Articles | Volume 21, issue 4
https://doi.org/10.5194/os-21-1487-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-21-1487-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Extreme sensitivity of the northeastern Gulf of Lion (western Mediterranean) to subsurface heatwaves: physical processes and insights into effects on gorgonian populations in the summer of 2022
Claude Estournel
CORRESPONDING AUTHOR
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), Toulouse, France
Tristan Estaque
Septentrion Environnement, Marseille, France
Caroline Ulses
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), Toulouse, France
Quentin-Boris Barral
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), Toulouse, France
Patrick Marsaleix
Université de Toulouse, LEGOS (CNES/CNRS/IRD/UT3), Toulouse, France
Related authors
No articles found.
Marine Di Stefano, David Nerini, Itziar Alvarez, Giandomenico Ardizzone, Patrick Astruch, Gotzon Basterretxea, Aurélie Blanfuné, Denis Bonhomme, Antonio Calò, Ignacio Catalan, Carlo Cattano, Adrien Cheminée, Romain Crec'hriou, Amalia Cuadros, Antonio Di Franco, Carlos Diaz-Gil, Tristan Estaque, Robin Faillettaz, Fabiana C. Félix-Hackradt, José Antonio Garcia-Charton, Paolo Guidetti, Loïc Guilloux, Jean-Georges Harmelin, Mireille Harmelin-Vivien, Manuel Hidalgo, Hilmar Hinz, Jean-Olivier Irisson, Gabriele La Mesa, Laurence Le Diréach, Philippe Lenfant, Enrique Macpherson, Sanja Matić-Skoko, Manon Mercader, Marco Milazzo, Tiffany Monfort, Joan Moranta, Manuel Muntoni, Matteo Murenu, Lucie Nunez, M. Pilar Olivar, Jérémy Pastor, Ángel Pérez-Ruzafa, Serge Planes, Nuria Raventos, Justine Richaume, Elodie Rouanet, Erwan Roussel, Sandrine Ruitton, Ana Sabatés, Thierry Thibaut, Daniele Ventura, Laurent Vigliola, Dario Vrdoljak, and Vincent Rossi
Earth Syst. Sci. Data, 16, 3851–3871, https://doi.org/10.5194/essd-16-3851-2024, https://doi.org/10.5194/essd-16-3851-2024, 2024
Short summary
Short summary
We build a compilation of early-life dispersal traits for coastal fish species. The database contains over 110 000 entries collected from 1993 to 2021 in the western Mediterranean. All observations are harmonized to provide information on dates and locations of spawning and settlement, along with pelagic larval durations. When applicable, missing data are reconstructed from dynamic energy budget theory. Statistical analyses reveal sampling biases across taxa, space and time.
Marine Herrmann, Thai To Duy, and Patrick Marsaleix
Ocean Sci., 20, 1013–1033, https://doi.org/10.5194/os-20-1013-2024, https://doi.org/10.5194/os-20-1013-2024, 2024
Short summary
Short summary
In summer, deep, cold waters rise to the surface along and off the Vietnamese coast. This upwelling of water lifts nutrients, inducing biological activity that is important for fishery resources. Strong tides occur on the shelf off the Mekong Delta. By increasing the mixing of ocean waters and modifying currents, they are a major factor in the development of upwelling on the shelf, accounting for ~75 % of its average summer intensity.
Ngoc B. Trinh, Marine Herrmann, Caroline Ulses, Patrick Marsaleix, Thomas Duhaut, Thai To Duy, Claude Estournel, and R. Kipp Shearman
Geosci. Model Dev., 17, 1831–1867, https://doi.org/10.5194/gmd-17-1831-2024, https://doi.org/10.5194/gmd-17-1831-2024, 2024
Short summary
Short summary
A high-resolution model was built to study the South China Sea (SCS) water, heat, and salt budgets. Model performance is demonstrated by comparison with observations and simulations. Important discards are observed if calculating offline, instead of online, lateral inflows and outflows of water, heat, and salt. The SCS mainly receives water from the Luzon Strait and releases it through the Mindoro, Taiwan, and Karimata straits. SCS surface interocean water exchanges are driven by monsoon winds.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Joelle Habib, Caroline Ulses, Claude Estournel, Milad Fakhri, Patrick Marsaleix, Mireille Pujo-Pay, Marine Fourrier, Laurent Coppola, Alexandre Mignot, Laurent Mortier, and Pascal Conan
Biogeosciences, 20, 3203–3228, https://doi.org/10.5194/bg-20-3203-2023, https://doi.org/10.5194/bg-20-3203-2023, 2023
Short summary
Short summary
The Rhodes Gyre, eastern Mediterranean Sea, is the main Levantine Intermediate Water formation site. In this study, we use a 3D physical–biogeochemical model to investigate the seasonal and interannual variability of organic carbon dynamics in the gyre. Our results show its autotrophic nature and its high interannual variability, with enhanced primary production, downward exports, and onward exports to the surrounding regions during years marked by intense heat losses and deep mixed layers.
Gaël Many, Caroline Ulses, Claude Estournel, and Patrick Marsaleix
Biogeosciences, 18, 5513–5538, https://doi.org/10.5194/bg-18-5513-2021, https://doi.org/10.5194/bg-18-5513-2021, 2021
Short summary
Short summary
The Gulf of Lion shelf is one of the most productive areas in the Mediterranean. A model is used to study the mechanisms that drive the particulate organic carbon (POC). The model reproduces the annual cycle of primary production well. The shelf appears as an autotrophic ecosystem with a high production and as a source of POC for the adjacent basin. The increase in temperature induced by climate change could impact the trophic status of the shelf.
