Articles | Volume 20, issue 3
https://doi.org/10.5194/os-20-639-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-639-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the short-term response of entrained air bubbles in the upper ocean: a case study in the north Adriatic Sea
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Venice, Italy
Trygve Halsne
Norwegian Meteorological Institute, Bergen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Øyvind Breivik
Norwegian Meteorological Institute, Bergen, Norway
Geophysical Institute, University of Bergen, Bergen, Norway
Kjersti Opstad Strand
Norwegian Meteorological Institute, Bergen, Norway
Adrian H. Callaghan
Department of Civil and Environmental Engineering, Imperial College, London, United Kingdom
Francesco Barbariol
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Venice, Italy
Silvio Davison
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Venice, Italy
Filippo Bergamasco
Dipartimento di Scienze Ambientali, Informatica e Statistica, University of Venice “Ca' Foscari”, Venice, Italy
Cristobal Molina
Nortek AS, 1351 Rud, Norway
Mauro Bastianini
Istituto di Scienze Marine (ISMAR), Consiglio Nazionale delle Ricerche (CNR), Venice, Italy
Related authors
Alvise Benetazzo, Luigi Cavaleri, Hongyu Ma, Shumin Jiang, Filippo Bergamasco, Wenzheng Jiang, Sheng Chen, and Fangli Qiao
Ocean Sci., 15, 725–743, https://doi.org/10.5194/os-15-725-2019, https://doi.org/10.5194/os-15-725-2019, 2019
Short summary
Short summary
Inspired by the known virtue of fish oil to still angry seas, a study has been made on the interaction between wind waves, paddle waves, and airflow in a tank containing a thin fish-oil film. It is rather peculiar that in the wind-only condition the wave field does not grow from the rest condition. This equilibrium was altered by paddle waves. We stress the benefit of experiments with surfactants to disentangle relevant mechanisms involved in the air–sea interaction.
Pedro Veras Guimarães, Fabrice Ardhuin, Peter Sutherland, Mickael Accensi, Michel Hamon, Yves Pérignon, Jim Thomson, Alvise Benetazzo, and Pierre Ferrant
Ocean Sci., 14, 1449–1460, https://doi.org/10.5194/os-14-1449-2018, https://doi.org/10.5194/os-14-1449-2018, 2018
Short summary
Short summary
This paper introduces a new design of drifting buoy. The "surface kinematics buoy'' (SKIB) is particularly optimized for measuring wave–current interactions, including relatively short wave components, from 0.09 to 1 Hz, that are important for air–sea interactions and remote-sensing applications. The capability of this instrument is compared to other sensors, and the ability to measure current-induced wave variations is illustrated with data acquired in a macro-tidal coastal environment.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Charles Peureux, Alvise Benetazzo, and Fabrice Ardhuin
Ocean Sci., 14, 41–52, https://doi.org/10.5194/os-14-41-2018, https://doi.org/10.5194/os-14-41-2018, 2018
Short summary
Short summary
Little is known on the short ocean wave (1 to 20 m wave length typically) directional distribution. It has been measured from a platform in the Adriatic Sea using a three-dimensional reconstruction technique, used for the first time for this purpose. In this record, while longer waves propagate along the wind direction, shorter waves have been found to propagate mainly along two oblique directions, more and more separated towards smaller scales.
Francesco Marcello Falcieri, Lakshmi Kantha, Alvise Benetazzo, Andrea Bergamasco, Davide Bonaldo, Francesco Barbariol, Vlado Malačič, Mauro Sclavo, and Sandro Carniel
Ocean Sci., 12, 433–449, https://doi.org/10.5194/os-12-433-2016, https://doi.org/10.5194/os-12-433-2016, 2016
Short summary
Short summary
Between January 30th and February 4th we collected the first turbulence observations in the Gulf of Trieste under different wind forcing and water column structure. The vertical profiles of the turbulence kinetic energy dissipation rates showed that the presence near the sea floor of different water masses, inflowing from the open sea, can prevent the complete mixing of the water column. This dumping effect is enhanced when these masses present higher suspended sediment concentrations.
