Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-1167-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-1167-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Dual-tracer constraints on the inverse Gaussian transit time distribution improve the estimation of water mass ages and their temporal trends in the tropical thermocline
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Wolfgang Koeve
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Andreas Oschlies
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Kiel University, Kiel, Germany
Yan-Chun He
Nansen Environmental and Remote Sensing Center, Bjerknes Centre for Climate Research, Bergen, Norway
Tronje Peer Kemena
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Lennart Gerke
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Iris Kriest
GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
Related authors
No articles found.
Jakob Simon Dörr, Carlo Jeffrey Mans, Marius Årthun, Kristofer Döös, Dafydd Gwyn Evans, and Yanchun He
EGUsphere, https://doi.org/10.5194/egusphere-2025-4345, https://doi.org/10.5194/egusphere-2025-4345, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
The Arctic Ocean plays a key role in the global ocean circulation by producing dense waters that feed the lower limb of the Atlantic meridional overturning circulation (AMOC). We use a high-resolution ocean simulation to investigate the pathways and mechanisms through which these dense waters are formed in the Arctic. Our results show that surface cooling in the Barents Sea dominates the dense water production, but that internal mixing plays a role at high densities.
Lennart Gerke, Toste Tanhua, William A. Nesbitt, Samuel W. Stevens, and Douglas W. R. Wallace
EGUsphere, https://doi.org/10.5194/egusphere-2025-3999, https://doi.org/10.5194/egusphere-2025-3999, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Transient tracer data, measured for the first time in 2022 in the Gulf of St. Lawrence, reveal older deep waters in the east than the west, contrary to expected estuarine circulation, indicating increased influence of older, warmer, less oxygenated North Atlantic Central Water over younger, oxygen-rich Labrador Current Water. While consistent with previous reports of increasing NACW contribution, our results contradict claims of a complete shift to NACW by 2021, showing that LCW still persists.
Lina Garcia-Suarez, Katja Fennel, Neha Mehendale, Tronje Peer Kemena, and David Peter Keller
EGUsphere, https://doi.org/10.22541/essoar.173758192.24328151/v2, https://doi.org/10.22541/essoar.173758192.24328151/v2, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study shows that regional ocean warming can make the Gulf Stream appear to shift north, even when its path remains stable in a changing climate. Temperature-based proxies, like the Gulf Stream North Wall, overestimate changes in its position. Methods based on sea surface height provide a more accurate view. These results help improve how we track changes in ocean currents and avoid misinterpreting signs of climate-related shifts.
William A. Nesbitt, Samuel W. Stevens, Alfonso O. Mucci, Lennart Gerke, Toste Tanhua, Gwénaëlle Chaillou, and Douglas W. R. Wallace
EGUsphere, https://doi.org/10.5194/egusphere-2025-2400, https://doi.org/10.5194/egusphere-2025-2400, 2025
Short summary
Short summary
We use 20 years of oxygen measurements and recent carbon data with a tracer-calibrated 1D model to quantify oxygen loss and inorganic carbon accumulation in the deep waters of the Gulf and St. Lawrence Estuary. We further utilize the model to give a first estimate of the impact of adding pure oxygen, a by-product from green hydrogen production to these deep waters. Results show this could restore oxygen to year-2000 levels, but full recovery would require a larger input.
