-
soons, and El Niño events (Guiavarc’h et al., 2019).

– A range of very high-resolution coastal ocean opera-
tional systems. These systems include the West of Scot-
land Coastal Ocean Modelling System (WeStCOMS,
https://www.sams.ac.uk/facilities/thredds/, last access:
16 July 2025) and Western Channel Observatory Opera-
tional Forecast (WCOOF), which take boundary condi-
tions from ocean analysis and forecast products. These

can then feed into downstream systems such as HAB
Reports (Davidson et al., 2021).

2.2 Scientific applications

In addition the uses described in the previous section, there
are both existing and potential scientific uses for products
generated through MDA in the UK and for the UK MDA
systems themselves:

– Reanalysis products can be used to understand and mon-
itor key climate metrics, such as variability and trends in
the Atlantic Meridional Overturning Circulation; sea ice
extent and volume; and ocean heat, salt, and carbon con-
tent. This includes reanalyses of ocean health indicators,
such as pH to monitor ocean acidification, dissolved
oxygen to identify trends in hypoxia, and net primary
production to monitor biological productivity changes.
Examples are decadal analyses of fluxes and indicators,
including the phytoplankton community in UK regional
seas (Ciavatta et al., 2016, 2018; Clark et al., 2020) and
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ecoregions and carbon fluxes in the Mediterranean Sea
(Ciavatta et al., 2019).

– Reanalyses are used to initialise future projections by
the ocean and climate modelling community (including
the coastal modelling community) and as lateral bound-
ary conditions to drive smaller-scale regional models
(Ciavatta et al., 2016; MacLachlan et al., 2015; Tinker
and Hermanson, 2021; Polton et al., 2023). Data gener-
ated by those projections then benefit the whole scien-
tific community.

– Realism and full data coverage of reanalyses, as well
as improved parameters and process estimates gener-
ated by MDA, support the community studying ocean
processes (including scientific hypotheses testing) and
metrics. Examples include improved understanding of
the North Atlantic circulation in Jackson et al. (2019).
An interesting example inspiring future work is outlined
in a paper by Cole et al. (2012), who used a reanalysis
(produced by non-UK institutes) to identify the impact
of missing data on phenology metrics calculated from
ocean colour observations.

– Reanalyses are also being used in the context of ma-
chine learning (ML) model development, where they
have the advantage of providing gap-free, structured
training data (constrained by observations), instead of
the intermittent observational products. Examples in-
clude emulators predicting marine oxygen (Skakala et
al., 2023a) and an ML model predicting marine nitrate
(Banerjee and Skakala, 2024), both on the North-West
European Shelf (NWES).

– Products generated through MDA have the potential to
improve model parameters using joint parameter-state
estimation. This could feed into improved physical and
biogeochemical (BGC) short-range, seasonal, and cli-
mate projections as well as underlying research appli-
cations. Examples include using 1D frameworks for pa-
rameter estimation, such as the Marine Model Opti-
mization Testbed (Hemmings et al., 2015) and the En-
semble and Assimilation Tool (Bruggeman et al., 2024),
or estimating growth and mortality parameter variations
in simple BGC models (Roy et al., 2012).

– Reanalyses are a source of information on model perfor-
mance and biases, which has led to a series of reanalysis
intercomparison projects feeding into both model and
DA development (e.g. Balmaseda et al., 2015).

– MDA can also support sensitivity studies and help iden-
tify essential drivers behind specific processes. Exam-
ples include comparing the relative sensitivities of car-
bon flux estimates with respect to model configurations
and assimilated variables at the L4 station in the western
English Channel (Torres et al., 2020).

– The products generated using MDA are underpinned by
good observing systems. Making best use of the existing
and past observing systems is one of the main motiva-
tions for the development of MDA methodology. This
includes demonstrating the impact of existing obser-
vations through observing system experiments (OSEs),
sometimes referred to as data denial experiments (Eyre,
2021), in which different combinations of observation
types are assimilated to assess the impact of includ-
ing or withholding certain observation types on model
analyses and forecasts. Examples include OSEs applied
globally to a range of physical observational types (Lea
et al., 2014), including Argo (King et al., 2019), satel-
lite sea surface salinity (Martin et al., 2020), satellite
sea ice thickness (Mignac et al., 2022), different ocean
colour products (Ford and Barciela, 2017), and com-
bined physics and biogeochemistry observations (Ford,
2020).

– Observational array design can be influenced through
observing system simulation experiments (OSSEs, e.g.
Fujii et al., 2019). Examples include Mao et al. (2020),
who participated in multi-system global OSSEs (Gas-
parin et al., 2019) assessing possible changes to Argo
and moored buoy arrays; Ford (2021), who assessed the
impact of assimilating different distributions of BGC-
Argo floats; King and Martin (2021), who ran regional
OSSEs to assess the assimilation of wide-swath altime-
try observations from the Surface Water and Ocean To-
pography (SWOT) mission; and Waters et al. (2024a, b),
who assessed globally the potential of future satellite
observations for total surface current velocities. Some
recommendations can be based on alternative method-
ologies using MDA; one of them using information
cross-entropy was recently presented in Skakala et al.
(2024).

– MDA can be used for a range of other observational
applications, such as to improve satellite retrieval al-
gorithms, especially in optically complex waters; nav-
igate fully autonomous platforms into regions of obser-
vational interest (a digital twin reducing cost and car-
bon footprint); contribute to the detection of problems
with observing systems in real time using automatic sta-
tistical quality control techniques; and investigate con-
sistency between different observational products. Ex-
amples include navigating gliders to track the onset of
phytoplankton blooms in Ford et al. (2022), Mansfield
et al. (2025), and Partridge et al. (2025) and exploring
the consistency of different satellite data types in Ford
(2020).

– Reanalysis data can be used for interpreting drivers of
change seen in biodiversity datasets, such as from the
Continuous Plankton Recorder (e.g. see the work of
Holland et al., 2024). Looking more into the future,
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reanalyses also have the potential to assist with inter-
preting newer, rapidly growing datasets, including those
based on environmental DNA (eDNA).

3 The areas of UK MDA

In this section, we review the history and the current state
within different UK MDA areas. We highlight both the work
done at different UK institutes and the collaborative efforts
across the institutes, as well as internationally. As shown by
the diagram in Fig. 2, many of the key theoretical develop-
ments underpinning UK MDA are concentrated at DARC,
based at the University of Reading, and are then advanced
into MDA applications in collaboration with partners such as
the Met Office, ECMWF, and PML. It should be noted that
a similar transfer of theory developed at DARC is happen-
ing in wider UK environmental science, where fundamental
DA theoretical developments are an underpinning theme to
the research activities of NCEO, which seeks to advance the
use of satellite data for understanding the carbon, water, and
energy cycles.

There are many examples of theoretical results that have
been transferred to MDA applications, with most of them
based on the joint work of DARC with other UK partners.
Examples include the following:

– developments in forecast and observation error covari-
ance estimation used within marine biogeochemistry
DA (Fowler et al., 2023);

– ongoing work on coupling systems, e.g. on improved es-
timation and treatment of in-domain and cross-domain
covariances in the coupled air–sea DA system run at the
Met Office (e.g. Leung et al., 2022; Wright et al., 2024);

– non-linear DA algorithms (e.g. the development of
parametric-free methods; Hu and van Leeuwen, 2021),
which have been applied in marine biogeochemistry
through a joint PhD studentship with PML;

– the development of simplified methods for smoothers
applied to Met Office reanalysis (Dong et al., 2021,
2023);

– bias correction of model and observations, e.g. through
the development of the variational bias-correction
(VarBC) theory and techniques applied at the Met Of-
fice (Francis et al., 2023; While and Martin, 2019);

– development of an ML-based balancing scheme in ma-
rine biogeochemistry through a joint DARC–PML stu-
dentship (Higgs et al., 2025);

– a new technique for dealing with different timescales in
coupled systems, developed at the University of Read-
ing and being tested at the Met Office;

– developments in the Parallel Data Assimilation Frame-
work (PDAF; Nerger and Hiller, 2013) at the University
of Reading that are applied with PML to assimilate car-
bon from space into a global marine biogeochemistry
model;

– a nested method of DA, developed and applied at
the University of Plymouth (Shapiro and Gonzalez-
Ondina, 2022; Shapiro and Salim, 2023), that employs
an intermediate-resolution model assimilating tempera-
ture, salinity, and velocity in 3D, which then constrain a
separate fine-resolution model by assimilating the bal-
anced physical data provided by the coarser model out-
puts.