Caroline Ulses, Claude Estournel, Marine Fourrier, Laurent Coppola, Fayçal Kessouri, Dominique Lefèvre, and Patrick Marsaleix
Biogeosciences, 18, 937–960, https://doi.org/10.5194/bg-18-937-2021, https://doi.org/10.5194/bg-18-937-2021, 2021
Short summary
Short summary
We analyse the seasonal cycle of O2 and estimate an annual O2 budget in the north-western Mediterranean deep-convection region, using a numerical model. We show that this region acts as a large sink of atmospheric O2 and as a major source of O2 for the western Mediterranean Sea. The decrease in the deep convection intensity predicted in recent projections may have important consequences on the overall uptake of O2 in the Mediterranean Sea and on the O2 exchanges with the Atlantic Ocean.
Related subject area
Approach: Numerical Models | Properties and processes: Coastal and near-shore processes
Coupling of numerical groundwater–ocean models to improve understanding of the coastal zone
Monsoonal influence on floating marine litter pathways in the Bay of Bengal
Coupling ocean currents and waves for seamless cross-scale modeling during Medicane Ianos
Flow patterns, hotspots, and connectivity of land-derived substances at the sea surface of Curaçao in the southern Caribbean
Wave-resolving Voronoi model of the Rouse number for sediment entrainment
River discharge impacts coastal southeastern tropical Atlantic sea surface temperature and circulation: a model-based analysis
The influence of a submarine canyon on the wind-driven downwelling circulation over the continental shelf
Alongshore sediment transport analysis for a semi-enclosed basin: a case study of the Gulf of Riga, the Baltic Sea
Anthropogenic pressures driving the salinity intrusion in the Guadalquivir estuary: insights from 1D numerical simulations
Application of wave–current coupled sediment transport models with variable grain properties for coastal morphodynamics: a case study of the Changhua River, Hainan
Dynamics of salt intrusion in complex estuarine networks: an idealised model applied to the Rhine–Meuse Delta
Ocean circulation, sea ice, and productivity simulated in Jones Sound, Canadian Arctic Archipelago, between 2003–2016
Influence of river runoff and precipitation on the seasonal and interannual variability of sea surface salinity in the eastern North Tropical Atlantic
A three-quantile bias correction with spatial transfer for the correction of simulated European river runoff to force ocean models
High-resolution numerical modelling of seasonal volume, freshwater, and heat transport along the Indian coast
Mechanisms and intraseasonal variability in the South Vietnam Upwelling, South China Sea: the role of circulation, tides, and rivers
Exploring water accumulation dynamics in the Pearl River estuary from a Lagrangian perspective
Exploring the tidal response to bathymetry evolution and present-day sea level rise in a channel–shoal environment
The anti-cyclonic gyre around the Qingdao cold water mass in the China marginal sea
Influence of stratification and wind forcing on the dynamics of Lagrangian residual velocity in a periodically stratified estuary
Fjord circulation permits a persistent subsurface water mass in a long, deep mid-latitude inlet
Salt intrusion dynamics in a well-mixed sub-estuary connected to a partially to well-mixed main estuary
Transport dynamics in a complex coastal archipelago
Modeling the interannual variability in Maipo and Rapel river plumes off central Chile
Short-term prediction of the significant wave height and average wave period based on the variational mode decomposition–temporal convolutional network–long short-term memory (VMD–TCN–LSTM) algorithm
Jiangyue Jin, Manuel Espino, Daniel Fernàndez-Garcia, and Albert Folch
Ocean Sci., 21, 1407–1424, https://doi.org/10.5194/os-21-1407-2025, https://doi.org/10.5194/os-21-1407-2025, 2025
Short summary
Short summary
Coastal zones are crucial ecological areas, yet our understanding of groundwater–ocean interactions remains limited. Ocean and groundwater models typically operate independently, with ocean models ignoring submarine groundwater discharge and groundwater models viewing the ocean as a static boundary. This separation impedes accurate simulations. By integrating these models, we can capture real-time water flow and salt movement while considering factors such as tides.
Lianne C. Harrison, Jennifer A. Graham, Piyali Chowdhury, Tiago A. M. Silva, Danja P. Hoehn, Alakes Samanta, Kunal Chakraborty, Sudheer Joseph, T. M. Balakrishnan Nair, and T. Srinivasa Kumar
Ocean Sci., 21, 1369–1393, https://doi.org/10.5194/os-21-1369-2025, https://doi.org/10.5194/os-21-1369-2025, 2025
Short summary
Short summary
Particle tracking models allow us to explore pathways of floating marine litter, source to sink, between countries. This study shows the influence of seasonality for dispersal in the Bay of Bengal and how ocean current forcing impacts model performance. Most litter beached on the country of origin, but there was a greater spread shown between countries during the post-monsoon period (Oct–Jan). Results will inform future model developments as well as management of marine litter in the region.