Francesco Barbariol, Francesco Marcello Falcieri, Carlotta Scotton, Alvise Benetazzo, Sandro Carniel, and Mauro Sclavo
Ocean Sci., 12, 403–415, https://doi.org/10.5194/os-12-403-2016, https://doi.org/10.5194/os-12-403-2016, 2016
Short summary
Short summary
The analysis presented in the paper aims at extending the classification capabilities of Self-Organizing Maps (SOM) within the context of ocean waves. Indeed, the intrinsic SOM difficulty in representing extremes of the wave climate is discussed and alternative strategies are proposed in order to represent the whole wave climate at a given location. Among them, a two-step SOM together with a double-side map provides the best results.
V. E. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. M. Falcieri, A. Coluccelli, A. Russo, and S. Carniel
Ocean Sci., 11, 909–920, https://doi.org/10.5194/os-11-909-2015, https://doi.org/10.5194/os-11-909-2015, 2015
Short summary
Short summary
Sea surface temperature and turbidity, derived from satellite imagery, were used to characterize river plumes in the northern Adriatic Sea during a significant flood event in November 2014. Circulation patterns and sea surface salinity, from an operational coupled ocean-wave model, supported the interpretation of the plumes' interaction with the receiving waters and among them.
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023, https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Short summary
Surface waves that propagate in oceanic or coastal environments get influenced by their surroundings. Changes in the ambient current or the depth profile affect the wave propagation path, and the change in wave direction is called refraction. Some analytical solutions to the governing equations exist under ideal conditions, but for realistic situations, the equations must be solved numerically. Here we present such a numerical solver under an open-source license.
Manuel Aghito, Loris Calgaro, Knut-Frode Dagestad, Christian Ferrarin, Antonio Marcomini, Øyvind Breivik, and Lars Robert Hole
Geosci. Model Dev., 16, 2477–2494, https://doi.org/10.5194/gmd-16-2477-2023, https://doi.org/10.5194/gmd-16-2477-2023, 2023
Short summary
Short summary
The newly developed ChemicalDrift model can simulate the transport and fate of chemicals in the ocean and in coastal regions. The model combines ocean physics, including transport due to currents, turbulence due to surface winds and the sinking of particles to the sea floor, with ocean chemistry, such as the partitioning, the degradation and the evaporation of chemicals. The model will be utilized for risk assessment of ocean and sea-floor contamination from pollutants emitted from shipping.
Graig Sutherland, Victor de Aguiar, Lars-Robert Hole, Jean Rabault, Mohammed Dabboor, and Øyvind Breivik
The Cryosphere, 16, 2103–2114, https://doi.org/10.5194/tc-16-2103-2022, https://doi.org/10.5194/tc-16-2103-2022, 2022
Short summary
Short summary
The marginal ice zone (MIZ), which is the transition region between the open ocean and the dense pack ice, is a very dynamic region comprising a mixture of ice and ocean conditions. Using novel drifters deployed in various ice conditions in the MIZ, several material transport models are tested with two operational ice–ocean prediction systems. A new general transport equation, which uses both the ice and ocean solutions, is developed that reduces the error in drift prediction for our case study.
Alvise Benetazzo, Luigi Cavaleri, Hongyu Ma, Shumin Jiang, Filippo Bergamasco, Wenzheng Jiang, Sheng Chen, and Fangli Qiao
Ocean Sci., 15, 725–743, https://doi.org/10.5194/os-15-725-2019, https://doi.org/10.5194/os-15-725-2019, 2019
Short summary
Short summary
Inspired by the known virtue of fish oil to still angry seas, a study has been made on the interaction between wind waves, paddle waves, and airflow in a tank containing a thin fish-oil film. It is rather peculiar that in the wind-only condition the wave field does not grow from the rest condition. This equilibrium was altered by paddle waves. We stress the benefit of experiments with surfactants to disentangle relevant mechanisms involved in the air–sea interaction.
Pedro Veras Guimarães, Fabrice Ardhuin, Peter Sutherland, Mickael Accensi, Michel Hamon, Yves Pérignon, Jim Thomson, Alvise Benetazzo, and Pierre Ferrant
Ocean Sci., 14, 1449–1460, https://doi.org/10.5194/os-14-1449-2018, https://doi.org/10.5194/os-14-1449-2018, 2018
Short summary
Short summary
This paper introduces a new design of drifting buoy. The "surface kinematics buoy'' (SKIB) is particularly optimized for measuring wave–current interactions, including relatively short wave components, from 0.09 to 1 Hz, that are important for air–sea interactions and remote-sensing applications. The capability of this instrument is compared to other sensors, and the ability to measure current-induced wave variations is illustrated with data acquired in a macro-tidal coastal environment.