There are also a number of other recent UK-based theo-
retical developments that have the potential to be transferred
to UK MDA applications in the near future. These include
reconditioning and preconditioning to improve convergence
(e.g. Tabeart et al., 2020; Daužickaitė et al., 2021), metrics
of observation impact (e.g. Fowler et al., 2020), theoretical
work led by Imperial College London on neural assimilation
(Arcucci et al., 2020), important theoretical research on com-
bining ML with DA with contribution from the University of
Reading (Bocquet et al., 2019; Brajard et al., 2020, 2021),
and work done at ECMWF on model bias correction in the
context of the 4DVar (Bonavita and Laloyaux, 2020; Farchi
et al., 2021).

In the following sections, we will focus on how differ-
ent developments are influencing the state of the art across
a range of topical MDA areas.

3.1 Physical ocean and sea ice data assimilation

Physical MDA in the UK started with the development of
different systems at the Met Office and ECMWF, with the
tools later converging, enabling closer collaboration between
the two operational centres. The first MDA system developed
at the Met Office was the Forecasting Ocean Assimilation
Model (FOAM) system produced in 1997 (Bell et al., 2000).
This used an assimilation scheme based on analysis correc-
tion (Lorenc et al., 1991; Martin et al., 2007). Simultane-
ously, the “System 1” for ocean analysis (Alves et al., 2004)
was developed at ECMWF, providing initial conditions only
for the seasonal forecasting system (Stockdale et al., 1998).
It was developed around the Hamburg Ocean Primitive Equa-
tion (HOPE) model (Wolff et al., 1997) and employed an op-
timal interpolation (OI) scheme for assimilation of observa-
tions. The ECMWF system grew over subsequent years into
a full 3D assimilation scheme, assimilating a range of data
(temperature, salinity, and altimetry) with applications also
including monthly forecasts (Balmaseda, 2005; Balmaseda
et al., 2008, 2009).

Convergence of the MDA used at the two operational cen-
tres, the Met Office and ECMWF, began when the Met Office
adopted the Nucleus for European Modelling of the Ocean
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(NEMO) model around 2007 (Storkey et al., 2010) and the
NEMOVAR data assimilation system (e.g. Mogensen et al.,
2009) after 2011 (Waters et al., 2015), whilst the same sys-
tems were also adopted by ECMWF as part of their new
NEMO-based ocean reanalysis system (ORAS4; Balmaseda
et al., 2013) that replaced HOPE. This was further upgraded
at ECMWF (in 2016) to the currently used OCEAN5 reanal-
ysis system, which is still based on NEMO and NEMOVAR
(Zuo et al., 2015, 2017, 2019). The use of these community
systems for the ocean model and data assimilation has fa-
cilitated significant collaboration among UK and European
partners over this period.

Presently, in the UK, physical ocean and sea ice data
assimilation is primarily developed at the Met Office,
ECMWF, and the University of Reading, with the underpin-
ning NEMOVAR assimilation code being developed jointly
by an international consortium comprising the Met Of-
fice, ECMWF, CERFACS, and INRIA. The developments
in NEMOVAR-based physics DA are also used by other
UK institutes, such as the University of Plymouth (Shapiro
et al., 2022, 2023). NEMOVAR ocean physics assimilation
is employed at the Met Office and ECMWF as a multi-
variate incremental 3DVar-FGAT (first guess at appropriate
time) scheme. It uses physical-balance relationships to trans-
fer information between physical ocean variables (Weaver
et al., 2005) and employs an implicit diffusion operator to
efficiently model the spatial background error correlations
(Weaver et al., 2016). It includes bias-correction schemes for
sea surface temperature (SST; While and Martin, 2019), tem-
perature and salinity profiles (Balmaseda et al., 2007, 2013),
and sea level anomaly (SLA) data (Lea et al., 2008). There
were recently major new developments to NEMOVAR func-
tionality through the implementation of the capability to use
hybrid ensemble/variational algorithms (Weaver et al., 2018),
including efficient methods for ensemble localisation. This
functionality has been developed to increase the flow depen-
dence within background error covariances to improve the
quality of physics reanalyses and forecasts. It was applied in
the Met Office global marine physics DA system where an
ensemble forecasting capability was developed, and the im-
pact of using the ensemble information in the background
error covariances in a hybrid-3DEnVar scheme was tested
(Lea et al., 2022). Similar hybrid methods are becoming part
of the upcoming ECMWF ORAS6 reanalysis system (Zuo
et al., 2024; see Fig. 3). Finally, early versions of hybrid
physics DA have now been developed for applications within
the North-West European Shelf (NWES) forecasting system
(Skakala et al., 2024).

Operational short-range NEMOVAR-based forecasting
systems are run at the Met Office and ECMWF for the global
ocean and sea ice. Furthermore, the Met Office also runs
regional short-range forecasts for the NWES, using high-
resolution (1.5 km) coupled ocean–wave models. Global re-
analyses have also been produced by the Met Office and
ECMWF and regional reanalyses have been produced by the

Figure 3. Change in temperature root-mean-square error (RMSE)
values between two experiments. The reference experiment uses a
parameterised background covariance matrix model, whereas the
second experiment uses an ensemble-based hybrid background co-
variance matrix model. The temperature RMSE is computed using
model short-range forecasts against all in situ observations in the
upper 200 m (left) and in the 200–1000 m range (right), for the year
2017. Negative values show improvement when using an ensemble-
based hybrid background covariance model.

Met Office for many years, e.g. in support of seasonal fore-
casting. The systems assimilate SST data from both in situ
and satellite platforms, SLA data from satellite altimeters,
sea ice concentration (SIC) data from satellites, and in situ
profiles of temperature and salinity from various platforms.
A detailed overview of observations available to those sys-
tems as well as our current capacity to assimilate them is
given in Table 2.

Upcoming developments to NEMOVAR include a more
efficient and up-to-date implementation of 4DVar capability
(by INRIA). The 4DVar system is computationally expen-
sive in the large model configurations used operationally and
would have a significant maintenance overhead. However, it
could provide significant performance improvements, mak-
ing better use of observations, providing improved tempo-
ral consistency of outputs, and reducing shock in the initial-
isation of forecasts, all of which are important aspects for
most stakeholders. There is also work being undertaken in
the NEMOVAR consortium aimed at developing the capa-
bility to represent spatial correlations in the observation er-
rors (Guillet et al., 2019), thereby allowing more informa-
tion to be extracted from high-resolution satellite data, such
as from SWOT. A studentship at the University of Reading
(with funding from the Met Office) has investigated the con-
trol variables used to represent the horizontal velocities in
ocean data assimilation; this should improve analyses of ve-
locity, which is an important variable for many stakeholders.

3.2 Biogeochemical (BGC) data assimilation

BGC DA research in the UK has mainly focused on state esti-
mation, with some additional work on parameter estimation.
Most past research on the latter took place at NOC prior to
about 2013 (e.g. Fasham and Evans, 1995; Hemmings et al.,
2003, 2004), with support from NCEO funding. This culmi-
nated in the development of the Marine Model Optimization
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Table 2. The marine observational types available to physical and coupled sea–ice DA. For each type, we indicate if (1) data are operationally
assimilated, (2) there is existing DA capability in research mode, or (3) data are not assimilated at all. We also add comments on issues
associated with their assimilation.