Salvatore Causio, Seimur Shirinov, Ivan Federico, Giovanni De Cillis, Emanuela Clementi, Lorenzo Mentaschi, and Giovanni Coppini
Ocean Sci., 21, 1105–1123, https://doi.org/10.5194/os-21-1105-2025, https://doi.org/10.5194/os-21-1105-2025, 2025
Short summary
Short summary
This study examines how waves and ocean currents interact during severe weather, focusing on Medicane Ianos, one of the strongest storms in the Mediterranean. Using advanced modeling, we created a unique system to simulate these interactions, capturing effects like wave-induced water levels and wave-induced effects on the vertical structure of the ocean. We validated our approach with ideal tests and real data from the storm.
Vesna Bertoncelj, Furu Mienis, Paolo Stocchi, and Erik van Sebille
Ocean Sci., 21, 945–964, https://doi.org/10.5194/os-21-945-2025, https://doi.org/10.5194/os-21-945-2025, 2025
Short summary
Short summary
This study explores ocean currents around Curaçao and how land-derived substances like pollutants and nutrients travel in the water. Most substances move northwest, following the main current, but at times, ocean eddies spread them in other directions. This movement may link polluted areas to pristine coral reefs, impacting marine ecosystems. Understanding these patterns helps inform conservation and pollution management around Curaçao.
Johannes Lawen
Ocean Sci., 21, 877–896, https://doi.org/10.5194/os-21-877-2025, https://doi.org/10.5194/os-21-877-2025, 2025
Short summary
Short summary
A new Voronoi-mesh-based coastal ocean model has been developed as an alternative to triangle-mesh-based models. The finite volume model has been generalized to run simulations on any mesh type, including triangle, Voronoi, Octree, structured, and mixed meshes. Wave-resolving simulations were conducted for coastal developments to resolve small scales in distributions of the Rouse number. The model has been validated using five tidal time series.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
Ocean Sci., 21, 661–678, https://doi.org/10.5194/os-21-661-2025, https://doi.org/10.5194/os-21-661-2025, 2025
Short summary
Short summary
The west African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo River mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Pedro A. Figueroa, Gonzalo S. Saldías, and Susan E. Allen
Ocean Sci., 21, 643–659, https://doi.org/10.5194/os-21-643-2025, https://doi.org/10.5194/os-21-643-2025, 2025
Short summary
Short summary
Submarine canyons are topographic features found along the continental slope worldwide. Here we use numerical simulations to study how a submarine canyon influences the circulation near the coast when winds moving poleward influence the region. Our results show that submarine canyons modify the circulation near the coast, causing strong velocities perpendicular to the coast. These changes can trap particles inside the canyon, an important mechanism to explain its role as a biological hotspot.
Tarmo Soomere, Mikołaj Zbigniew Jankowski, Maris Eelsalu, Kevin Ellis Parnell, and Maija Viška
Ocean Sci., 21, 619–641, https://doi.org/10.5194/os-21-619-2025, https://doi.org/10.5194/os-21-619-2025, 2025
Short summary
Short summary
Seemingly interconnected beaches are often separated by human-made obstacles and natural divergence areas of sediment flux. We decompose the sedimentary shores of the Gulf of Riga into five naturally almost isolated compartments based on the analysis of wave-driven sediment flux. The western, southern, and eastern shores have quite different and fragmented sediment transport regimes. The transport rates along different shore segments show extensive interannual variations but no explicit trends.
Sara Sirviente, Juan J. Gomiz-Pascual, Marina Bolado-Penagos, Sabine Sauvage, José M. Sánchez-Pérez, and Miguel Bruno
Ocean Sci., 21, 515–535, https://doi.org/10.5194/os-21-515-2025, https://doi.org/10.5194/os-21-515-2025, 2025
Short summary
Short summary
The present study utilizes a 1D hydrodynamic model to examine the impact of anthropogenic pressures on saline intrusion in the Guadalquivir estuary. Water extraction by human activities has led to elevated salinity levels throughout the estuary, thereby disrupting its natural state. A more profound understanding of these effects is essential for the protection of the estuarine ecosystems.
Yuxi Wu, Enjin Zhao, Xiwen Li, and Shiyou Zhang
Ocean Sci., 21, 473–495, https://doi.org/10.5194/os-21-473-2025, https://doi.org/10.5194/os-21-473-2025, 2025
Short summary
Short summary
A comprehensive sand transfer model is proposed to study sediment dynamics in the lower reaches of the Changhua River on the island of Hainan. It captures the complex relationship between wave action, ocean currents, and sediment transport. Validated on the basis of on-site measurements, the model reveals significant sediment deposits which are significantly affected by coastal ocean currents and geological structures.
Bouke Biemond, Wouter M. Kranenburg, Ymkje Huismans, Huib E. de Swart, and Henk A. Dijkstra
Ocean Sci., 21, 261–281, https://doi.org/10.5194/os-21-261-2025, https://doi.org/10.5194/os-21-261-2025, 2025
Short summary
Short summary
We study salinity in estuaries consisting of a network of channels. To this end, we develop a model that computes the flow and salinity in such systems. We use the model to quantify the mechanisms by which salt is transported into estuarine networks, the response to changes in river discharge, and the impact of depth changes. Results show that when changing the depth of channels, the effects on salt intrusion into other channels in the network can be larger than the effect on the channel itself.