Fabrice Ardhuin, Yevgueny Aksenov, Alvise Benetazzo, Laurent Bertino, Peter Brandt, Eric Caubet, Bertrand Chapron, Fabrice Collard, Sophie Cravatte, Jean-Marc Delouis, Frederic Dias, Gérald Dibarboure, Lucile Gaultier, Johnny Johannessen, Anton Korosov, Georgy Manucharyan, Dimitris Menemenlis, Melisa Menendez, Goulven Monnier, Alexis Mouche, Frédéric Nouguier, George Nurser, Pierre Rampal, Ad Reniers, Ernesto Rodriguez, Justin Stopa, Céline Tison, Clément Ubelmann, Erik van Sebille, and Jiping Xie
Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, https://doi.org/10.5194/os-14-337-2018, 2018
Short summary
Short summary
The Sea surface KInematics Multiscale (SKIM) monitoring mission is a proposal for a future satellite that is designed to measure ocean currents and waves. Using a Doppler radar, the accurate measurement of currents requires the removal of the mean velocity due to ocean wave motions. This paper describes the main processing steps needed to produce currents and wave data from the radar measurements. With this technique, SKIM can provide unprecedented coverage and resolution, over the global ocean.
Knut-Frode Dagestad, Johannes Röhrs, Øyvind Breivik, and Bjørn Ådlandsvik
Geosci. Model Dev., 11, 1405–1420, https://doi.org/10.5194/gmd-11-1405-2018, https://doi.org/10.5194/gmd-11-1405-2018, 2018
Short summary
Short summary
We have developed a computer code with ability to predict how various substances and objects drift in the ocean. This may be used to, e.g. predict the drift of oil to aid cleanup operations, the drift of man-over-board or lifeboats to aid search and rescue operations, or the drift of fish eggs and larvae to understand and manage fish stocks. This new code merges all such applications into one software tool, allowing to optimise and channel any available resources and developments.
Charles Peureux, Alvise Benetazzo, and Fabrice Ardhuin
Ocean Sci., 14, 41–52, https://doi.org/10.5194/os-14-41-2018, https://doi.org/10.5194/os-14-41-2018, 2018
Short summary
Short summary
Little is known on the short ocean wave (1 to 20 m wave length typically) directional distribution. It has been measured from a platform in the Adriatic Sea using a three-dimensional reconstruction technique, used for the first time for this purpose. In this record, while longer waves propagate along the wind direction, shorter waves have been found to propagate mainly along two oblique directions, more and more separated towards smaller scales.
Kai Håkon Christensen, Ana Carrasco, Jean-Raymond Bidlot, and Øyvind Breivik
Ocean Sci., 13, 589–597, https://doi.org/10.5194/os-13-589-2017, https://doi.org/10.5194/os-13-589-2017, 2017
Short summary
Short summary
In this note we investigate when and where we would expect the bottom to influence the dynamics of surface waves. In deep water, where the presence of the bottom is not felt by the waves, modelers can use a simpler description of wave-mean flow interactions; hence, the results are relevant for coupled wave-ocean modeling systems. The most pronounced influence is on the Northwest Shelf during winter, and can sometimes be significant even far from the coast.
Francesco Marcello Falcieri, Lakshmi Kantha, Alvise Benetazzo, Andrea Bergamasco, Davide Bonaldo, Francesco Barbariol, Vlado Malačič, Mauro Sclavo, and Sandro Carniel
Ocean Sci., 12, 433–449, https://doi.org/10.5194/os-12-433-2016, https://doi.org/10.5194/os-12-433-2016, 2016
Short summary
Short summary
Between January 30th and February 4th we collected the first turbulence observations in the Gulf of Trieste under different wind forcing and water column structure. The vertical profiles of the turbulence kinetic energy dissipation rates showed that the presence near the sea floor of different water masses, inflowing from the open sea, can prevent the complete mixing of the water column. This dumping effect is enhanced when these masses present higher suspended sediment concentrations.