Variable Satellite (surface) In situ (profiles) Issues/comments

Temperature Available for decades
(e.g. O’Carroll et al., 2019)
and operationally assimilated

Available from Argo floats, glid-
ers, moorings, ships (expendable
bathythermographs, XBTs, and
conductivity–temperature–depth
instruments, CTDs), instru-
mented marine mammals, and
other platforms (Roemmich et
al., 2019; Davidson et al., 2019),
operationally assimilated

Improvements in measurements of deep-
ocean temperatures (below 2000 m depth)
in western boundary currents and in
marginal seas are being explored, with the
major area of weakness for the UK com-
munity being the poor sampling of sub-
surface temperatures on the NWES and
adjacent ocean boundaries.

Salinity Available since 2010 (e.g. Vino-
gradova et al., 2019), assimilation
capability established in Martin
et al. (2019)

Available for many years from
Argo floats, moorings, gliders,
and ships (e.g. Davidson et al.,
2019), operationally assimilated

The quality of salinity in situ data can
sometimes be lower than that of temper-
ature (due to drifts that can be difficult to
detect in real time, fouling, and inherent
challenges). Satellite sea surface salinity
accuracy is lower than in situ measure-
ments (particularly at middle to high lati-
tudes).

Sea surface
height (SSH)

Available since 1993 (Le Traon
et al., 2018) and operationally as-
similated, capability to assimilate
Surface Water and Ocean Topog-
raphy (SWOT) data introduced in
King and Martin (2021)

Tide gauges available (Ponte et
al., 2019) but not assimilated

Recent sampling by altimeters has
allowed reasonable initialisation of
mesoscale structures in the deep ocean,
but it is not good enough to constrain
some of the higher-frequency processes
of interest to many stakeholders on the
NWES, e.g. surges and tides. SWOT
(Morrow et al., 2019) is expected to im-
prove the situation because it resolves the
SSH at high resolution within its swath,
but the long repeat cycle of 21 d means
that it is still not ideal for constraining all
of the desired scales.

Ocean currents
(velocity)

Currently not available From surface drifters drogued at
about 15 m depth (e.g. Röhrs et
al., 2023), high-frequency (HF)
radar measurements near some
coasts, acoustic Doppler cur-
rent profilers (ADCPs), and sub-
surface currents from Argo drifts;
not routinely assimilated but as-
similation is being currently as-
sessed

Sub-surface currents from Argo are inac-
curate, and their assimilation has not been
explored in the UK; ADCPs are sparse
and often not sustained, so their value for
assimilation into operational systems is
difficult to assess.

Sea ice
variables

Sea ice concentration widely
available for decades and op-
erationally assimilated; sea ice
freeboard and thickness data
available, their assimilation
established in research mode
(e.g. Fiedler et al., 2022; Mignac
et al., 2022; Williams et al.,
2023)

Very rare and not assimilated Very few in situ measurements are avail-
able for sea ice thickness, although they
are still useful for reanalysis and mod-
el/DA validation.
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Testbed, a state-of-the-art tool for parameter optimisation in
a multi-site 1D framework (Hemmings et al., 2015).

For state estimation, similarly to the physics DA, two main
strands of work have developed concurrently, starting to in-
tertwine and converge in more recent years. At PML, assim-
ilation was developed for the complex European Regional
Seas Ecosystem Model (ERSEM; Butenschön et al., 2016),
first in 1D (Allen et al., 2003; Torres et al., 2006), then for
the western English Channel (Ciavatta et al., 2011), and fi-
nally for the whole NWES (Ciavatta et al., 2016). This used
an implementation of the ensemble Kalman filter (EnKF),
with 100 ensemble members allowing multivariate updates,
and 3D studies assimilating different products from satellite
ocean colour (such as total and size class chlorophyll), and
diffuse attenuation coefficients (Ciavatta et al., 2011, 2014,
2016, 2018).

Assimilation for the simpler Hadley Centre Ocean Carbon
Cycle Model (Palmer and Totterdell, 2001) was developed
by the Met Office and NOC, applied to the global ocean. A
sophisticated “nitrogen-balancing scheme” was developed to
provide multivariate updates to non-observed variables in a
computationally efficient manner without ensembles (Hem-
mings et al., 2008). This was combined with an analysis-
correction scheme to allow the assimilation of chlorophyll
from ocean colour (Ford et al., 2012; Ford and Barciela,
2017), optionally used with a weakly coupled assimilation
of physics data. In addition, a scheme was developed for
the assimilation of in situ pCO2 data (While et al., 2012).
These schemes have since been applied with 3DVar using
the NEMOVAR assimilation framework in Ford, (2020) and
with the Model for ecosystem dynamics, nutrient Utilisa-
tion, Sequestration and Acidification (MEDUSA; Yool et al.,
2013) in Ford (2021). MEDUSA is the ocean BGC model
used in the UK Earth System Model which contributes to
the Coupled Model Intercomparison Project (Sellar et al.,
2019); therefore, the adoption of MEDUSA for reanalysis
studies allows for greater synchronicity with UK climate re-
search. Ford (2021) introduced the assimilation of multivari-
ate in situ profiles, as might be obtained from BGC-Argo
data, in an observing system simulation experiment using
synthetic profiles. The work has been extended in a collabo-
ration between the Met Office and the University of Exeter,
assimilating a wide range of biogeochemical observations
from various sources including satellites, ships, and BGC-
Argo floats to investigate their individual and combined abil-
ity to constrain the model’s biogeochemistry (an example of
this is shown in Fig. 4).

In more recent years, the different MDA institutes have
moved rapidly towards close collaboration in two different
ways:

i. The work at PML and the Met Office has rapidly
converged since 2016, when they started collaborat-
ing on the development of BGC assimilation for the
NWES using NEMOVAR and the 7 km resolution

Figure 4. Impact of multi-platform BGC DA on oxygen (all
in mmolm−3) at 200 m depth. (a) Oxygen concentration from
the GLODAP climatology. (b) Oxygen concentration in Decem-
ber 2011 in a forced ocean–biogeochemical run, using NEMO-
MEDUSA and forcing from ERA-Interim, without data assimila-
tion (called “NODA”). NODA is initialised in 1980 from clima-
tology (EN4 for temperature and salinity and GLODAP for bio-
geochemistry). Panels (c) and (d) show the difference in oxygen
concentration in December 2011 compared with NODA when as-
similating biogeochemical data in 2011 only. (c) An assimilation
experiment called “SHIP”, using in situ biogeochemical observa-
tions from GLODAPv2022 (oxygen, dissolved inorganic carbon,
alkalinity, pH, nitrate, silicate, and chlorophyll) and SOCATv2022
(fCO2). (d) An assimilation experiment called “FLOAT”, using ob-
servations from BGC-Argo floats (oxygen, pH, nitrate, and chloro-
phyll).