Lise Seland Graff, Jerry Tjiputra, Ada Gjermundsen, Andreas Born, Jens Boldingh Debernard, Heiko Goelzer, Yan-Chun He, Petra Margaretha Langebroek, Aleksi Nummelin, Dirk Olivié, Øyvind Seland, Trude Storelvmo, Mats Bentsen, Chuncheng Guo, Andrea Rosendahl, Dandan Tao, Thomas Toniazzo, Camille Li, Stephen Outten, and Michael Schulz
EGUsphere, https://doi.org/10.5194/egusphere-2025-472, https://doi.org/10.5194/egusphere-2025-472, 2025
Short summary
Short summary
The magnitude of future Arctic amplification is highly uncertain. Using the Norwegian Earth system model, we explore the effect of improving the representation of clouds, ocean eddies, the Greenland ice sheet, sea ice, and ozone on the projected Arctic winter warming in a coordinated experiment set. These improvements all lead to enhanced projected Arctic warming, with the largest changes found in the sea-ice retreat regions and the largest uncertainty on the Atlantic side.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Short summary
N is a crucial nutrient that limits phytoplankton growth in large ocean areas. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification into an Earth system model with variable particulate stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation, and primary production. Benthic denitrification plays an important role in marine N and C cycling and hence the global climate.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
Jiajun Wu, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 14, 185–221, https://doi.org/10.5194/esd-14-185-2023, https://doi.org/10.5194/esd-14-185-2023, 2023
Short summary
Short summary
In this study we investigate an ocean-based carbon dioxide removal method: macroalgae open-ocean mariculture and sinking (MOS), which aims to cultivate seaweed in the open-ocean surface and to sink matured biomass quickly to the deep seafloor. Our results suggest that MOS has considerable potential as an ocean-based CDR method. However, MOS has inherent side effects on marine ecosystems and biogeochemistry, which will require careful evaluation beyond this first idealized modeling study.
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
Sophy Oliver, Coralia Cartis, Iris Kriest, Simon F. B Tett, and Samar Khatiwala
Geosci. Model Dev., 15, 3537–3554, https://doi.org/10.5194/gmd-15-3537-2022, https://doi.org/10.5194/gmd-15-3537-2022, 2022
Short summary
Short summary
Global ocean biogeochemical models are used within Earth system models which are used to predict future climate change. However, these are very computationally expensive to run and therefore are rarely routinely improved or calibrated to real oceanic observations. Here we apply a new, fast optimisation algorithm to one such model and show that it can calibrate the model much faster than previously managed, therefore encouraging further ocean biogeochemical model improvements.
Tianfei Xue, Ivy Frenger, A. E. Friederike Prowe, Yonss Saranga José, and Andreas Oschlies
Biogeosciences, 19, 455–475, https://doi.org/10.5194/bg-19-455-2022, https://doi.org/10.5194/bg-19-455-2022, 2022
Short summary
Short summary
The Peruvian system supports 10 % of the world's fishing yield. In the Peruvian system, wind and earth’s rotation bring cold, nutrient-rich water to the surface and allow phytoplankton to grow. But observations show that it grows worse at high upwelling. Using a model, we find that high upwelling happens when air mixes the water the most. Then phytoplankton is diluted and grows slowly due to low light and cool upwelled water. This study helps to estimate how it might change in a warming climate.
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
Short summary
We present a new model of biological marine silicate cycling for the University of Victoria Earth System Climate Model (UVic ESCM). This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. Our modifications change how the model responds to warming, with net primary production declining more strongly than in previous versions. Diatoms in particular are simulated to decline with climate warming due to their high nutrient requirements.
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 18, 5327–5350, https://doi.org/10.5194/bg-18-5327-2021, https://doi.org/10.5194/bg-18-5327-2021, 2021
Short summary
Short summary
Nitrogen is one of the most important elements for life in the ocean. A major source is the riverine discharge of dissolved nitrogen. While global models often omit rivers as a nutrient source, we included nitrogen from rivers in our Earth system model and found that additional nitrogen affected marine biology not only locally but also in regions far off the coast. Depending on regional conditions, primary production was enhanced or even decreased due to internal feedbacks in the nitrogen cycle.
Henrike Schmidt, Julia Getzlaff, Ulrike Löptien, and Andreas Oschlies
Ocean Sci., 17, 1303–1320, https://doi.org/10.5194/os-17-1303-2021, https://doi.org/10.5194/os-17-1303-2021, 2021
Short summary
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Jaard Hauschildt, Soeren Thomsen, Vincent Echevin, Andreas Oschlies, Yonss Saranga José, Gerd Krahmann, Laura A. Bristow, and Gaute Lavik
Biogeosciences, 18, 3605–3629, https://doi.org/10.5194/bg-18-3605-2021, https://doi.org/10.5194/bg-18-3605-2021, 2021
Short summary
Short summary
In this paper we quantify the subduction of upwelled nitrate due to physical processes on the order of several kilometers in the coastal upwelling off Peru and its effect on primary production. We also compare the prepresentation of these processes in a high-resolution simulation (~2.5 km) with a more coarsely resolved simulation (~12 km). To do this, we combine high-resolution shipboard observations of physical and biogeochemical parameters with a complex biogeochemical model configuration.