Tyler Pelle, Paul G. Myers, Andrew Hamilton, Matthew Mazloff, Krista Soderlund, Lucas Beem, Donald D. Blankenship, Cyril Grima, Feras Habbal, Mark Skidmore, and Jamin S. Greenbaum
EGUsphere, https://doi.org/10.5194/egusphere-2024-3751, https://doi.org/10.5194/egusphere-2024-3751, 2024
Short summary
Short summary
Here, we develop and run a high resolution ocean model of Jones Sound from 2003–2016 and characterize circulation into, out of, and within the sound as well as associated sea ice and productivity cycles. Atmospheric and ocean warming drive sea ice decline, which enhance biological productivity due to the increased light availability. These results highlight the utility of high resolution models in simulating complex waterways and the need for sustained oceanographic measurements in the sound.
Clovis Thouvenin-Masson, Jacqueline Boutin, Vincent Échevin, Alban Lazar, and Jean-Luc Vergely
Ocean Sci., 20, 1547–1566, https://doi.org/10.5194/os-20-1547-2024, https://doi.org/10.5194/os-20-1547-2024, 2024
Short summary
Short summary
We focus on understanding the impact of river runoff and precipitation on sea surface salinity (SSS) in the eastern North Tropical Atlantic (e-NTA) region off northwestern Africa. By analyzing regional simulations and observational data, we find that river flows significantly influence SSS variability, particularly after the rainy season. Our findings underscore that a main source of uncertainty representing SSS variability in this region is from river runoff estimates.
Stefan Hagemann, Thao Thi Nguyen, and Ha Thi Minh Ho-Hagemann
Ocean Sci., 20, 1457–1478, https://doi.org/10.5194/os-20-1457-2024, https://doi.org/10.5194/os-20-1457-2024, 2024
Short summary
Short summary
We have developed a methodology for the bias correction of simulated river runoff to force ocean models in which low, medium, and high discharges are corrected once separated at the coast. We show that the bias correction generally leads to an improved representation of river runoff in Europe. The methodology is suitable for model regions with a sufficiently high coverage of discharge observations, and it can be applied to river runoff based on climate hindcasts or climate change simulations.
Kunal Madkaiker, Ambarukhana D. Rao, and Sudheer Joseph
Ocean Sci., 20, 1167–1185, https://doi.org/10.5194/os-20-1167-2024, https://doi.org/10.5194/os-20-1167-2024, 2024
Short summary
Short summary
Using a high-resolution model, we estimated the volume, freshwater, and heat transports along Indian coasts. Affected by coastal currents, transport along the eastern coast is highly seasonal, and the western coast is impacted by intraseasonal oscillations. Coastal currents and equatorial forcing determine the relation between NHT and net heat flux in dissipating heat in coastal waters. The north Indian Ocean functions as a heat source or sink based on seasonal flow of meridional heat transport.
Marine Herrmann, Thai To Duy, and Patrick Marsaleix
Ocean Sci., 20, 1013–1033, https://doi.org/10.5194/os-20-1013-2024, https://doi.org/10.5194/os-20-1013-2024, 2024
Short summary
Short summary
In summer, deep, cold waters rise to the surface along and off the Vietnamese coast. This upwelling of water lifts nutrients, inducing biological activity that is important for fishery resources. Strong tides occur on the shelf off the Mekong Delta. By increasing the mixing of ocean waters and modifying currents, they are a major factor in the development of upwelling on the shelf, accounting for ~75 % of its average summer intensity.
Mingyu Li, Alessandro Stocchino, Zhongya Cai, and Tingting Zu
Ocean Sci., 20, 931–944, https://doi.org/10.5194/os-20-931-2024, https://doi.org/10.5194/os-20-931-2024, 2024
Short summary
Short summary
In this study, we explored how water accumulates in a coastal estuary, a key factor affecting the estuary's environmental health and ecosystem. We revealed significant bottom accumulations influenced by plume fronts and velocity convergence, with notable seasonal variability. By analyzing trajectories, we identified subregions with distinct accumulation patterns and examined their interconnections, highlighting the substantial impact of tides and river discharge on these dynamics.
Robert Lepper, Leon Jänicke, Ingo Hache, Christian Jordan, and Frank Kösters
Ocean Sci., 20, 711–723, https://doi.org/10.5194/os-20-711-2024, https://doi.org/10.5194/os-20-711-2024, 2024
Short summary
Short summary
Most coastal environments are sheltered by tidal flats and salt marshes. These habitats are threatened from drowning under sea level rise. Contrary to expectation, recent analyses in the Wadden Sea showed that tidal flats can accrete faster than sea level rise. We found that this phenomenon was facilitated by the nonlinear link between tidal characteristics and coastal bathymetry evolution. This link caused local and regional tidal adaptation with sharp increase–decrease edges at the coast.
Lin Lin, Hans von Storch, and Yang Ding
EGUsphere, https://doi.org/10.5194/egusphere-2024-1332, https://doi.org/10.5194/egusphere-2024-1332, 2024
Short summary
Short summary
The Qingdao cold water mass significantly influences aquaculture in China since it is situated near the Chinese coastline. Based on 3-dimensional numerical simulation results, we find a clockwise current structure that exists around the Qingdao cold water mass; furthermore, we analyze the relationship between the clockwise current with the Qingdao cold water temperature and salinity.