NEMO-FABM-ERSEM model. This was built on exist-
ing NEMOVAR-based physics assimilation and global
BGC assimilation work at the Met Office and was in-
formed by the previous NWES BGC assimilation expe-
rience of PML. As in physics, the assimilation scheme
is 3DVar, adding a basic balancing scheme for phyto-
plankton variables. The NWES operational forecasting
system currently assimilates, alongside physics data, to-
tal chlorophyll from ocean colour (Skakala et al., 2018;
McEwan et al., 2021). The NEMOVAR system has
also been used to provide a multi-decadal reanalysis
for the Copernicus Marine Service (Kay et al., 2016),
which included the assimilation of size class chloro-
phyll (Skakala et al., 2018). Further research activities
involving collaboration between PML, the Met Office,
and (in several instances) the University of Reading
include introducing the assimilation of novel satellite
and in situ observational types in shelf seas (Skakala
et al., 2020, 2021, 2022; Ford et al., 2022; for an
overview see Table 3), improvement of the background
error covariances for ocean colour DA using the di-
agnostic tools of Desroziers et al. (2005) (Fowler et

https://doi.org/10.5194/os-21-1709-2025 Ocean Sci., 21, 1709–1734, 2025



1718 J. Skákala et al.: MDA in the UK: the past, the present, and the vision for the future

al., 2022), and introducing fully flow dependent back-
ground error covariances in the form of a 3DEnVar
system (Skakala et al., 2024; see also Ciavatta et al.,
2025). There are several other ongoing developments
within established collaborations including increasing
the physics–biogeochemistry NWES model and the as-
similation resolution to 1.5 km, to match the operational
physics forecasting system (Tonani et al., 2019). This
high-resolution BGC DA set-up was recently used in a
digital-twin mission tracking harmful algal blooms in
the western English Channel (Mansfield et al., 2025,
Partridge et al., 2025; see also Fig. 5). Another stream
of work focuses on refining the ERSEM representa-
tion of optics by including the explicit representation of
coloured dissolved organic matter, sediment, and their
optical signatures. This latter work will also provide es-
timates of spectrally resolved reflectance for the NWES
as well as assimilating hyperspectral reflectance data
into the model, thereby further strengthening the link
between our modelling efforts and the remote-sensing
algorithms of the Earth Observation (EO) community.

ii. There is also a relatively new collaboration between the
University of Reading and PML implementing the Par-
allel Data Assimilation Framework (PDAF; Nerger and
Hiller, 2013) for the global NEMO-MEDUSA model,
mainly focusing on the assimilation of carbon-from-
space products. There is currently an effort to explore
synergies with the global marine BGC DA products
with the same NEMO-MEDUSA model at the Met Of-
fice and the University of Exeter.

3.3 Coupled data assimilation

DA is often used in the context of coupled dynamics between
different Earth system components, e.g. atmosphere and
ocean physics, ocean physics and ice, or ocean physics and
ocean biogeochemistry. The dynamical coupling between
those components raises the question of whether (i) separate
DA solvers should be used for each component, with the as-
similation increments from these separate DA systems being
used to initialise a forecast of the coupled model, which is
called “weakly” coupled DA, or (ii) the information about
the coupling (e.g. cross-covariances) between the different
components should be included into the DA system, which
we call “strongly” coupled DA. The current state-of-the-art
UK MDA systems are weakly coupled, but there is an overall
drive towards introducing strong coupling.

Weakly coupled air–sea systems are part of ECMWF (de
Rosnay et al., 2022) and Met Office (Lea et al., 2015;
Guiavarc’h et al., 2019) operational short-range weather
forecasts. The ocean part of the Met Office coupled numeri-
cal weather prediction (NWP) ensemble system is currently
being developed to include improved ensemble forecast gen-
eration methods and the use of hybrid 3DEnVar (Lea et al.,

2022, 2023). This will allow improved uncertainty propa-
gation from the ocean to the atmosphere through the fore-
cast, leading to improved forecast uncertainties in both the
ocean and atmosphere, and should also enable improvements
in the accuracy of the ocean physical variables. It should
be noted that a regional coupled ocean–atmosphere mod-
elling framework has also been developed as a UK collabora-
tive programme for regional environmental prediction (Lewis
et al., 2019), and the Met Office plans to move towards
operational regional coupled predictions. Advances towards
strongly coupled air–sea DA have been made at ECMWF in
reanalyses such as CERA and CERA-SAT (e.g. Schepers et
al., 2018), and much work has been done at the University
of Reading on strongly coupled DA algorithms in simpli-
fied coupled models (Smith et al., 2015, 2017, 2018, 2020;
Fowler and Lawless, 2016). Collaboration between the Uni-
versity of Reading and the Met Office has also developed
some understanding of the nature of atmosphere–ocean er-
ror covariances from the coupled ensemble (Wright et al.,
2024; see also Fig. 5). These different efforts will underpin
future collaborative pushes towards strongly coupled air–sea
DA systems.

As in coupled air–sea DA, the standard physical–
biogeochemical assimilation is weakly coupled. It also typ-
ically uses one-way coupling between physics and BGC
models (no impact of simulated BGC state on physics).
Combining physics DA and biogeochemistry is an open
research problem for the international MDA community
(e.g. Raghukumar et al., 2015; Park et al., 2018; Gasparin et
al., 2021). The inclusion of physics DA can degrade BGC
model fields, especially in equatorial regions (e.g. Park et
al., 2018; Gasparin et al., 2021), and can also have mod-
estly detrimental impacts on simulated phytoplankton in the
NWES model (Skakala et al., 2022). Assimilating BGC data
can compensate for this impact on the assimilated variables
(Skakala et al., 2022), but the current systems do not fix
the underlying issues, meaning that non-observed variables
can still be degraded and that biases can reappear during
the forecast period. The combined impact of physics and
BGC DA is also likely to be dependent on the assimilation
methodology (Nerger et al., 2024), e.g. how the alignment
of fronts and other features is considered (Anderson et al.,
2000; Yu et al., 2018) and how increments of different vari-
ables are projected onto different scales (Waters et al., 2017).
Improvements have been relatively recently explored in both
the global (e.g. Waters et al., 2017) and NWES system, where
(through collaboration involving PML and the Met Office)
a two-way physics–biogeochemistry coupling was included
into the model (Skakala et al., 2022; see Fig. 6). Despite the
early challenges (e.g. Bertino et al., 2022), strong coupling is
a natural future aspiration, as it has the potential to improve
simulations by maximising the use of information and help-
ing ensure physical–biogeochemical consistency (Anderson
et al., 2000; Yu et al., 2018; Goodliff et al., 2019; Izett et al.,
2023).
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Table 3. The marine observational types available to biogeochemistry DA. For each type, we indicate if (1) data are operationally assimilated,
(2) there is existing DA capability in research mode, or (3) data are not assimilated at all. We also add comments on issues associated with
their assimilation.

Variable Satellite (surface) In situ (profiles) Issues/comments

Chlorophyll a Chlorophyll-a data are widely
available and have been derived
from ocean colour since 1997
(e.g. Groom et al., 2019). Derived
products splitting chlorophyll a into
phytoplankton size classes have
been developed and are often tuned
for a specific region (e.g. Brewin
et al., 2017). Total and size class
chlorophyll-a data are operationally
assimilated for forecasting and
reanalysis respectively (Skakala et
al., 2018).

Total chlorophyll data are available
from buoys, gliders, BGC-Argo, and
ship measurements, and the capabil-
ity to assimilate them is established
in research mode (e.g. Skakala et al.,
2021; Ford et al., 2022).

Although the satellite data exist on
fine spatial and temporal scales, they
suffer from gaps due to cloudiness
and a low winter solar angle at
high latitudes. Their accuracy and
biases need to be better understood
and accounted for in DA. In situ
data are still quite sparse, but they
are increasing in number, particu-
larly with the spin-up of BGC-Argo
and the increasing use of gliders
(Johnson and Claustre, 2016; Tel-
szewski et al., 2018). Reconciling
differences between in situ fluores-
cence and satellite ocean colour re-
mains a challenge.

Oxygen Products using statistical/ML-based
inference to derive oxygen from
satellite observations of other vari-
ables exist (e.g. Sundararaman and
Shanmugam, 2024) but are not as-
similated.

Measurements from buoys, gliders,
BGC-Argo, and ships are widely
available. The capability to assim-
ilate them has been developed and
validated (Skakala et al., 2021).

Quality control of oxygen data re-
mains a challenge for operational
applications (e.g. Skakala et al.,
2021).

Nutrients Products exist that use statistical
modelling/ML to derive nutrients
from satellite observations of other
variables (e.g. Chen et al., 2023;
Banerjee and Skakala, 2024; Sun-
dararaman and Shanmugam, 2024).
Assimilation of such a product for
nitrate has been developed and
tested on the NWES (Banerjee and
Skakala, 2025).