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
Øyvind Seland, Mats Bentsen, Dirk Olivié, Thomas Toniazzo, Ada Gjermundsen, Lise Seland Graff, Jens Boldingh Debernard, Alok Kumar Gupta, Yan-Chun He, Alf Kirkevåg, Jörg Schwinger, Jerry Tjiputra, Kjetil Schanke Aas, Ingo Bethke, Yuanchao Fan, Jan Griesfeller, Alf Grini, Chuncheng Guo, Mehmet Ilicak, Inger Helene Hafsahl Karset, Oskar Landgren, Johan Liakka, Kine Onsum Moseid, Aleksi Nummelin, Clemens Spensberger, Hui Tang, Zhongshi Zhang, Christoph Heinze, Trond Iversen, and Michael Schulz
Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, https://doi.org/10.5194/gmd-13-6165-2020, 2020
Short summary
Short summary
The second version of the coupled Norwegian Earth System Model (NorESM2) is presented and evaluated. The temperature and precipitation patterns has improved compared to NorESM1. The model reaches present-day warming levels to within 0.2 °C of observed temperature but with a delayed warming during the late 20th century. Under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5), the warming in the period of 2090–2099 compared to 1850–1879 reaches 1.3, 2.2, 3.1, and 3.9 K.
Markus Pahlow, Chia-Te Chien, Lionel A. Arteaga, and Andreas Oschlies
Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, https://doi.org/10.5194/gmd-13-4663-2020, 2020
Short summary
Short summary
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2 and hence the global climate. We replace a simplistic, fixed-stoichiometry plankton module in an Earth system model with an optimal-regulation model with variable stoichiometry. Our model compares better to the observed carbon transfer from the surface to depth and surface nutrient distributions. This work could aid our ability to describe and project the role of marine ecosystems in the Earth system.
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
Cited articles
Álvarez-Salgado, X. A., Álvarez, M., Brea, S., Mémery, L., and Messias, M.: Mineralization of biogenic materials in the water masses of the South Atlantic Ocean. II: Stoichiometric ratios and mineralization rates, Prog. Oceanogr., 123, 24–37, https://doi.org/10.1016/j.pocean.2013.12.009, 2014. a
Banks, H. T. and Gregory, J. M.: Mechanisms of ocean heat uptake in a coupled climate model and the implications for tracer based predictions of ocean heat uptake, Geophys. Res. Lett., 33, L07608, https://doi.org/10.1029/2005GL025352, 2006. a
Behrens, E., Biastoch, A., and Boening, C. W.: Spurious AMOC trends in global ocean sea-ice models related to subarctic freshwater forcing, Ocean Model., 69, 39–49, https://doi.org/10.1016/j.ocemod.2013.05.004, 2013. a
Blanke, B. and Delecluse, P.: Variability of the tropical Atlantic Ocean simulated by a general circulation model with two different mixed-layer physics, J. Phys. Oceanogr., 23, 1363–1388, https://doi.org/10.1175/1520-0485(1993)023<1363:VOTTAO>2.0.CO;2, 1993. a
Bullister, J. L., Wisegarver, D. P., and Menzia, F. A.: The solubility of sulfur hexafluoride in water and seawater, Deep-Sea Res. Pt. I, 49, 175–187, https://doi.org/10.1016/S0967-0637(01)00051-6, 2002. a
Chien, C.-T., Durgadoo, J. V., Ehlert, D., Frenger, I., Keller, D. P., Koeve, W., Kriest, I., Landolfi, A., Patara, L., Wahl, S., and Oschlies, A.: FOCI-MOPS v1 – integration of marine biogeochemistry within the Flexible Ocean and Climate Infrastructure version 1 (FOCI 1) Earth system model, Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, 2022. a, b