Francesco Barbariol, Francesco Marcello Falcieri, Carlotta Scotton, Alvise Benetazzo, Sandro Carniel, and Mauro Sclavo
Ocean Sci., 12, 403–415, https://doi.org/10.5194/os-12-403-2016, https://doi.org/10.5194/os-12-403-2016, 2016
Short summary
Short summary
The analysis presented in the paper aims at extending the classification capabilities of Self-Organizing Maps (SOM) within the context of ocean waves. Indeed, the intrinsic SOM difficulty in representing extremes of the wave climate is discussed and alternative strategies are proposed in order to represent the whole wave climate at a given location. Among them, a two-step SOM together with a double-side map provides the best results.
V. E. Brando, F. Braga, L. Zaggia, C. Giardino, M. Bresciani, E. Matta, D. Bellafiore, C. Ferrarin, F. Maicu, A. Benetazzo, D. Bonaldo, F. M. Falcieri, A. Coluccelli, A. Russo, and S. Carniel
Ocean Sci., 11, 909–920, https://doi.org/10.5194/os-11-909-2015, https://doi.org/10.5194/os-11-909-2015, 2015
Short summary
Short summary
Sea surface temperature and turbidity, derived from satellite imagery, were used to characterize river plumes in the northern Adriatic Sea during a significant flood event in November 2014. Circulation patterns and sea surface salinity, from an operational coupled ocean-wave model, supported the interpretation of the plumes' interaction with the receiving waters and among them.
Related subject area
Approach: In situ Observations | Properties and processes: Interactions with the atmosphere or cryosphere
Upper-ocean changes with hurricane-strength wind events: a study using Argo profiles and an ocean reanalysis
Subsurface floats in the Filchner Trough provide the first direct under-ice tracks of the circulation on shelf
Hydrography and circulation below Fimbulisen Ice Shelf, East Antarctica, from 12 years of moored observations
Jacopo Sala, Donata Giglio, Addison Hu, Mikael Kuusela, Kimberly M. Wood, and Ann B. Lee
Ocean Sci., 20, 1441–1455, https://doi.org/10.5194/os-20-1441-2024, https://doi.org/10.5194/os-20-1441-2024, 2024
Short summary
Short summary
As Earth’s climate warms, cyclone intensity and rain may increase. Cyclones, like hurricanes, gain strength from warm ocean waters. Understanding how oceans react to strong winds is vital. We highlight ocean responses to pre-storm salinity. Changes in salinity affect oceans during storms: salinity rises, temperature falls, and density increases. We suggest that mixing of near-surface with deeper water may impact heat exchange between the ocean and atmosphere during and after a weather event.
Jean-Baptiste Sallée, Lucie Vignes, Audrey Minière, Nadine Steiger, Etienne Pauthenet, Antonio Lourenco, Kevin Speer, Peter Lazarevich, and Keith W. Nicholls
Ocean Sci., 20, 1267–1280, https://doi.org/10.5194/os-20-1267-2024, https://doi.org/10.5194/os-20-1267-2024, 2024
Short summary
Short summary
In the Weddell Sea, we investigated how warm deep currents and cold waters containing freshwater released from the Antarctic are connected. We used autonomous observation devices that have never been used in this region previously and that allow us to track the movement and characteristics of water masses under the sea ice. Our findings show a dynamic interaction between warm masses, providing key insights to understand climate-related changes in the region.
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
EGUsphere, https://doi.org/10.5194/egusphere-2024-904, https://doi.org/10.5194/egusphere-2024-904, 2024
Short summary
Short summary
Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes. We present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2021. We find that relatively warm water masses reach below the ice shelf both close to the surface and at depth with implications for the basal melting of Fimbulisen.
Cited articles
Benetazzo, A., Bergamasco, A., Bonaldo, D., Falcieri, F. M., Sclavo, M., Langone, L., and Carniel, S.: Response of the Adriatic Sea to an intense cold air outbreak: Dense water dynamics and wave-induced transport, Prog. Oceanogr., 128, 115–138, https://doi.org/10.1016/j.pocean.2014.08.015, 2014.
Benetazzo, A., Davison, S., Barbariol, F., Mercogliano, P., Favaretto, C., and Sclavo, M.: Correction of ERA5 Wind for Regional Climate Projections of Sea Waves, Water, 14, 1590, https://doi.org/10.3390/w14101590, 2022.
Bergamasco, A., Oguz, T., and Malanotte-Rizzoli, P.: Modeling dense water mass formation and winter circulation in the northern and central Adriatic Sea, J. Marine Syst., 20, 279–300, 1999.