In situ measurements of nitrate,
phosphate, ammonium, and silicate
are made by buoys, gliders, BGC-
Argo, and ships (not all nutrients
available from all platforms). Some
data are also derived from other
variables through ML algorithms
(Sauzède et al., 2017). The assim-
ilation of nutrients has been estab-
lished and tested in research mode
(Ford, 2021).

In situ nutrient observations are
sparse, especially in near-real time.
The reliability of ML/statistically
derived data needs to be better un-
derstood.

Carbonate
variables

There are products that derive car-
bonate variables from satellite ob-
servations of other variables (Land
et al., 2015; Shutler et al., 2024), but
these have not been assimilated.

There are rich datasets for partial
CO2 pressure (pCO2) or, alterna-
tively, CO2 fugacity (fCO2) ob-
tained from ships and moorings.
Furthermore, BGC-Argo can in-
clude measurements of pH, and di-
rect measurements for dissolved in-
organic carbon and total alkalinity
are available from ships. pCO2 as-
similation has been developed in re-
search mode (While et al., 2012),
and the assimilation of a wider range
of carbonate variables has been re-
cently established as well (e.g. Ford,
2021).

Carbonate data offer great potential
for assimilation that has not been
utilised to its full extent.

https://doi.org/10.5194/os-21-1709-2025 Ocean Sci., 21, 1709–1734, 2025



1720 J. Skákala et al.: MDA in the UK: the past, the present, and the vision for the future

Table 3. Continued.

Variable Satellite (surface) In situ (profiles) Issues/comments

Other biogeo-
chemical
variables

A relatively wide range of products are
derived from satellite ocean colour, in-
cluding those for phytoplankton car-
bon, net primary production, particu-
late organic carbon (POC, both detri-
tus and living), remote-sensing spec-
tral reflectance, spectral diffuse atten-
uation coefficients (Kd), spectral phy-
toplankton size class absorption, and
even some regional products for zoo-
plankton carbon or global ML-derived
products for dissolved organic carbon
(e.g. Groom et al., 2019; Kulk et al.,
2020; Brewin et al., 2019, 2021; Laine
et al., 2024; Kong et al., 2024). As-
similation of some of these products
has already been established, i.e. Kd
by Ciavatta et al. (2014), phytoplank-
ton size class absorption by Skakala et
al. (2020), and (more recently) satel-
lite phytoplankton carbon by Chen et
al. (2025).

BGC-Argo, buoys, ships, gliders,
and other in situ platforms can
provide a range of variables, such
as optical measurements, organic
carbon pools, and phytoplankton
and zooplankton biomass. Further-
more, other types of data are be-
coming available, e.g. from omics,
acoustics, and plankton imagery.
These data are presently not being
assimilated.

The quality and reliability of these
satellite-based products vary; how-
ever, in some cases, their assimila-
tion might be taken to complement
the more standard methods, such
as chlorophyll DA (e.g. assimila-
tion of optical variables could have
advantages over chlorophyll in tur-
bid waters). The temporal reso-
lution of some of the products
might represent some challenges
(e.g. phytoplankton carbon is pro-
duced with monthly resolution). In
situ data are sparse and sometimes
not easily matched to model state
variables. So far, the preferred op-
tion has been to use them for model
development, calibration, and vali-
dation.

4 Vision for the future

4.1 Science

Different MDA areas have different needs; thus, in this sec-
tion, we will contrast the differences and similarities in the
future vision for those areas. Marine physics is typically
more developed than marine biogeochemistry, uses better-
constrained models with fewer state variables (which of-
ten means lower model complexity), and has access to a
greater abundance of observations with generally lower un-
certainties and biases. Furthermore, marine biogeochemistry
is much more strongly driven by marine physics than the
other way round. Therefore, physics MDA developments are
much more required for biogeochemistry than vice versa.

In the following sections, we discuss the specific needs of
each science area, followed by a section on needs that are
common to all of them.

4.1.1 Physics MDA

Overall, the main future goal specific to the UK physics
MDA is in resolving finer-scale processes, both in space and
time. There are a number of major goals that we envision,
and these are outlined in the following:

We would like to build an efficient global ensemble
hybrid-3DEnVar DA system at a 1/12° spatial resolu-
tion (currently high-resolution forecasts are initialised using
lower-resolution DA). The global high-resolution ensemble
system would improve forecasts for a range of stakehold-

ers, including the navy; improve marine navigation; and pro-
vide better-coupled numerical weather prediction and sea-
sonal forecasting. Besides this common goal, there is also
a specific Met Office goal to develop a shelf sea ensemble
hybrid-3DEnVar DA system at a 1.5 km resolution.

The high-resolution systems will be supported by the fu-
ture capacity to assimilate new high-resolution observational
types, such as SWOT wide-swath altimeter data to improve
the initialisation of mesoscale structures, high-frequency
(HF) radar, Lagrangian drifter-derived velocities to improve
velocity initialisation, and improved assimilation of sea ice
thickness. A separate development supporting SWOT DA
(and beyond) is to implement into NEMOVAR the capacity
to deal with the observation error correlations, which could
enhance the impact of fine-resolution observations.

Furthermore, the quality of analyses of high-frequency
processes, such as storm surges, tides, and diurnal cy-
cles, which are of interest to stakeholders near the coast,
should be improved through the upcoming development of
a NEMOVAR 4DVar capability. Such a system has particular
use for the Met Office, where wave and storm surge forecasts
are generated without any DA. Both waves and surge mod-
els are highly influenced by the wind (waves and surge) and
atmospheric pressure (surge). Saulter et al. (2020) showed
that the assimilation of data into a regional wave model us-
ing NEMOVAR improved the forecasts over lead times of up
to 12 h, but errors in the surface forcing and wave model pa-
rameterisations dominated the forecast errors beyond a 1–2 d
lead time. Thus, we plan to develop the capability to assim-
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Figure 5. A schematic illustration of a digital-twin system navigating fully autonomous gliders to areas of observational interest. The figure
is reproduced from Ford et al. (2022), with a similar scheme also being applied in Mansfield et al. (2025). The digital-twin system is based
on information flowing in all directions: (i) glider observations are assimilated into the pre-operational forecasting model (i.e. the model is
updated by the glider); (ii) the operational model subsequently produces forecasts for a stochastic/ML model, with additional inputs into
the stochastic model provided by the glider directly; and (iii) the stochastic model then provides the system with a fully autonomous path-
planning capacity close to the glider’s spatial scale of operations, navigating the glider into the expected areas of observational interest
(i.e. the model tells glider “where to go”). This exchange of information then cycles throughout the glider mission.

ilate data within these forecasting systems to improve such
shorter-range forecasts and to improve the representation of
the ocean–atmosphere interface when waves become inte-
grated in the Met Office operational coupled forecasting sys-
tems.

The main framework where all of these physics MDA de-
velopments will be achieved will be NEMOVAR and should
be based on the established collaboration between the Uni-
versity of Reading, the Met Office, and ECMWF, including
additional international partners of the NEMOVAR consor-
tium. Most of these desired developments are underway or
are planned for the near future.

4.1.2 BGC MDA

Marine biogeochemistry models are less well constrained
than their physics counterparts, with high uncertainties in
both the model formulation and their many parameter val-
ues. The complexity and non-linearity of marine BGC mod-
els, combined with the lack of routine observations of most
state variables, place high requirements on the methods
used to update non-observed variables, be those balancing
schemes or multivariate ensemble techniques. Furthermore,
high model computational costs put substantial constraints

on the use of ensembles. Therefore, BGC MDA develop-
ments often lag behind physics developments, and there are
additional challenges associated with them.