Chouksey, M., Griesel, A., Eden, C., and Steinfeldt, R.: Transit Time Distributions and ventilation pathways using CFCs and Lagrangian backtracking in the South Atlantic of an eddying ocean model, J. Phys. Oceanogr., 52, 1531–1548, https://doi.org/10.1175/JPO-D-21-0070.1, 2022. a
Doney, S. C. and Bullister, J. L.: A chlorofluorocarbon section in the eastern North Atlantic, Deep-Sea Res. Pt. A, 39, 1857–1883, https://doi.org/10.1016/0198-0149(92)90003-C, 1992. a
Ebser, S., Kersting, A., Stöven, T., Feng, Z., Ringena, L., Schmidt, M., Tanhua, T., Aeschbach, W., and Oberthaler, M. K.: 39Ar dating with small samples provides new key constraints on ocean ventilation, Nat. Commun., 9, 5046, https://doi.org/10.1038/s41467-018-07465-7, 2018. a
England, M. H.: The age of water and ventilation timescales in a global ocean model, J. Phys. Oceanogr., 25, 2756–2777, https://doi.org/10.1175/1520-0485(1995)025<2756:TAOWAV>2.0.CO;2, 1995. a
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016. a, b
Garcia, H. E., Boyer, T. P., Locarnini, R. A., Antonov, J. I., Mishonov, A. V., Baranova, O. K., Zweng, M. M., Reagan, J. R., Johnson, D. R., and Levitus, S.: World ocean atlas 2013. Volume 3, Dissolved oxygen, apparent oxygen utilization, and oxygen saturation, https://doi.org/10.7289/v5f769gt, 2013a. a
Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M., Reagan, J. R., Johnson, D. R., Mishonov, A. V., and Levitus, S.: World ocean atlas 2013. Volume 4, Dissolved inorganic nutrients (phosphate, nitrate, silicate), https://doi.org/10.7289/v5f769gt, 2013b. a
Gent, P. R. and Mcwilliams, J. C.: Isopycnal mixing in ocean circulation models, J. Phys. Oceanogr., 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:IMIOCM>2.0.CO;2, 1990. a
Gruber, N.: Anthropogenic co2 in the atlantic ocean, Global Biogeochem. Cy., 12, 165–191, https://doi.org/10.1029/97GB03658, 1998. a
Guo, H., Kriest, I., Oschlies, A., and Koeve, W.: Can Oxygen Utilization Rate Be Used to Track the Long-Term Changes of Aerobic Respiration in the Mesopelagic Atlantic Ocean?, Geophys. Res. Lett., 50, e2022GL102645, https://doi.org/10.1029/2022GL102645, 2023. a, b
Guo, H., Koeve, W., Oschlies, A., Kemena, T. P., Gerke, L., and Kriest, I.: Dual-tracer constraints on the Inverse-Gaussian Transit-time distribution improve the estimation of watermass ages and their temporal trends in the tropical thermocline, GEOMAR [data set], https://hdl.handle.net/20.500.12085/b5baa5f6-5bda-458f-bfaf-3da3b789a972 (last access: 15 August 2020), 2024. a
Haine, T. W. and Hall, T. M.: A generalized transport theory: Water-mass composition and age, J. Phys. Oceanogr., 32, 1932–1946, https://doi.org/10.1175/1520-0485(2002)032<1932:AGTTWM>2.0.CO;2, 2002. a, b, c
He, Y.-C., Tjiputra, J., Langehaug, H. R., Jeansson, E., Gao, Y., Schwinger, J., and Olsen, A.: A model-based evaluation of the inverse Gaussian transit-time distribution method for inferring anthropogenic carbon storage in the ocean, J. Geophys. Res.-Oceans, 123, 1777–1800, https://doi.org/10.1002/2016JC011900, 2018. a, b, c, d, e, f, g, h, i
Jeansson, E., Olsson, K. A., Messias, M.-J., Kasajima, Y., and Johannessen, T.: Evidence of Greenland Sea water in the Iceland Basin, Geophys. Res. Lett., 36, L09605, https://doi.org/10.1029/2009GL037988, 2009. a