Fangjing Deng, Feiyu Jia, Rui Shi, Shuwen Zhang, Qiang Lian, Xiaolong Zong, and Zhaoyun Chen
Ocean Sci., 20, 499–519, https://doi.org/10.5194/os-20-499-2024, https://doi.org/10.5194/os-20-499-2024, 2024
Short summary
Short summary
Southwesterly winds impact cross-estuary flows by amplifying the eddy viscosity component during smaller tides. Moreover, they modify along-estuary gravitational circulation by diminishing both the barotropic and baroclinic components. Stratification results in contrasting sheared flows, distinguished by different dominant components compared to destratified conditions. Additionally, the eddy viscosity component is governed by various subcomponents in diverse stratified waters.
Laura Bianucci, Jennifer M. Jackson, Susan E. Allen, Maxim V. Krassovski, Ian J. W. Giesbrecht, and Wendy C. Callendar
Ocean Sci., 20, 293–306, https://doi.org/10.5194/os-20-293-2024, https://doi.org/10.5194/os-20-293-2024, 2024
Short summary
Short summary
While the deeper waters in the coastal ocean show signs of climate-change-induced warming and deoxygenation, some fjords can keep cool and oxygenated waters in the subsurface. We use a model to investigate how these subsurface waters created during winter can linger all summer in Bute Inlet, Canada. We found two main mechanisms that make this fjord retentive: the typical slow subsurface circulation in such a deep, long fjord and the further speed reduction when the cold waters are present.
Zhongyuan Lin, Guang Zhang, Huazhi Zou, and Wenping Gong
Ocean Sci., 20, 181–199, https://doi.org/10.5194/os-20-181-2024, https://doi.org/10.5194/os-20-181-2024, 2024
Short summary
Short summary
From 2021 to 2022, a particular sub-estuary (East River estuary) suffered greatly from an enhanced salt intrusion. We conducted observation analysis, numerical simulations, and analytical solution to unravel the underlying mechanisms. This study is of help in the investigation of salt dynamics in sub-estuaries connected to main estuaries and of implications for mitigating salt intrusion problems in the regions.
Elina Miettunen, Laura Tuomi, Antti Westerlund, Hedi Kanarik, and Kai Myrberg
Ocean Sci., 20, 69–83, https://doi.org/10.5194/os-20-69-2024, https://doi.org/10.5194/os-20-69-2024, 2024
Short summary
Short summary
We studied circulation and transports in the Archipelago Sea (in the Baltic Sea) with a high-resolution hydrodynamic model. Transport dynamics show different variabilities in the north and south, so no single transect can represent transport through the whole area in all cases. The net transport in the surface layer is southward and follows the alignment of the deeper channels. In the lower layer, the net transport is southward in the northern part of the area and northward in the southern part.
Julio Salcedo-Castro, Antonio Olita, Freddy Saavedra, Gonzalo S. Saldías, Raúl C. Cruz-Gómez, and Cristian D. De la Torre Martínez
Ocean Sci., 19, 1687–1703, https://doi.org/10.5194/os-19-1687-2023, https://doi.org/10.5194/os-19-1687-2023, 2023
Short summary
Short summary
Considering the relevance and impact of river discharges on the coastal environment, it is necessary to understand the processes associated with river plume dynamics in different regions and at different scales. Modeling studies focused on the eastern Pacific coast under the influence of the Humboldt Current are scarce. Here, we conduct for the first time an interannual modeling study of two river plumes off central Chile and discuss their characteristics.
Qiyan Ji, Lei Han, Lifang Jiang, Yuting Zhang, Minghong Xie, and Yu Liu
Ocean Sci., 19, 1561–1578, https://doi.org/10.5194/os-19-1561-2023, https://doi.org/10.5194/os-19-1561-2023, 2023
Short summary
Short summary
Accurate wave forecasts are essential to marine engineering safety. The research designs a model with combined signal decomposition and multiple neural network algorithms to predict wave parameters. The hybrid wave prediction model has good robustness and generalization ability. The contribution of the various algorithms to the model prediction skill was analyzed by the ablation experiments. This work provides a neoteric view of marine element forecasting based on artificial intelligence.
Cited articles
Barrier, N., Petrenko, A. A., and Ourmières, Y.: Strong intrusions of the Northern Mediterranean Current on the eastern Gulf of Lion: insights from in-situ observations and high resolution numerical modelling, Ocean Dynam., 66, 313–327, https://doi.org/10.1007/s10236-016-0921-7, 2016.
Bensoussan, N., Romano, J. C., Harmelin, J. G., and Garrabou, J.: High resolution characterization of Northwest Mediterranean coastal waters thermal regimes: To better understand responses of benthic communities to climate change, Estuar. Coast. Shelf Sci., 87, 431–441, https://doi.org/10.1016/j.ecss.2010.01.008, 2010.
Bramanti, L., Manea, E., Giordano, B., Estaque, T., Bianchimani, O., Richaume, J., Mérigot, B., Schull, Q., Sartoretto, S., Garrabou, J. G., and Guizien, K.: The deep vault: a temporary refuge for temperate gorgonian forests facing marine heat waves, Mediterran. Mar. Sci., 24, 601–609, https://doi.org/10.12681/mms.35564, 2023.
Crisci, C., Bensoussan, N., Romano, J.-C., and Garrabou, J.: Temperature anomalies and mortality events in marine communities: Insights on factors behind differential mortality impacts in the NW Mediterranean. PLoS One, 6, e23814, https://doi.org/10.1371/journal.pone.0023814, 2011.