An essential goal for BGC MDA is to develop more re-
liable multivariate techniques. It is planned to assess both
balancing and ensemble approaches, at first separately and
then in combination. These can be based on (1) the ensemble-
NEMOVAR (3DEnVar) developments from Lea et al. (2022)
and Skakala et al. (2024), (2) adapting and/or expanding ex-
isting balancing schemes (e.g. Hemmings et al., 2008), or (3)
using ML to learn relationships between observed and unob-
served variables (as explored in Higgs et al., 2025). However,
a number of hurdles leading to spurious cross-correlation
estimates need to be bypassed, e.g. through expanding the
range of perturbations used in the ensemble definition or ad-
dressing systematic model biases (negatively impacting DA
in general). The biases tend to be more significant in bio-
geochemistry than physics and tend to have their own sea-
sonal signature (e.g. Skakala et al., 2018, 2022; Fowler et al.,
2022). Such biases could be corrected, for example, using
ML, analogously to systems developed in the physical model
domains (e.g. Bonavita and Laloyaux, 2020; for discussion,
see also Banerjee and Skakala, 2024).
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Figure 6. Daily mean correlations of sea surface temperature and
10 m wind speed on 5 December 2019, with contour lines corre-
sponding to the daily ensemble-mean sea level atmospheric surface
pressure field. The figure is taken from Wright et al. (2024). In the
tropics, we see negative correlations associated with warm SSTs
and low wind speeds, which are linked to diurnal variations in so-
lar radiation, with correlations strengthening as the ocean surface
warms throughout the day. In contrast, the significant positive corre-
lations of SST with 10 m wind speed in the North Atlantic are linked
with strong SST gradients and tend to be associated with areas of
stronger winds, the location of which varies synoptically. These ar-
eas of larger ocean–atmosphere correlations in mid-latitudes were
shown to extend vertically into the ocean, throughout the mixed
layer (Wright et al., 2024).

Figure 7. Impact of two-way marine physics–biogeochemistry cou-
pling on the timing of the phytoplankton spring bloom simulated
by the NEMO-FABM-ERSEM model of the NWES. The one-way-
coupled model simulates late spring blooms, and the two-way cou-
pling partly corrects this by moving the bloom timing earlier to-
wards the start of the year. The figure is taken from Skakala et al.
(2022) and shows the number of days by which the bloom timing
shifts when two-way coupling is introduced into the model.

Marine BGC also suffers from a lack of high-quality ob-
servations for many essential variables (e.g. carbon pools,
nutrients, oxygen, and pH). The situation is changing with
new observational platforms like BGC-Argo and gliders,

which can already be assimilated and are starting to deliver
a greater variety of BGC variables than are currently used
operationally. It would be highly desirable to utilise such
multivariate information and systematically assimilate these
datasets. In situ BGC observations remain sparse though,
and appropriate assimilation methods should be explored to
maximise the information gained from these datasets, in-
cluding historical ones. Similarly, multi-platform assimila-
tion requires merging datasets across a wide range of spa-
tial and temporal scales (including varying depths), and there
is a lot of room to rethink and improve the algorithms that
presently do so. Further advances in observation availabil-
ity are expected through new hyperspectral satellite missions
(e.g. PACE; Gorman et al., 2019), and those data should be
harnessed for assimilation to a maximal possible degree. This
includes improving the observation operators, through fur-
ther refining the optical components of our models and bring-
ing the models closer to the water-leaving radiances seen by
the satellites. Assimilation of reflectance data can also com-
plement the traditional chlorophyll assimilation in optically
complex waters, where remote-sensing retrieval algorithms
are less reliable. Improvements in optical components in our
BGC models should also lead to these models/MDA becom-
ing regularly used to inform EO retrieval algorithm develop-
ments.

Finally, BGC models do not sufficiently resolve the vast
complexity of the real-world biogeochemistry, and they have
a highly limited scope to account for biodiversity (using,
at best, only a few “functional types” for plankton vari-
ables). These limitations could demonstrate themselves in
spatiotemporal model parameter variability (e.g. Friedrichs
et al., 2007), corresponding to the unresolved internal vari-
ability within the used functional types. The state estima-
tion in our BGC DA systems should ideally be supplemented
with estimation of BGC parameters, allowing for spatial and
temporal variations in the parameter values. Spatiotempo-
rally varying model parameter estimation may further im-
prove model forecasts and contribute to better climate pro-
jections as well (e.g. better constraining future net primary
production projections).

Much of this work is either already being developed, has
been funded, or is being currently incorporated in fund-
ing proposals. The stated goals will be pursued by the es-
tablished collaboration between the University of Reading,
PML, and the Met Office, and it will be based on (and
around) NEMOVAR software, with some extra potential to
further exploit PDAF (e.g. for parameter estimation) within
the dedicated University of Reading and PML collaboration.
There is also scope to more closely collaborate with the car-
bon and climate science communities, for instance, building
on existing collaborations with the University of Exeter.
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4.1.3 Coupled MDA

The future focus and major challenge of coupled DA is the
advance to strong coupling. A key step advancing all strongly
coupled systems is to explore the nature of error covariances
across the coupled systems, using ensembles and a decision
on how these should best be included in coupled DA al-
gorithms. Additional challenges include the development of
coupled observation operators to make use of data sensitive
to both parts of the coupled system and the potentially differ-
ent timescales associated with different parts of the system
(e.g. faster atmosphere dynamics vs. slower ocean dynam-
ics). Specifically, within coupled air–sea DA, a closer col-
laboration between the Met Office and ECMWF should be
facilitated via the use of more common tools in the atmo-
spheric domain (both centres use NEMOVAR in the ocean).
These may be enabled by the Met Office atmospheric DA
system moving to use the Joint Effort for Data Assimilation
Integration (JEDI; Lea and Martin, 2023, have demonstrated
the feasibility of ocean DA using NEMOVAR code in the
JEDI). One of the JEDI tools is the JEDI Object-Oriented
Prediction System (OOPS), an assimilation control layer that
is similar to OOPS used at ECMWF. Developments that im-
plement coupled DA at this level are likely to be a collab-
orative effort. The community should, in future, be open to
new methods to advance strongly coupled DA, such as those
based on path signatures (Lyons, 2014) and signature kernels
(Chevyrev and Oberhauser, 2022), which are designed to ex-
tract time-ordered moments from multivariate path data.

4.1.4 Topics common to the MDA areas

A common topic across the different areas is the need
to address better model forecast uncertainty, i.e. in flow-
dependent way. This need is also common to all of the fore-
casting systems, whether global or regional, and is mirrored
by the fact that all of the operational systems envisioned by
us involve the use of ensembles (e.g. 3DEnVar). The recently
developed ensemble techniques representing model uncer-
tainty (Lea et al., 2022, 2023; Skakala et al., 2024) should
be further improved upon in the future, e.g. in terms of en-
semble design. There are several options with respect to how
to address the computational challenges associated with en-
sembles, including reducing the modelling cost through ML
emulation (as discussed later in this section). The founda-
tion for addressing this topic are the ongoing collaborations
in this area involving the University of Reading, the Met Of-
fice, ECMWF, and PML.

Furthermore, common challenges to the current reanaly-
ses across different MDA areas are due to (1) the chang-
ing observing systems over the reanalysis period and (2)
the responses of the model to the DA, which sometimes in-
troduces spurious signals that can contaminate the reanal-
ysis products (e.g. spurious vertical velocities in the trop-
ical regions). A range of model bias-correction techniques

and data-smoothing methodologies should be developed to
improve the quality of ocean reanalyses, particularly in the
period before Argo data are available, building on previous
work by Zuo et al. (2019), Balmaseda et al. (2007), Bell et al.
(2004), and Waters et al. (2017). This should allow more tem-
porally consistent reanalyses to be produced, making them
more suitable for climate and marine scientists studying past
ocean changes. The current focus in this area is on ocean
physics reanalyses, but smoothers could be equally used in
marine BGC reanalyses. Furthermore, greater joint develop-
ment of physical–biogeochemical reanalyses would benefit
climate scientists studying the carbon cycle, such as those
involved in the Global Carbon Budget (Friedlingstein et al.,
2025). The proposed reanalysis research should build and
expand upon existing long-standing relationships, such as
those between the University of Reading, the Met Office, and
ECMWF.