Bignami, F., Salusti, E., and Schiarini, S.: Observations on a bottom vein of dense water in the southern Adriatic and Ionian seas, J. Geophys. Res., 95, 7249, https://doi.org/10.1029/JC095iC05p07249, 1990.
Brekhovskikh, L. and Lysanov, Y.: Fundamentals of Ocean Acoustics, Springer Berlin Heidelberg, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-02342-6, 1991.
Broecker, W. S., Ledwell, J. R., Takahashi, T., Weiss, R., Merlivat, L., Memery, L., Peng, T.-H., Jahne, B., and Munnich, K. O.: Isotopic versus micrometeorologic ocean CO2 fluxes: A serious conflict, J. Geophys. Res., 91, 10517, https://doi.org/10.1029/JC091iC09p10517, 1986.
Brumer, S. E., Zappa, C. J., Blomquist, B. W., Fairall, C. W., Cifuentes-Lorenzen, A., Edson, J. B., Brooks, I. M., and Huebert, B. J.: Wave-Related Reynolds Number Parameterizations of CO2 and DMS Transfer Velocities, Geophys. Res. Lett., 44, 9865–9875, https://doi.org/10.1002/2017GL074979, 2017a.
Brumer, S. E., Zappa, C. J., Brooks, I. M., Tamura, H., Brown, S. M., Blomquist, B. W., Fairall, C. W., and Cifuentes-Lorenzen, A.: Whitecap Coverage Dependence on Wind and Wave Statistics as Observed during SO GasEx and HiWinGS, J. Phys. Oceanogr., 47, 2211–2235, https://doi.org/10.1175/JPO-D-17-0005.1, 2017b.
Callaghan, A. H.: On the Relationship between the Energy Dissipation Rate of Surface-Breaking Waves and Oceanic Whitecap Coverage, J. Phys. Oceanogr., 48, 2609–2626, https://doi.org/10.1175/JPO-D-17-0124.1, 2018.
Callaghan, A. H., Deane, G. B., and Stokes, M. D.: Two Regimes of Laboratory Whitecap Foam Decay: Bubble-Plume Controlled and Surfactant Stabilized, J. Phys. Oceanogr., 43, 1114–1126, https://doi.org/10.1175/JPO-D-12-0148.1, 2013.
Cavaleri, L.: The oceanographic tower Acqua Alta – more than a quarter of century activity, Nuovo Cimento C, 22, 1–112, 1999.
Cavaleri, L., Fox-Kemper, B., and Hemer, M.: Wind Waves in the Coupled Climate System, B. Am. Meteorol. Soc., 93, 1651–1661, https://doi.org/10.1175/BAMS-D-11-00170.1, 2012.
Cifuentes-Lorenzen, A., Zappa, C. J., Randolph, K., and Edson, J. B.: Scaling the Bubble Penetration Depth in the Ocean, J. Geophys. Res.-Oceans, 128, e2022JC019582, https://doi.org/10.1029/2022JC019582, 2023.
Clay, C. S. and Medwin, H.: Acoustical Oceanography: Principles and Applications, John Wiley and Sons, New York, NY, https://doi.org/10.1017/S0025315400028228, 1977.
Craig, P. D. and Banner, M. L.: Modeling Wave-Enhanced Turbulence in the Ocean Surface Layer, J. Phys. Oceanogr., 24, 2546–2559, 1994.
Czerski, H., Brooks, I. M., Gunn, S., Pascal, R., Matei, A., and Blomquist, B.: Ocean bubbles under high wind conditions – Part 1: Bubble distribution and development, Ocean Sci., 18, 565–586, https://doi.org/10.5194/os-18-565-2022, 2022.
Deike, L.: Mass Transfer at the Ocean–Atmosphere Interface: The Role of Wave Breaking, Droplets, and Bubbles, Annu. Rev. Fluid Mech., 54, 191–224, https://doi.org/10.1146/annurev-fluid-030121-014132, 2022.
Deike, L. and Melville, W. K.: Gas Transfer by Breaking Waves, Geophys. Res. Lett., 45, 10482–10492, https://doi.org/10.1029/2018GL078758, 2018.
Derakhti, M., Thomson, J., Bassett, C. S., Malila, M. P., and Kirby, J. T.: Statistics of bubble plumes generated by breaking surface waves, ESS Open Archive [preprint], https://doi.org/10.22541/essoar.167751591.11265648/v1, 2024.
