Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-1065-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.Special issue:
Long-term prediction of the Gulf Stream meander using OceanNet: a principled neural-operator-based digital twin
Related authors
Related subject area
Approach: Numerical Models | Properties and processes: Mesoscale to submesoscale dynamics
Sensitivity of gyre-scale marine connectivity estimates to fine-scale circulation
Ocean Sci., 19, 1183–1201,
2023Cited articles
Agarwal, N., Kondrashov, D., Dueben, P., Ryzhov, E., and Berloff, P.: A comparison of data-driven approaches to build low-dimensional ocean models, J. Adv. Model. Earth Sy., 13, e2021MS002537, https://doi.org/10.1029/2021MS002537, 2021. a
Bi, K., Xie, L., Zhang, H., Chen, X., Gu, X., and Tian, Q.: Accurate medium-range global weather forecasting with 3D neural networks, Nature, 619, 533–538, https://doi.org/10.1038/s41586-023-06185-3, 2023. a, b, c, d
Chassignet, E. P. and Marshall, D. P.: Gulf Stream Separation in Numerical Ocean Models, Wiley, 39–61, https://doi.org/10.1029/177GM05, 2008. a, b
Chassignet, E. P. and Xu, X.: Impact of horizontal resolution ( to ) on Gulf Stream separation, penetration, and variability, J. Phys. Oceanogr., 47, 1999–2021, https://doi.org/10.1175/JPO-D-17-0031.1, 2017. a