Damien, P., Bosse, A., Testor, P., Marsaleix, P., and Estournel, C.: Modeling post-convective submesoscale coherent vortices in the northwestern Mediterranean Sea, J. Geophys. Res.-Oceans, 122, 9937–9961, https://doi.org/10.1002/2016JC012114, 2017.
Darmaraki, S., Denaxa, D., Theodorou, I., Livanou, E., Rigatou, D., Raitsos E. D., Stavrakidis-Zachou, O., Dimarchopoulou D., Bonino, G., McAdam, R., Organelli, E., Pitsouni, A., and Parasyris, A.: Marine Heatwaves in the Mediterranean Sea: A Literature Review, Mediterran. Mar. Sci., 25, 586–620, https://doi.org/10.12681/mms.38392, 2024.
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K., Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C., Filali Boubrahmi, N., Font, J., Grubišić, V., Gualdi, S., Homar, V., Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K., Lionello, P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard, E., Romero, R., Rotunno, R., Roussot, O., Ruin, I., Somot, S., Taupier-Letage, I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX: A 10-Year Multidisciplinary Program on the Mediterranean Water Cycle, B. Am. Meteorol. Soc., 95, 1063–1082, https://doi.org/10.1175/BAMS-D-12-00242.1, 2014.
Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., Kalthoff, N., Richard, E., Taupier-Letage, I., Ayral, P., Belamari, S., Berne, A., Borga, M., Boudevillain, B., Bock, O., Boichard, J., Bouin, M., Bousquet, O., Bouvier, C., Chiggiato, J., Cimini, D., Corsmeier, U., Coppola, L., Cocquerez, P., Defer, E., Delanoë, J., Di Girolamo, P., Doerenbecher, A., Drobinski, P., Dufournet, Y., Fourrié, N., Gourley, J. J., Labatut, L., Lambert, D., Le Coz, J., Marzano, F. S., Molinié, G., Montani, A., Nord, G., Nuret, M., Ramage, K., Rison, W., Roussot, O., Said, F., Schwarzenboeck, A., Testor, P., Van Baelen, J., Vincendon, B., Aran, M., and Tamayo, J.: HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the Northwestern Mediterranean, B. Am. Meteorol. Soc., 95, 1083–1100, https://doi.org/10.1175/BAMS-D-12-00244.1, 2014.
Estaque, T., Richaume, J., Bianchimani, O., Schull, Q., Mérigot, B., Bensoussan, N., Sartoretto, S., Monfort, T., Basthard-Bogain, S., Fargetton, M., Gatti, G., Barth, L., Cheminée, A., and Garrabou, J.: Marine heatwaves on the rise: One of the strongest ever observed mass mortality event in temperate gorgonians, Global Change Biol., 29, 6159–6162, https://doi.org/10.1111/gcb.16931, 2023.
Estournel, C., Testor, P., Damien, P., D'Ortenzio, F., Marsaleix, P., Conan, P., Kessouri, F., Durrieu de Madron, X., Coppola, L., Lellouche, J. M., Belamari, S., Mortier, L., Ulses, C., Bouin, M. N., and Prieur, L.: High resolution modeling of dense water formation in the north-western Mediterranean during winter 2012–2013: Processes and budget, J. Geophys. Res.-Oceans, 121, 5367–5392, https://doi.org/10.1002/2016JC011935, 2016.
Estournel, C., Marsaleix, P., and Ulses, C.: A new assessment of the circulation of Atlantic and Intermediate Waters in the Eastern Mediterranean, Prog. Oceanogr., 198, 102673, https://doi.org/10.1016/j.pocean.2021.102673, 2021.
Faranda, D., Pascale, S., and Bulut, B.: Persistent anticyclonic conditions and climate change exacerbated the exceptional 2022 European-Mediterranean drought, Environ. Res. Lett., 18 034030, https://doi.org/10.1088/1748-9326/acbc37, 2023.
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis, Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, UK and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Garrabou, J., Ledoux, J. B., Bensoussan, N., Gómez-Gras, D., and Linares, C.: Sliding Toward the Collapse of Mediterranean Coastal Marine Rocky Ecosystems, in: Ecosystem Collapse and Climate Change. Ecological Studies, vol. 241, edited by: Canadell, J. G. and Jackson, R. B., Springer, Cham, https://doi.org/10.1007/978-3-030-71330-0_11, 2021.
Garrabou, J., Gómez-Gras, D., Medrano, A., Cerrano, C., Ponti, M., Schlegel, R., Bensoussan, N., Turicchia, E., Sini, M., Gerovasileiou, V., Teixido, N., Mirasole, A., Tamburello, L., Cebrian, E., Rilov, G., Ledoux, J.-B., Souissi, J. B., Khamassi, F., Ghanem, R., Benabdi, M., Grimes, S., Ocaña, O., Bazairi, H., Hereu, B., Linares, C., Kersting, D. K., la Rovira, G., Ortega, J., Casals, D., Pagès-Escolà, M., Margarit, N., Capdevila, P., Verdura, J., Ramos, A., Izquierdo, A., Barbera, C., Rubio-Portillo, E., Anton, I., López-Sendino, P., Díaz, D., Vázquez-Luis, M., Duarte, C., Marbà, N., Aspillaga, E., Espinosa, F., Grech, D., Guala, I., Azzurro, E., Farina, S., Gambi, M. C., Chimienti, G., Montefalcone, M., Azzola, A., Pulido Mantas, T., Fraschetti, S., Ceccherelli, G., Kipson, S., Bakran-Petricioli, T., Petricioli, D., Jimenez, C., Katsanevakis, S., Kizilkaya, I. T., Kizilkaya, Z., Sartoretto, S., Rouanet, E., Ruitton, S., Comeau, S., Gattuso, J.-P., and Harmelin, J.-G.: Marine heatwaves drive recurrent mass mortalities in the Mediterranean Sea, Global Change Biol., 28, 5708–5725, https://doi.org/10.1111/gcb.16301, 2022.