Dysthe, K., Krogstad, H. E., and Müller, P.: Oceanic Rogue Waves, Annu. Rev. Fluid Mech., 40, 287–310, https://doi.org/10.1146/annurev.fluid.40.111406.102203, 2008.
Fairall, C. W., Yang, M., Bariteau, L., Edson, J. B., Helmig, D., McGillis, W., Pezoa, S., Hare, J. E., Huebert, B., and Blomquist, B.: Implementation of the Coupled Ocean-Atmosphere Response Experiment flux algorithm with CO2, dimethyl sulfide, and O3, J. Geophys. Res., 116, C00F09, https://doi.org/10.1029/2010JC006884, 2011.
Fairall, C. W., Yang, M., Brumer, S. E., Blomquist, B. W., Edson, J. B., Zappa, C. J., Bariteau, L., Pezoa, S., Bell, T. G., and Saltzman, E. S.: Air-Sea Trace Gas Fluxes: Direct and Indirect Measurements, Front. Mar. Sci., 9, 826606, https://doi.org/10.3389/fmars.2022.826606, 2022.
Gemmrich, J.: Strong Turbulence in the Wave Crest Region, J. Phys. Oceanogr., 40, 583–595, https://doi.org/10.1175/2009JPO4179.1, 2010.
Graham, A., Woolf, D. K., and Hall, A. J.: Aeration Due to Breaking Waves. Part I: Bubble Populations, J. Phys. Oceanogr., 34, 989–1007, https://doi.org/10.1175/1520-0485(2004)034<0989:ADTBWP>2.0.CO;2, 2004.
Hanson, J. L. and Phillips, O. M.: Wind Sea Growth and Dissipation in the Open Ocean, J. Phys. Oceanogr., 29, 1633–1648, https://doi.org/10.1175/1520-0485(1999)029<1633:WSGADI>2.0.CO;2, 1999.
Hanson, J. L. and Phillips, O. M.: Automated Analysis of Ocean Surface Directional Wave Spectra, J. Atmos. Ocean. Tech., 18, 277–293, https://doi.org/10.1175/1520-0426(2001)018<0277:AAOOSD>2.0.CO;2, 2001.
Hasselmann, S., Brüning, C., Hasselmann, K., Heimbach, P., Bruning, C., Hasselmann, K., and Heimbach, P.: An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra, J. Geophys. Res.-Oceans, 101, 16615–16629, https://doi.org/10.1029/96JC00798, 1996.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on single levels from 1940 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.adbb2d47, 2023.
IPCC: Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., ISBN 978-1-107-05799-1, 2013.
Jähne, B., Wais, T., Memery, L., Caulliez, G., Merlivat, L., Münnich, K. O., and Coantic, M.: HE and RN gas exchange experiments in the large wind-wave facility of IMST, J. Geophys. Res., 90, 11989, https://doi.org/10.1029/JC090iC06p11989, 1985.
Jähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W., and Libner, P.: On the parameters influencing air-water gas exchange, J. Geophys. Res., 92, 1937, https://doi.org/10.1029/JC092iC02p01937, 1987.
Kanwisher, J.: On the exchange of gases between the atmosphere and the sea, Deep-Sea Res. Oceanogr. Abstr., 10, 195–207, https://doi.org/10.1016/0011-7471(63)90356-5, 1963.
Keeling, R. F.: On the role of large bubbles in air-sea gas exchange and supersaturation in the ocean, J. Mar. Res., 51, 237–271, 1993.
Lenain, L. and Melville, W. K.: Evidence of Sea-State Dependence of Aerosol Concentration in the Marine Atmospheric Boundary Layer, J. Phys. Oceanogr., 47, 69–84, https://doi.org/10.1175/JPO-D-16-0058.1, 2017.
Li, S., Babanin, A. V., Qiao, F., Dai, D., Jiang, S., and Guan, C.: Laboratory experiments on CO2 gas exchange with wave breaking, J. Phys. Oceanogr., 51, 3105–3116, https://doi.org/10.1175/JPO-D-20-0272.1, 2021.
Malila, M. P., Thomson, J., Breivik, Ø., Benetazzo, A., Scanlon, B., and Ward, B.: On the Groupiness and Intermittency of Oceanic Whitecaps, J. Geophys. Res.-Oceans, 127, e2021JC017938, https://doi.org/10.1029/2021JC017938, 2022.
