Articles | Volume 20, issue 2
https://doi.org/10.5194/os-20-521-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-521-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Surface factors controlling the volume of accumulated Labrador Sea Water
Yavor Kostov
CORRESPONDING AUTHOR
Department of Geography, University of Exeter, Exeter, UK
British Antarctic Survey, Cambridge, UK
Marie-José Messias
Department of Geography, University of Exeter, Exeter, UK
Herlé Mercier
Laboratoire d'Océanographie Physique et Spatiale, University of Brest, CNRS, Brest, France
David P. Marshall
Department of Physics, University of Oxford, Oxford, UK
Helen L. Johnson
Department of Earth Sciences, University of Oxford, Oxford, UK
Related authors
No articles found.
Helene Asbjørnsen, Tor Eldevik, Johanne Skrefsrud, Helen L. Johnson, and Alejandra Sanchez-Franks
Ocean Sci., 20, 799–816, https://doi.org/10.5194/os-20-799-2024, https://doi.org/10.5194/os-20-799-2024, 2024
Short summary
Short summary
The Gulf Stream system is essential for northward ocean heat transport. Here, we use observations along the path of the extended Gulf Stream system and an observationally constrained ocean model to investigate variability in the Gulf Stream system since the 1990s. We find regional differences in the variability between the subtropical, subpolar, and Nordic Seas regions, which warrants caution in using observational records at a single latitude to infer large-scale circulation change.
Herlé Mercier, Damien Desbruyères, Pascale Lherminier, Antón Velo, Lidia Carracedo, Marcos Fontela, and Fiz F. Pérez
Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, https://doi.org/10.5194/os-20-779-2024, 2024
Short summary
Short summary
We study the Atlantic Meridional Overturning Circulation (AMOC) measured between Greenland and Portugal between 1993–2021. We identify changes in AMOC limb volume and velocity as two major drivers of AMOC variability at subpolar latitudes. Volume variations dominate on the seasonal timescale, while velocity variations are more important on the decadal timescale. This decomposition proves useful for understanding the origin of the differences between AMOC time series from different analyses.
Oliver John Tooth, Helen Louise Johnson, Chris Wilson, and Dafydd Gwyn Evans
Ocean Sci., 19, 769–791, https://doi.org/10.5194/os-19-769-2023, https://doi.org/10.5194/os-19-769-2023, 2023
Short summary
Short summary
This study uses the trajectories of water parcels traced within an ocean model simulation to identify the pathways responsible for the seasonal cycle of dense water formation (overturning) in the eastern subpolar North Atlantic. We show that overturning seasonality is due to the fastest water parcels circulating within the eastern basins in less than 8.5 months. Slower pathways set the average strength of overturning in this region since water parcels cannot escape intense wintertime cooling.
Noam S. Vogt-Vincent, Satoshi Mitarai, and Helen L. Johnson
EGUsphere, https://doi.org/10.5194/egusphere-2023-778, https://doi.org/10.5194/egusphere-2023-778, 2023
Preprint archived
Short summary
Short summary
Coral larvae can drift through ocean currents between coral reefs, establishing connectivity, which plays an important role in coral reef resilience. However, larval transport is chaotic. We simulate coral spawning events across the tropical southwest Indian Ocean for almost three decades, and find that larval transport can vary massively from day-to-day. This variability is largely random, and this introduces a lot of uncertainty in connectivity predictions.
Noam S. Vogt-Vincent and Helen L. Johnson
Geosci. Model Dev., 16, 1163–1178, https://doi.org/10.5194/gmd-16-1163-2023, https://doi.org/10.5194/gmd-16-1163-2023, 2023
Short summary
Short summary
Ocean currents transport things over large distances across the ocean surface. Predicting this transport is key for tackling many environmental problems, such as marine plastic pollution and coral reef resilience. However, doing this requires a good understanding ocean currents, which is currently lacking. Here, we present and validate state-of-the-art simulations for surface currents in the southwestern Indian Ocean, which will support future marine dispersal studies across this region.
Tillys Petit, Virginie Thierry, and Herlé Mercier
Ocean Sci., 18, 1055–1071, https://doi.org/10.5194/os-18-1055-2022, https://doi.org/10.5194/os-18-1055-2022, 2022
Short summary
Short summary
The Iceland–Scotland Overflow Water is a dense water carried within the lower limb of the Atlantic Meridional Overturning Circulation. From a combination of ship-based and Deep-Argo data gathered between 2015 and 2018, our study analyzes the pathways and evolution of its properties as it flows through a main fracture of the Reykjanes Ridge, the Bight Fracture Zone (BFZ). We show that 0.8 ± 0.2 Sv of ISOW flows through the BFZ and is mainly homogenized within the rift valley of the ridge.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Jan D. Zika, Jean-Baptiste Sallée, Andrew J. S. Meijers, Alberto C. Naveira-Garabato, Andrew J. Watson, Marie-Jose Messias, and Brian A. King
Ocean Sci., 16, 323–336, https://doi.org/10.5194/os-16-323-2020, https://doi.org/10.5194/os-16-323-2020, 2020
Short summary
Short summary
The ocean can regulate climate by distributing heat and carbon dioxide into its interior. This work has resulted from a major experiment aimed at understanding how that distribution occurs. In the experiment an artificial tracer was released into the ocean. After release the tracer was tracked as it was distorted by ocean currents. Using novel methods we reveal how the tracer's distortions follow the movement of the underlying water masses in the ocean and we estimate the rate at which it mixes.