Gómez-Gras, D., Linares, C., López-Sanz, A., Amate, R., Ledoux, J. B., Bensoussan, N., Drap, P., Bianchimani, O., Marschal, C., Torrents, O., Zuberer, F., Cebrian, E., Teixidó, N., Zabala, M., Kipson, S., Kersting, D. K., Montero-Serra, I., Pagès-Escolà , M., Medrano, A., Frleta-Valić, M., Dimarchopoulou, D., López-Sendino, P., and Garrabou, J.: Population collapse of habitat-forming species in the Mediterranean: a long-term study of gorgonian populations affected by recurrent marine heatwaves, P. Roy. Soc. B., 288, 202112384, https://doi.org/10.1098/rspb.2021.2384, 2021.
Glynn, P. W. and D'Croz, L.: Experimental evidence for high temperature stress as the cause of El Niño coincident coral mortality, Coral Reefs, 8, 181–191, https://doi.org/10.1007/BF00265009, 1990.
Grenier, M., Idan, T., Chevaldonné, P., and Perez, T.: Mediterranean marine keystone species on the brink of extinction, Global Change Biol., 29, 1681–1683, https://doi.org/10.1111/gcb.16597, 2023.
Guinaldo, T., Voldoire, A., Waldman, R., Saux Picart, S., and Roquet, H.: Response of the sea surface temperature to heatwaves during the France 2022 meteorological summer, Ocean Sci., 19, 629–647, https://doi.org/10.5194/os-19-629-2023, 2023.
Hughes, T., Kerry, J., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C., Beger, M., Bellwood, D. R., Berkelmans, R., Bridge, T. C., Butler, I. R., Byrne, M., Cantin, N. E., Comeau, S., Connolly, S. R., Cumming, G. S., Dalton, S. J., Diaz-Pulido, G., Mark Eakin, C., Figueira, W. F., Gilmour, J. P., Harrison, H. P., Heron, S. F., Hoey, A. S., Hobbs, J.-P. A., Hoogenboom, M., O., Kennedy, E. V., Kuo, C., Lough, J. M., Lowe, R. J., Liu, G., McCulloch, M. T., Malcolm, H. A., McWilliam, M. J., Pandolfi, J. M., Pears, R. J., Pratchett, M. S., Schoepf, V., Simpson, T., Skirving, W. J., Sommer, B., Torda, G., Wachenfeld, D. R., Willis, B. L., and Wilson, S. K.: Global warming and recurrent mass bleaching of corals, Nature, 543, 373–377, https://doi.org/10.1038/nature21707, 2017.
Jacquemont, J., Loiseau, C., Tornabene, L., and Claudet, J.: 3D ocean assessments reveal that fisheries reach deep but marine protection remains shallow, Nat. Commun., 15, 4027, https://doi.org/10.1038/s41467-024-47975-1, 2024.
Juza, M., Fernández-Mora, À., and Tintoré, J.: Sub-Regional Marine Heat Waves in the Mediterranean Sea From Observations: Long-Term Surface Changes, Sub-Surface and Coastal Responses, Front. Mar. Sci., 9, 785771, https://doi.org/10.3389/fmars.2022.785771, 2022.
Lejeusne, C., Chevaldonné, P., Pergent-Martini, C., Boudouresque, C. F., and Pérez, T. : Climate change effects on a miniature ocean: the highly diverse, highly impacted Mediterranean Sea, Trends Ecol. Evol., 25, 250–260, https://doi.org/10.1016/j.tree.2009.10.009, 2010.
Marsaleix, P.: SYMPHONIE model Sources, Zenodo [code], https://doi.org/10.5281/zenodo.13774747, 2024.
Marsaleix, P., Auclair, F., and Estournel, C.: Considerations on Open Boundary Conditions for Regional and Coastal Ocean Models, J. Atmos. Ocean. Tech., 23, 1604–1613, https://doi.org/10.1175/JTECH1930.1, 2006.
Marsaleix, P., Auclair, F., Floor, J. W., Herrmann, M. J., Estournel, C., Pairaud, I., and Ulses, C.: Energy conservation issues in sigma-coordinate free-surface ocean models, Ocean Model., 20, 61–89, https://doi.org/10.1016/j.ocemod.2007.07.005, 2008.
Martinez, J., Leonelli, F. E., García-Ladona, E., Garrabou, J., Kersting, D. K., Bensoussan, N., and Pisano, A.: Evolution of marine heatwaves in warming seas: the Mediterranean Sea case study, Front. Mar. Sci., 10, 1193164, https://doi.org/10.3389/fmars.2023.1193164, 2023.