There are many new opportunities presented by the rapid
development of ML/AI in DA and beyond (for a review
of ML–DA methods, see Cheng et al., 2023). DA can be
thought of as a physically constrained ML framework (Abar-
banel et al., 2018; Bocquet et al., 2020; Geer, 2021). This,
as well as the wide range of potential ML applications (for
oceanography, see reviews by Lary et al., 2018; Sonnewald
et al., 2021), makes it very attractive to be aligned with DA.
Hence, ML, which has seen an explosion of research activ-
ities due to the rapid progress in high-performance comput-
ing (HPC) and the increase in data availability, will be an
increasingly present theme in research developments of DA.
Future ML–DA work should include developing ML emu-
lators that dynamically downscale coarser-resolution models
into higher resolution (for examples, see Barthélémy et al.,
2022), enabling us to emulate an ensemble of highly com-
plex models (including applications in marine BGC) at a
very high spatial resolution and relatively low computational
cost. Such emulators could then use DA to assimilate high-
resolution data, also exploring non-linear DA methods (this
can be achieved, for example, through the use of PDAF).
Other ML applications include emulating components of the
physical model or the tangent linear model to improve the
system’s efficiency, emulating a diffusion-based correlation
matrix model, the (already discussed) model bias correction
(Farchi et al., 2021), and learning (especially for biogeo-
chemistry) balance relationships (Higgs et al., 2025). Fur-
thermore, wherever costly ensemble DA systems are used,
ML techniques could be developed to replace them with an
emulator. Melinc and Zaplotnik (2023) developed 3DVar us-
ing a variational autoencoder (VAE), where the minimisation
is performed in a reduced-order latent space discovered by
VAE and the background-error covariance matrix is learned
from historical data. Approaches to emulate DA with ML
can be possibly pushed further, as shown by the promising
recent results by score-based data assimilation (Rozet and
Louppe, 2023) and de-noising diffusion model data assim-
ilation (Huang et al., 2024). We envision that all of the future
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MDA systems used by the UK institutes will be transformed
via coupling with ML/AI components along these outlined
examples. Work on this has already started, but it should
be accelerated through emerging funding opportunities and
done in close partnership with the UK (and international)
centres of excellence for ML/AI in geoscience and DA ap-
plications, such as the University of Exeter, Imperial College
London, and the Alan Turing Institute. It will also be highly
desirable to develop and improve ML/AI expertise within the
MDA community itself, something that is already being ad-
dressed through dedicated training and skills exchange.

Finally, a very timely topic is the use of MDA within digi-
tal twins. The digital-twin concept has taken off in the inter-
national community, for example, with the UN Decade Dig-
ital Twins of The Ocean (https://oceandecade.org/actions/
-digital-twins-of-the-ocean-ditto/, last access: 16 July 2025)
programme and the European Digital Twin of the Ocean
(https://www.mercator-ocean.eu/en/digital-twin-ocean/, last
access: 16 July 2025) infrastructure led by Mercator Ocean
International. The digital twin, as typically understood, is a
system that replicates the real environment in real time, al-
lowing information flow from the environment to the sys-
tem and back and enabling decision-making in real time
(e.g. Blair, 2021). A nice example of such systems are fully
autonomous observing systems (e.g. based on autonomous
underwater vehicles, AUVs, such as gliders) developed for
the purpose of tracking events and regions of observational
interest. There is a very strong UK collaboration around
the digital-twin technology involving PML, the Met Office,
NOC, and the University of Exeter, which has delivered ex-
amples of digital twins, based on one or multiple AUVs
tracking observational events of interest, including the inter-
calibration of different observations (Ford et al., 2022; Mans-
field et al., 2025; Partridge et al., 2025). MDA plays an in-
tegral role in such digital twins, as the AUVs are being nav-
igated into areas of observational interest (see Fig. 5) with
the help of operational forecasts produced from an analysis
state, in which the AUVs’ observations were assimilated into
the model (Ford et al., 2022; Mansfield et al., 2025). Such
digital-twin applications highlight the further need for a high
spatial model resolution (closer to AUV scales of operation),
mostly within the coastal environment, and this should in-
clude marine biogeochemistry (Partridge et al., 2025). The
biogeochemistry high-resolution models could cover large
areas, such as the whole NWES (as Mansfield et al., 2025),
or they could cover only smaller areas in the coastal zone.
In such a case, they could be made relocatable, e.g. follow-
ing techniques developed by Shapiro et al. (2022, 2023). One
of our priorities is that the marine digital-twin developments
accelerate in the future, serving the need of marine auton-
omy and net-zero science. However, a few issues will need
to be addressed in the future, including (i) the high compu-
tational cost of modelling associated with high spatial res-
olution and (ii) the digital twin being able to deliver target
variables of interest (e.g. concentrations of harmful phyto-

plankton species), rather than what AUVs can typically mea-
sure (e.g. fluorescence). We envision that ML/AI should help
address both of these issues, e.g. through providing cheap
emulators for parts of (or the whole) high-resolution model
and adding digital-twin components that could predict the
target variables of interest from the observed/modelled vari-
ables. Furthermore, more directly including socio-economic
data and modelling in the digital twin would be another de-
sirable development. The future work on digital twins should
be based on the established UK collaboration, but new part-
ners should be brought in and stronger links to international
digital-twin activities should be developed.

4.2 Infrastructure

The critical infrastructure for MDA includes the models, ob-
servations, MDA software, hardware, and people. Although
marine model developments are essential to improve opera-
tional forecasts, they rarely expand the MDA capacity com-
pared to, for example, new observation types. The few cases
where we see potential for model advancement to improve
MDA, such as refining our bio-optical models, have been
noted in the previous section. The following sub-sections will
focus only on the future vision for observations, MDA soft-
ware, hardware, and people.

4.2.1 Observations

A list of planned satellite missions for Earth Observation
is available from the World Meteorological Organization
(WMO) (https://space.oscar.wmo.int/satellites, last access:
16 July 2025). Of particular interest to the UK MDA com-
munity are missions that will improve observations of sea
ice thickness (CIMR, CRISTAL, and ROSE-L); begin mea-
suring surface ocean currents (Harmony and ODYSEA); in-
crease the sampling of small-scale SSH features through
wide-swath altimetry, following on from SWOT (Sentinel-
3 Next Generation Topography and COMPIRA); and pro-
vide continuity of existing measurements through the Sen-
tinel programme.

Improvements to the Argo in situ network are also under-
way with the design of OneArgo, with a focus on three el-
ements: improving the sampling by Argo in polar sea ice
zones and marginal seas, increasing the resolution of Argo
floats in the western boundary currents and equatorial re-
gions, and implementing more floats that measure biogeo-
chemical variables (BGC-Argo) and that measure the deep
ocean (Deep-Argo).