Jenkins, W. J.: Tritium and 3He in the Sargasso Sea, J. Marine Res., 38, 533–569, 1980. a
Jenkins, W. J.: 3H and 3He in the beta triangle: Observations of gyre ventilation and oxygen utilization rates, J. Phys. Oceanogr., 17, 763–783, https://doi.org/10.1175/1520-0485(1987)017<0763:AITBTO>2.0.CO;2, 1987. a, b
Karstensen, J. and Tomczak, M.: Age determination of mixed water masses using CFC and oxygen data, J. Geophys. Res.-Oceans, 103, 18599–18609, https://doi.org/10.1029/98JC00889, 1998. a
Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the history of anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349, https://doi.org/10.1038/nature08526, 2009. a
Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F., and Sabine, C. L.: Global ocean storage of anthropogenic carbon, Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, 2013. a
Koeve, W. and Kähler, P.: Oxygen utilization rate (OUR) underestimates ocean respiration: A model study, Global Biogeochem. Cy., 30, 1166–1182, https://doi.org/10.1002/2015GB005354, 2016. a
Koeve, W., Wagner, H., Kähler, P., and Oschlies, A.: 14C-age tracers in global ocean circulation models, Geosci. Model Dev., 8, 2079–2094, https://doi.org/10.5194/gmd-8-2079-2015, 2015. a
Kriest, I. and Oschlies, A.: MOPS-1.0: towards a model for the regulation of the global oceanic nitrogen budget by marine biogeochemical processes, Geosci. Model Dev., 8, 2929–2957, https://doi.org/10.5194/gmd-8-2929-2015, 2015. a
Lauvset, S. K., Key, R. M., Olsen, A., van Heuven, S., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Perez, F. F., Suzuki, T., and Watelet, S.: A new global interior ocean mapped climatology: the 1° × 1° GLODAP version 2, Earth Syst. Sci. Data, 8, 325–340, https://doi.org/10.5194/essd-8-325-2016, 2016. a
Lauvset, S. K., Lange, N., Tanhua, T., Bittig, H. C., Olsen, A., Kozyr, A., Alin, S., Álvarez, M., Azetsu-Scott, K., Barbero, L., Becker, S., Brown, P. J., Carter, B. R., da Cunha, L. C., Feely, R. A., Hoppema, M., Humphreys, M. P., Ishii, M., Jeansson, E., Jiang, L.-Q., Jones, S. D., Lo Monaco, C., Murata, A., Müller, J. D., Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T., Tilbrook, B., Ulfsbo, A., Velo, A., Woosley, R. J., and Key, R. M.: GLODAPv2.2022: the latest version of the global interior ocean biogeochemical data product, Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, 2022. a, b, c, d
Luyten, J., Pedlosky, J., and Stommel, H.: The ventilated thermocline, J. Phys. Oceanogr., 13, 292–309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.CO;2, 1983. a
Madec, G. and the NEMO System Team: NEMO ocean engine, Note du Pôle de modélisation, 27, Institut Pierre-Simon Laplace (IPSL), France, ISBN 1288-1619, 2016. a
Matthes, K., Biastoch, A., Wahl, S., Harlaß, J., Martin, T., Brücher, T., Drews, A., Ehlert, D., Getzlaff, K., Krüger, F., Rath, W., Scheinert, M., Schwarzkopf, F. U., Bayr, T., Schmidt, H., and Park, W.: The Flexible Ocean and Climate Infrastructure version 1 (FOCI1): mean state and variability, Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, 2020. a, b
Mecking, S., Warner, M. J., Greene, C. E., Hautala, S. L., and Sonnerup, R. E.: Influence of mixing on CFC uptake and CFC ages in the North Pacific thermocline, J. Geophys. Res.-Oceans, 109, C07014, https://doi.org/10.1029/2003JC001988, 2004. a