Patricia Zunino, Herlé Mercier, and Virginie Thierry
Ocean Sci., 16, 99–113, https://doi.org/10.5194/os-16-99-2020, https://doi.org/10.5194/os-16-99-2020, 2020
Short summary
Short summary
The region south of Cape Farewell (SCF) is recognized as a deep convection site. Convection deeper than 1300 m occurred SCF in 2015 and persisted during three additional winters. Extreme air–sea buoyancy fluxes caused the 2015 event. For the following winters, air–sea fluxes were close to the climatological average, but local cooling above 800 m and the advection below 1200 m of a fresh anomaly from the Labrador Sea decreased stratification and allowed for the persistence of deep convection.
Damien G. Desbruyères, Herlé Mercier, Guillaume Maze, and Nathalie Daniault
Ocean Sci., 15, 809–817, https://doi.org/10.5194/os-15-809-2019, https://doi.org/10.5194/os-15-809-2019, 2019
Short summary
Short summary
In the North Atlantic, ocean currents transport warm waters northward in the upper water column, and cold waters southwards at depth. This circulation is here reconstructed from surface data and thermodynamics theory. Its driving role in recent temperature changes (1993–2017) in the North Atlantic is evidenced, and predictions of near-future variability (5 years) are provided and discussed.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Virginie Racapé, Patricia Zunino, Herlé Mercier, Pascale Lherminier, Laurent Bopp, Fiz F. Pérèz, and Marion Gehlen
Biogeosciences, 15, 4661–4682, https://doi.org/10.5194/bg-15-4661-2018, https://doi.org/10.5194/bg-15-4661-2018, 2018
Short summary
Short summary
This study of a model–data comparison investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. It reveals the key role played by Central Water for storing Cant in the subtropical region and for supplying Cant into the deep ocean. The Cant transfer to the deep ocean occurred mainly north of the OVIDE section, and just a small fraction was exported to the subtropical gyre within the lower MOC.
Maribel I. García-Ibáñez, Fiz F. Pérez, Pascale Lherminier, Patricia Zunino, Herlé Mercier, and Paul Tréguer
Biogeosciences, 15, 2075–2090, https://doi.org/10.5194/bg-15-2075-2018, https://doi.org/10.5194/bg-15-2075-2018, 2018
Patricia Zunino, Pascale Lherminier, Herlé Mercier, Nathalie Daniault, Maribel I. García-Ibáñez, and Fiz F. Pérez
Biogeosciences, 14, 5323–5342, https://doi.org/10.5194/bg-14-5323-2017, https://doi.org/10.5194/bg-14-5323-2017, 2017
Short summary
Short summary
The heat content in the subpolar North Atlantic is in a new phase of long-term decrease from the mid-2000s, which intensified in 2013–2014. We focus on the pronounced heat content drop. In summer 2014, the MOC intensity was higher than the mean (2002–2012) and the heat transport was also relatively high. We show that the air–sea heat flux is responsible for most of the intense cooling. Concurrently, we observed freshwater content increase mainly explained by the air–sea freshwater flux.
Maribel I. García-Ibáñez, Patricia Zunino, Friederike Fröb, Lidia I. Carracedo, Aida F. Ríos, Herlé Mercier, Are Olsen, and Fiz F. Pérez
Biogeosciences, 13, 3701–3715, https://doi.org/10.5194/bg-13-3701-2016, https://doi.org/10.5194/bg-13-3701-2016, 2016
Short summary
Short summary
We assessed the progressive acidification (pH decrease) of the North Atlantic waters from direct observations between 1991 and 2015. The greatest pH decreases were observed in surface and intermediate waters. We conclude that the observed pH decreases are a consequence of the oceanic uptake of anthropogenic CO2. In addition we find that they have been partially offset by alkalinity increases.