Medwin, H.: In situ acoustic measurements of bubble populations in coastal ocean waters, J. Geophys. Res., 75, 599–611, https://doi.org/10.1029/JC075i003p00599, 1970.
Medwin, H.: In situ acoustic measurements of microbubbles at sea, J. Geophys. Res., 82, 971–976, https://doi.org/10.1029/JC082i006p00971, 1977.
Monahan, E. C. and O'Muircheartaigh, I. G.: Whitecaps and the passive remote sensing of the ocean surface, Int. J. Remote Sens., 7, 627–642, https://doi.org/10.1080/01431168608954716, 1986.
Ocean Illumination: OCEAN CONTOUR Acoustic doppler data display and processing, Software User Guide, 90, http://oceanillumination.com/software.html (last access: 29 April 2024), 2021.
Ochi, M. K.: Ocean Waves: The Stochastic Approach, Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9780511529559, 1998.
Pierson, W. J. and Moskowitz, L.: A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii, J. Geophys. Res., 69, 5181–5190, https://doi.org/10.1029/JZ069i024p05181, 1964.
Plueddemann, A. J., Smith, J. A., Farmer, D. M., Weller, R. A., Crawford, W. R., Pinkel, R., Vagle, S., and Gnanadesikan, A.: Structure and variability of Langmuir circulation during the Surface Waves Processes Program, J. Geophys. Res.-Oceans, 101, 3525–3543, https://doi.org/10.1029/95JC03282, 1996.
Randolph, K., Dierssen, H. M., Twardowski, M., Cifuentes-Lorenzen, A., and Zappa, C. J.: Optical measurements of small deeply penetrating bubble populations generated by breaking waves in the Southern Ocean, J. Geophys. Res.-Oceans, 119, 757–776, https://doi.org/10.1002/2013JC009227, 2014.
Reichl, B. G. and Deike, L.: Contribution of Sea-State Dependent Bubbles to Air-Sea Carbon Dioxide Fluxes, Geophys. Res. Lett., 47, e2020GL087267, https://doi.org/10.1029/2020GL087267, 2020.
Saetra, Ø., Halsne, T., Carrasco, A., Breivik, Ø., Pedersen, T., and Christensen, K. H.: Intense interactions between ocean waves and currents observed in the Lofoten Maelstrom, J. Phys. Oceanogr., 51, 3461–3476, https://doi.org/10.1175/JPO-D-20-0290.1, 2021.
Shin, Y., Deike, L., and Romero, L.: Modulation of Bubble-Mediated CO2 Gas Transfer Due To Wave-Current Interactions, Geophys. Res. Lett., 49, e2022GL100017, https://doi.org/10.1029/2022GL100017, 2022.
Strand, K. O., Breivik, Ø., Pedersen, G., Vikebø, F. B., Sundby, S., and Christensen, K. H.: Long-Term Statistics of Observed Bubble Depth Versus Modeled Wave Dissipation, J. Geophys. Res.-Oceans, 125, e2019JC015906, https://doi.org/10.1029/2019JC015906, 2020.
Supić, N. and Vilibić, I.: Dense water characteristics in the northern Adriatic in the 1967–2000 interval with respect to surface fluxes and Po river discharge rates, Estuar. Coast. Shelf S., 66, 580–593, https://doi.org/10.1016/j.ecss.2005.11.003, 2006.
Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J. L., and Wanninkhof, R.: Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements, Global Biogeochem. Cy., 21, GB2015, https://doi.org/10.1029/2006GB002784, 2007.
Teruzzi, A., Di Biagio, V., Feudale, L., Bolzon, G., Lazzari, P., Salon, S., Coidessa, G., and Cossarini, G.: Mediterranean Sea Biogeochemical Reanalysis (CMEMS MED-Biogeochemistry, MedBFM3 system) (Version 1), Copernicus Monitoring Environment Marine Service (CMEMS) [data set], https://doi.org/10.25423/CMCC/MEDSEA_MULTIYEAR_BGC_006_008_MEDBFM3, 2021.
Thorpe, S. A.: On the clouds of bubbles formed by breaking wind-waves in deep water, and their role in air-sea gas transfer, Philos. T. R. Soc. S.-A, 304, 155–210, https://doi.org/10.1098/rsta.1982.0011, 1982.