Meinshausen, M., Vogel, E., Nauels, A., Lorbacher, K., Meinshausen, N., Etheridge, D. M., Fraser, P. J., Montzka, S. A., Rayner, P. J., Trudinger, C. M., Krummel, P. B., Beyerle, U., Canadell, J. G., Daniel, J. S., Enting, I. G., Law, R. M., Lunder, C. R., O'Doherty, S., Prinn, R. G., Reimann, S., Rubino, M., Velders, G. J. M., Vollmer, M. K., Wang, R. H. J., and Weiss, R.: Historical greenhouse gas concentrations for climate modelling (CMIP6), Geosci. Model Dev., 10, 2057–2116, https://doi.org/10.5194/gmd-10-2057-2017, 2017. a
Orr, J. C., Najjar, R. G., Aumont, O., Bopp, L., Bullister, J. L., Danabasoglu, G., Doney, S. C., Dunne, J. P., Dutay, J.-C., Graven, H., Griffies, S. M., John, J. G., Joos, F., Levin, I., Lindsay, K., Matear, R. J., McKinley, G. A., Mouchet, A., Oschlies, A., Romanou, A., Schlitzer, R., Tagliabue, A., Tanhua, T., and Yool, A.: Biogeochemical protocols and diagnostics for the CMIP6 Ocean Model Intercomparison Project (OMIP), Geosci. Model Dev., 10, 2169–2199, https://doi.org/10.5194/gmd-10-2169-2017, 2017. a
Peacock, S. and Maltrud, M.: Transit-time distributions in a global ocean model, J. Phys. Oceanogr., 36, 474–495, https://doi.org/10.1175/JPO2860.1, 2006. a, b
Peacock, S., Maltrud, M., and Bleck, R.: Putting models to the data test: a case study using Indian Ocean CFC-11 data, Ocean Model., 9, 1–22, https://doi.org/10.1016/j.ocemod.2004.02.004, 2005. a
Raimondi, L., Wefing, A.-M., and Casacuberta, N.: Anthropogenic carbon in the Arctic Ocean: Perspectives from different transient tracers, J. Geophys. Res.-Oceans, 129, e2023JC019999, https://doi.org/10.1029/2023JC019999, 2023. a, b
Sabine, C. L. and Tanhua, T.: Estimation of anthropogenic CO2 inventories in the ocean, Annu. Rev. Mar. Sci., 2, 175–198, https://doi.org/10.1146/annurev-marine-120308-080947, 2010. a
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C., Wallace, D. W., Tilbrook, B., Millero, F. J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A. F.: The oceanic sink for anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004. a
Sonnerup, R. E., Mecking, S., and Bullister, J. L.: Transit time distributions and oxygen utilization rates in the Northeast Pacific Ocean from chlorofluorocarbons and sulfur hexafluoride, Deep-Sea Res. Pt. I, 72, 61–71, https://doi.org/10.1016/j.dsr.2012.10.013, 2013. a, b
Sonnerup, R. E., Mecking, S., Bullister, J. L., and Warner, M. J.: Transit time distributions and oxygen utilization rates from chlorofluorocarbons and sulfur hexafluoride in the Southeast Pacific Ocean, J. Geophys. Res.-Oceans, 120, 3761–3776, https://doi.org/10.1002/2015JC010781, 2015. a, b, c, d
Steele, M., Morley, R., and Ermold, W.: PHC: A global ocean hydrography with a high-quality Arctic Ocean, J. Climate, 14, 2079–2087, https://doi.org/10.1175/1520-0442(2001)014<2079:PAGOHW>2.0.CO;2, 2001. a
Steinfeldt, R., Rhein, M., and Kieke, D.: Anthropogenic carbon storage and its decadal changes in the Atlantic between 1990–2020, Biogeosciences, 21, 3839–3867, https://doi.org/10.5194/bg-21-3839-2024, 2024. a
Stöven, T., Tanhua, T., Hoppema, M., and Bullister, J. L.: Perspectives of transient tracer applications and limiting cases, Ocean Sci., 11, 699–718, https://doi.org/10.5194/os-11-699-2015, 2015. a, b, c
Stöven, T., Tanhua, T., Hoppema, M., and von Appen, W.-J.: Transient tracer distributions in the Fram Strait in 2012 and inferred anthropogenic carbon content and transport, Ocean Sci., 12, 319–333, https://doi.org/10.5194/os-12-319-2016, 2016. a, b, c