Marullo, S., Serva, F., Iacono, R., Napolitano, E., di Sarra, A., Meloni, D., Monteleone, F., Sferlazzo, D., De Silvestri, L., de Toma, V., Pisano, A., Bellacicco, M., Landolfi, A., Organelli, E., Yang, C., and Santoleri, R.: Record-breaking persistence of the 2022/23 marine heatwave in the Mediterranean Sea, Environ. Res. Lett., 18, 114041, https://doi.org/10.1088/1748-9326/ad02ae, 2023.
Mikolajczak, G., Ulses, C., Estournel, C., Bourrin, F., Pairaud, I., Martín, J., Puig, P., Durrieu de Madron, X., Leredde, Y., and Marsaleix, P.: Impact of storms on residence times and export of coastal waters during a mild fall/winter period in the Gulf of Lion, Cont. Shelf Res., 207, 104192, https://doi.org/10.1016/j.csr.2020.104192, 2020.
Millot, C.: The gulf of Lions' hydrodynamics, Cont. Shelf Res., 10, 885–894, 1990.
Obermann-Hellhund, A., Conte, D., Somot, S., Torma, C. Z., and Ahrens, B.: Mistral and Tramontane wind systems in climate simulations from 1950 to 2100, Clim. Dynam., 50, 693–703, https://doi.org/10.1007/s00382-017-3635-8, 2018.
Odic, R., Bensoussan, N., Pinazo, C., Taupier-Letage, I., and Rossi, V.: Sporadic wind-driven upwelling / downwelling and associated cooling/warming along Northwestern Mediterranean coastlines, Cont. Shelf Res., 250, 104843, https://doi.org/10.1016/j.csr.2022.104843, 2022.
Pairaud, I. L., Bensoussan, N., Garreau, P., Faure, V., and Garrabou, J.: Impacts of climate change on coastal benthic ecosystems: assessing the current risk of mortality outbreaks associated with thermal stress in NW Mediterranean coastal areas, Ocean Dynam., 64, 103–115, https://doi.org/10.1007/s10236-013-0661-x, 2014.
Pastor, F. and Khodayar Pardo, S.: Marine heat waves: Characterizing a major climate impact in the Mediterranean, Sci. Total Environ., 861, 160621, https://doi.org/10.1016/j.scitotenv.2022.160621, 2023.
Pastor, F., Valiente, J. A., and Khodayar, S.: A Warming Mediterranean: 38 Years of Increasing Sea Surface Temperature, Remote Sens., 12, 2687, https://doi.org/10.3390/rs12172687, 2020.
Ponti, M., Perlini, R. A., Ventra, V., Grech, D., Abbiati, M., and Cerrano, C.: Ecological Shifts in Mediterranean Coralligenous Assemblages Related to Gorgonian Forest Loss, PLoS ONE, 9, e102782, https://doi.org/10.1371/journal.pone.0102782, 2014.
Ross, O. N., Fraysse, M., Pinazo, C., and Pairaud, I.: Impact of an intrusion by the Northern Current on the biogeochemistry in the eastern Gulf of Lion, NW Mediterranean, Estuar. Coast. Shelf Sci., 170, 1–9, https://doi.org/10.1016/j.ecss.2015.12.022, 2016.
Sartoretto, S., Ledoux, J. B., Gueret, E., Guillemain, D., Ravel, C., Moirand, L., and Aurelle, D.: Ecological and genomic characterization of a remarkable natural heritage: a mesophotic `giant' Paramuricea clavata forest, Mar. Ecol. Prog. Ser., 728, 85–101, https://doi.org/10.3354/meps14427, 2023.
Schaeffer, A., Sen Gupta, A., and Roughan, M.: Seasonal stratification and complex local dynamics control the sub-surface structure of marine heatwaves in Eastern Australian coastal waters, Commun. Earth Environ., 4, 304, https://doi.org/10.1038/s43247-023-00966-4, 2023.
Simon, A., Plecha, S. M., Russo, A., Teles-Machado, A., Donat, M. G., Auger, P.-A., and Trigo, R. M.: Hot and cold marine extreme events in the Mediterranean over the period 1982–2021, Front. Mar. Sci., 9, 892201, https://doi.org/10.3389/fmars.2022.892201, 2022.
T-MedNet: Tracking climate change effects in the Mediterranean, https://t-mednet.org/ (last access: 16 July 2025), 2025.
Ulses, C., Estournel, C., Bonnin, J., Durrieu de Madron, X., and Marsaleix, P.: Impact of storms and dense water cascading on shelf-slope exchanges in the Gulf of Lion (NW Mediterranean), J. Geophys. Res., 113, C02010, https://doi.org/10.1029/2006JC003795, 2008.
Verdura, J., Linares, C., Ballesteros, E., Coma, R., Uriz, M. J., Bensoussan, N., and Cebrian, E.: Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species, Sci. Rep., 9, 5911, https://doi.org/10.1038/s41598-019-41929-0, 2019.
Short summary
During the summer of 2022 in the eastern Gulf of Lion (NW Mediterranean), exceptionally warm temperatures were observed down to depths of 30 m, along with massive mortality of benthic species. It has been shown that these deep marine heatwaves are linked to southeasterly wind episodes, which induce deep plunges of surface water overheated by the atmospheric heatwave. These events are rare in summer, but their impact on ecosystems is dramatic and will only increase with climate change.
During the summer of 2022 in the eastern Gulf of Lion (NW Mediterranean), exceptionally warm...