Thorpe, S. A.: Bubble Clouds: A Review of Their Detection by Sonar, of Related Models, and of how Kv May be Determined, in: Oceanic Whitecaps: And Their Role in Air-Sea Exchange Processes, edited by: Monahan, E. C. and Mac Niocaill, G., Springer Netherlands, Dordrecht, 57–68, https://doi.org/10.1007/978-94-009-4668-2_6, 1986a.
Thorpe, S. A.: Measurements with an Automatically Recording Inverted Echo Sounder; ARIES and the Bubble Clouds, J. Phys. Oceanogr., 16, 1462–1478, https://doi.org/10.1175/1520-0485(1986)016<1462:MWAARI>2.0.CO;2, 1986b.
Thorpe, S. A.: Bubble clouds and the dynamics of the upper ocean, Q. J. Roy. Meteor. Soc., 118, 1–22, https://doi.org/10.1002/qj.49711850302, 1992.
Thorpe, S. A. and Stubbs, A. R.: Bubbles in a freshwater lake, Nature, 279, 403–405, https://doi.org/10.1038/279403a0, 1979.
Trevorrow, M. V.: Measurements of near-surface bubble plumes in the open ocean with implications for high-frequency sonar performance, J. Acoust. Soc. Am., 114, 2672, https://doi.org/10.1121/1.1621008, 2003.
Vagle, S., McNeil, C., and Steiner, N.: Upper ocean bubble measurements from the NE Pacific and estimates of their role in air-sea gas transfer of the weakly soluble gases nitrogen and oxygen, J. Geophys. Res.-Oceans, 115, C12054, https://doi.org/10.1029/2009JC005990, 2010.
Vilibić, I. and Supić, N.: Dense water generation on a shelf: the case of the Adriatic Sea, Ocean Dynam., 55, 403–415, https://doi.org/10.1007/s10236-005-0030-5, 2005.
Wang, D. W., Wijesekera, H. W., Jarosz, E., Teague, W. J., and Pegau, W. S.: Turbulent Diffusivity under High Winds from Acoustic Measurements of Bubbles, J. Phys. Oceanogr., 46, 1593–1613, https://doi.org/10.1175/JPO-D-15-0164.1, 2016.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean, J. Geophys. Res., 97, 7373, https://doi.org/10.1029/92JC00188, 1992.
Wanninkhof, R.: Relationship between wind speed and gas exchange over the ocean revisited, Limnol. Oceanogr.-Meth., 12, 351–362, https://doi.org/10.4319/lom.2014.12.351, 2014.
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R.: Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing, Annu. Rev. Mar. Sci., 1, 213–244, https://doi.org/10.1146/annurev.marine.010908.163742, 2009.
Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C., Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.: Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory, Nat. Commun., 11, 4422, https://doi.org/10.1038/s41467-020-18203-3, 2020.
Woolf, D. K.: Bubbles and their role in air–sea gas exchange, in: The sea surface and global change, edited by: Liss, P. S. and Duce, R., Cambridge University Press, Cambridge, UK, 173–206, ISBN 9780521017459, 1997.
Woolf, D. K.: Parametrization of gas transfer velocities and sea-state-dependent wave breaking, Tellus B, 57, 87, https://doi.org/10.3402/tellusb.v57i2.16783, 2005.
Zakharov, V. E. and Filonenko, N. N.: Energy spectrum for stochastic oscillations of the surface of a liquid, Sov. Phys. Dokl., 11, 881–883, 1967.
Zhao, D. and Toba, Y.: Dependence of Whitecap Coverage on Wind and Wind-Wave Properties, J. Oceanogr., 575, 603–616, https://doi.org/10.1023/A:1021215904955, 2001.
Zhao, D., Toba, Y., Suzuky, Y., and Komori, S.: Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter, Tellus B, 55, 478–487, https://doi.org/10.1034/j.1600-0889.2003.00055.x, 2003.
Short summary
We investigated the behaviour of air bubble plumes in the upper ocean in various stormy conditions. We conducted a field experiment in the North Adriatic Sea using high-resolution sonar. We found that bubble penetration depths respond rapidly to wind and wave forcings and can be triggered by the cooling of the water masses. We also found a strong connection between bubble depths and theoretical CO2 gas transfer. Our findings have implications for air–sea interaction studies.
We investigated the behaviour of air bubble plumes in the upper ocean in various stormy...