Sulpis, O., Jeansson, E., Dinauer, A., Lauvset, S. K., and Middelburg, J. J.: Calcium carbonate dissolution patterns in the ocean, Nat. Geosci., 14, 423–428, https://doi.org/10.1038/s41561-021-00743-y, 2021. a
Sulpis, O., Trossman, D. S., Holzer, M., Jeansson, E., Lauvset, S. K., and Middelburg, J. J.: Respiration patterns in the dark ocean, Global Biogeochem. Cy., 37, e2023GB007747, https://doi.org/10.1029/2023GB007747, 2023. a
Tanhua, T., Olsson, K. A., and Jeansson, E.: Formation of Denmark Strait overflow water and its hydro-chemical composition, J. Marine Syst., 57, 264–288, https://doi.org/10.1016/j.jmarsys.2005.05.003, 2005. a
Tanhua, T., Waugh, D. W., and Wallace, D. W.: Use of SF6 to estimate anthropogenic CO2 in the upper ocean, J. Geophys. Res.-Oceans, 113, C04037, https://doi.org/10.1029/2007JC004416, 2008. a, b, c
Thiele, G. and Sarmiento, J.: Tracer dating and ocean ventilation, J. Geophys. Res.-Oceans, 95, 9377–9391, https://doi.org/10.1029/JC095iC06p09377, 1990. a, b
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res.-Oceans, 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr., 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014. a, b
Warner, M. J. and Weiss, R. F.: Solubilities of chlorofluorocarbons 11 and 12 in water and seawater, Deep-Sea Res. Pt. A, 32, 1485–1497, https://doi.org/10.1016/0198-0149(85)90099-8, 1985. a, b
Watson, A., Messias, M.-J., Fogelqvist, E., Van Scoy, K., Johannessen, T., Oliver, K. I., Stevens, D., Rey, F., Tanhua, T., Olsson, K., Carse, F., Simonsen, K., Ledwell, J. R., Jansen, E., Cooper, D. J., Kruepke, J. A., and Guilyardi, E.: Mixing and convection in the Greenland Sea from a tracer-release experiment, Nature, 401, 902–904, https://doi.org/10.1038/44807, 1999. a, b
Waugh, D. W., Haine, T. W., and Hall, T. M.: Transport times and anthropogenic carbon in the subpolar North Atlantic Ocean, Deep-Sea Res. Pt. I, 51, 1475–1491, https://doi.org/10.1016/j.dsr.2004.06.011, 2004. a, b, c, d
Waugh, D. W., Primeau, F., DeVries, T., and Holzer, M.: Recent Changes in the Ventilation of the Southern Oceans, Science, 339, 568–570, https://doi.org/10.1126/science.1225411, 2013. a, b, c
Weiss, R. F., Bullister, J. L., Gammon, R. H., and Warner, M. J.: Atmospheric chlorofluoromethanes in the deep equatorial Atlantic, Nature, 314, 608–610, https://doi.org/10.1038/314608a0, 1985. a
Wunsch, C. and Heimbach, P.: How long to oceanic tracer and proxy equilibrium?, Quaternary Sci. Rev., 27, 637–651, https://doi.org/10.1016/j.quascirev.2008.01.006, 2008. a
Zalesak, S. T.: Fully multidimensional flux-corrected transport algorithms for fluids, J. Comput. Phys., 31, 335–362, https://doi.org/10.1016/0021-9991(79)90051-2, 1979. a
Short summary
We evaluated the effectiveness of the inverse Gaussian transit time distribution (IG-TTD) with respect to estimating the mean state and temporal changes of seawater age, defined as the duration since water last had contact with the atmosphere, within the tropical thermocline. Results suggest that the IG-TTD underestimates seawater age. Moreover, the IG-TTD constrained by a single tracer gives spurious trends in water age. Incorporating an additional tracer improves IG-TTD's accuracy for estimating temporal change of seawater age.
We evaluated the effectiveness of the inverse Gaussian transit time distribution (IG-TTD) with...