In terms of future need, the maintenance of the existing
observing systems is still paramount, but areas that require
urgent improvement to allow UK MDA systems to better
meet stakeholder needs include the following: (i) improving
the sampling of sub-surface temperature and salinity in the
NWES region; (ii) improving measurements of surface cur-
rents, both globally and around the coasts of the UK; (iii) im-
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proving in situ measurements of sea ice thickness to comple-
ment satellite data; (iv) increasing the number of observed
essential BGC and bio-optical variables, as well as increas-
ing the number of sub-surface observations, capturing bio-
logical features not seen from satellites, such as deep chloro-
phyll maxima; (v) improving the accuracy and sampling of in
situ measurements of the important BGC variables, alongside
reliable uncertainty estimates; (vi) substantially increasing
the number of coincident measurements of ocean and atmo-
sphere, which could help assess the estimates of cross-fluid
covariances for strongly coupled DA; and (vii) using ML to
develop more complete products derived from observations.
Addressing this long list of requirements, however, neces-
sitates new investment and approaches. One particular area
that we would like to highlight, particularly in the NWES
environment, is autonomous ocean gliders. Gliders are in-
creasingly being used to fill many of these requirements and
have been demonstrated to work effectively in shallow shelf
seas, filling a critical gap where Argo floats are largely inef-
fective. Gliders have the capability to provide sustained and
regional-scale (hundreds of kilometres) measurements that
cover almost the entire water column, from the surface to
within a few metres of the seabed. Like many other marine
science technologies, however, gliders have mostly been de-
ployed for short-term process studies, despite international
efforts to coordinate and provide sustained capability (Testor
et al., 2019). Gliders have, however, been shown to be cost
effective for long-term multivariable monitoring of physical
and biogeochemical states and change in UK seas (Loveday
et al., 2022). Building on such demonstrators, the Met Office
invested in sustained operational deployments of ocean glid-
ers in the North Sea from 2022, specifically targeted at im-
proving the monitoring of sub-surface temperature and salin-
ity on the NWES. The existence of such frameworks has
the potential to provide a platform for further expansion of
broad-scale, long-term monitoring of the NWES, helping to
link up the variety of ongoing monitoring efforts from part-
ner European states with autonomous mobile and adaptive
measurement platforms. A number of research infrastructure
initiatives have proposed frameworks around which to con-
struct such coordination, including the EU-funded JERICO-
RI and GROOM II programmes, but nothing yet exists to de-
liver funded, coordinated in situ monitoring of physical and
biogeochemical states of the NWES.

4.2.2 MDA software

Traditionally a range of software was used within the UK
MDA community, but the software use has now been largely
unified around NEMOVAR. This software unification should
be further continued by incorporating NEMOVAR modules
into JEDI to support (collaborative) coupled air–sea DA de-
velopments. The focus on NEMOVAR as a unifying tool
should be maintained, as this guarantees a simpler transfer of
methods to operational systems and makes better use of the

limited human resources available. However, we recognise
that there are some good reasons why fundamental research
and operational applications might have different require-
ments from a software tool. Fundamental research needs ease
of use and simplicity, while the operational applications need
computational efficiency, robustness, and highly tuned con-
figurations. This means that the full unification of DA soft-
ware in the future is not expected. We will encourage the
use of a single tool to allow for research transfer to oper-
ational systems and aim to move in this direction with the
use of JEDI/NEMOVAR, but we will keep the use of PDAF
going for various important research applications (e.g. pa-
rameter estimation). Other software that has still been in use
recently, such as PML EnKF (developed by Evensen, 2003,
and adapted later for ocean-colour-based DA), might become
less of a priority to maintain.

4.2.3 MDA hardware

UK MDA researchers have collective access to various HPC
facilities, including the NERC-funded ARCHER2 facility
and the Monsoon2 facility hosted at the Met Office. A Joint
Ocean Data Assimilation Programme (JODAP) was imple-
mented to make use of Monsoon2 HPC resources for vari-
ous projects associated with the NPOP MDA activity group
and associated PhD projects. This allows access to the Met
Office’s system for running research experiments for global
and shelf sea model configurations with both physics and
BGC models and DA included. It has been used for numer-
ous studies and has led to the transfer of improvements in the
DA applied to operational configurations.

Other facilities are also available for use at specific MDA
institutes, such as the PML-hosted CETO and GPU MAGEO
(which is also available more widely upon request) and clus-
ters at universities. At the Met Office, a new HPC is currently
being installed that will provide a large increase in comput-
ing resources for research and operational uses, and ECMWF
have very large HPC resources that can also be accessed for
special research projects.

Over the next 5 years or so, there will be increased ac-
cess to machines that make use of GPUs as well as the CPUs
currently utilised by our research and operational MDA sys-
tems. Significant effort has been put in by the Met Office
and others to allow the NEMO and NEMOVAR codes to be
ported to GPUs and run efficiently on such machines. The
approach has been to use the PSyclone software developed
by the Science and Technology Facilities Council to parse
the Fortran codes of NEMO and NEMOVAR in order to add
directives to the code which allow the most computationally
expensive regions to be run efficiently on GPUs. This sep-
aration of concerns means that the underlying Fortran code
does not need to be changed (although some efficiencies to
the codes have been identified through this process) and that
the use of the codes on different types of processors (CPU
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or mixed CPU/GPU) is separated from the scientific devel-
opment of the code to a large extent.

For the future, we recommend accelerating the capabil-
ity of our MDA codes to run on GPU machines as well as
improving the efficiency of the codes on large numbers of
CPUs. We need to make sure that we harness the increased
computing power in the future by optimally distributing it
into the increasing resolution of the models, their complex-
ity, sophistication of DA algorithms, and the quality of en-
sembles/uncertainty representation. Finally, we will main-
tain and improve the ability to run operational configurations
on research machines like Monsoon2 and its successors, so
that researchers and PhD students outside the Met Office can
run experiments with these realistic systems and improve the
transfer of developments into the operational systems.

4.2.4 People

The number of scientists working in MDA research and de-
velopment is somewhat limited, and we need to keep bring-
ing new scientists into the field as well as improving the
training available to MDA scientists. There is a good avail-
ability of training activities across the community. ECMWF
and DARC from the University of Reading run a coordinated
set of annual introductory DA training courses (occasionally
also offered under NCEO). There are also other courses on
related topics (e.g. ensemble forecasting methods and satel-
lite data assimilation) offered each year by ECMWF. Train-
ing is occasionally offered as part of project dissemination,
e.g. the EU Horizon project SEAMLESS developed a user-
friendly DA software EAT for 1D “toy” models (Brugge-
man et al., 2024), thereby providing the opportunity for non-
experts to develop practical DA skills. The University of
Reading has recently developed a free Massive Open Online
Course to introduce scientists to the basic ideas of DA and
reanalysis (https://discoverda.org, last access: 16 July 2025).
Within the UK MDA community, there is also a significant
amount of PhD student supervision, and often these students
are jointly supervised by different partners including PML,
the Met Office, and the University of Reading. These activ-
ities help to bring new scientists to the MDA field and im-
prove the collaboration between the different UK partners.

In the future, we envision developing and maintaining peo-
ple’s skills through (i) joint student supervision, including
improving the framework within which studentships are pro-
posed; (ii) establishing the opportunity for talented and mo-
tivated students to continue their career within the UK MDA
community after completing their PhD; (iii) developing sim-
ple toy models and software tools (including their documen-
tation) to enable the wider community to gain “hands-on”
experience with MDA; and (iv) upscaling the existing MDA
community in ML techniques and strengthening links with
environmental ML centres of excellence.

5 Summary

Over recent years, the UK MDA community has both sub-
stantially strengthened its collaboration and increasingly uni-
fied the diverse tools used at different institutes. It is, there-
fore, a natural point for the community to take stock of
its achievements and outline its common vision for the fu-
ture, which is the main purpose of this paper. In the vi-
sion, we contrast the needs of different MDA areas ranging
from physics to biogeochemistry to coupling multiple Earth
system components. We formulate the future observational
needs of MDA and a vision for the remaining infrastructure.
Despite specific needs depending on individual subject ar-
eas, a common picture of the future emerges. This includes
a rapid transition to ML/AI components playing a substan-
tial role across all of the MDA systems, enabling us to reach
high resolution, realism, and potentially even reduce the as-
sumptions in MDA at an affordable computational cost. This
should be further enhanced by exascale computing and use
of GPUs. The variety of MDA applications should also in-
crease, including underpinning the emerging concept of dig-
ital twins.
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