P. Zunino, M. I. Garcia-Ibañez, P. Lherminier, H. Mercier, A. F. Rios, and F. F. Pérez
Biogeosciences, 11, 2375–2389, https://doi.org/10.5194/bg-11-2375-2014, https://doi.org/10.5194/bg-11-2375-2014, 2014
Related subject area
Approach: Numerical Models | Properties and processes: Overturning circulation, gyres and water masses
North Atlantic Subtropical Mode Water properties: intrinsic and atmospherically forced interannual variability
The formation and ventilation of an oxygen minimum zone in a simple model for latitudinally alternating zonal jets
Long-term Variability and Trends of Agulhas Leakage and its Impacts on the Global Overturning
Persistent climate model biases in the Atlantic Ocean's freshwater transport
Dependency of simulated tropical Atlantic current variability on the wind forcing
Altered Weddell Sea warm- and dense-water pathways in response to 21st-century climate change
Assessing the drift of fish aggregating devices in the tropical Pacific Ocean
Assessment of Indonesian Throughflow transports from ocean reanalyses with mooring-based observations
Olivier Narinc, Thierry Penduff, Guillaume Maze, Stéphanie Leroux, and Jean-Marc Molines
Ocean Sci., 20, 1351–1365, https://doi.org/10.5194/os-20-1351-2024, https://doi.org/10.5194/os-20-1351-2024, 2024
Short summary
Short summary
This study examines how the ocean's chaotic variability and atmospheric fluctuations affect yearly changes in North Atlantic Subtropical Mode Water (STMW) properties, using an ensemble of realistic ocean simulations. Results show that while yearly changes in STMW properties are mostly paced by the atmosphere, a notable part of these changes are random in phase. This study also illustrates the value of ensemble simulations over single runs in understanding oceanic fluctuations and their causes.
Eike E. Köhn, Richard J. Greatbatch, Peter Brandt, and Martin Claus
Ocean Sci., 20, 1281–1290, https://doi.org/10.5194/os-20-1281-2024, https://doi.org/10.5194/os-20-1281-2024, 2024
Short summary
Short summary
The latitudinally alternating zonal jets are a ubiquitous feature of the ocean. We use a simple model to illustrate the potential role of these jets in the formation, maintenance, and multidecadal variability in the oxygen minimum zones, using the eastern tropical North Atlantic oxygen minimum zone as an example.
Hendrik Grosselindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2288, https://doi.org/10.5194/egusphere-2024-2288, 2024
Short summary
Short summary
This study investigates Agulhas Leakage and examines its role in the global ocean circulation. It utilises a high-resolution earth system model and a pre-industrial climate to look at the response of Agulhas Leakage to the wind field and the Atlantic Meridional Overturning Circulation (AMOC) as well as its evolution under climate change. Agulhas Leakage influences the stability of the AMOC whose possible collapse would impact the global climate on the Northern Hemisphere.
René M. van Westen and Henk A. Dijkstra
Ocean Sci., 20, 549–567, https://doi.org/10.5194/os-20-549-2024, https://doi.org/10.5194/os-20-549-2024, 2024
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) is an important component in the global climate system. Observations of the present-day AMOC indicate that it may weaken or collapse under global warming, with profound disruptive effects on future climate. However, AMOC weakening is not correctly represented because an important feedback is underestimated due to biases in the Atlantic's freshwater budget. Here we address these biases in several state-of-the-art climate model simulations.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Cara Nissen, Ralph Timmermann, Mathias van Caspel, and Claudia Wekerle
Ocean Sci., 20, 85–101, https://doi.org/10.5194/os-20-85-2024, https://doi.org/10.5194/os-20-85-2024, 2024
Short summary
Short summary
The southeastern Weddell Sea is important for global ocean circulation due to the cross-shelf-break exchange of Dense Shelf Water and Warm Deep Water, but their exact circulation pathways remain elusive. Using Lagrangian model experiments in an eddy-permitting ocean model, we show how present circulation pathways and transit times of these water masses on the continental shelf are altered by 21st-century climate change, which has implications for local ice-shelf basal melt rates and ecosystems.
Philippe F. V. W. Frankemölle, Peter D. Nooteboom, Joe Scutt Phillips, Lauriane Escalle, Simon Nicol, and Erik van Sebille
Ocean Sci., 20, 31–41, https://doi.org/10.5194/os-20-31-2024, https://doi.org/10.5194/os-20-31-2024, 2024
Short summary
Short summary
Tuna fisheries in the Pacific often use drifting fish aggregating devices (dFADs) to attract fish that are advected by subsurface flow through underwater appendages. Using a particle advection model, we find that virtual particles advected by surface flow are displaced farther than virtual dFADs. We find a relation between El Niño–Southern Oscillation and circular motion in some areas, influencing dFAD densities. This information helps us to understand processes that drive dFAD distribution.
Magdalena Fritz, Michael Mayer, Leopold Haimberger, and Susanna Winkelbauer
Ocean Sci., 19, 1203–1223, https://doi.org/10.5194/os-19-1203-2023, https://doi.org/10.5194/os-19-1203-2023, 2023
Short summary
Short summary
The interaction between the Indonesian Throughflow (ITF) and regional climate phenomena indicates the high relevance for monitoring the ITF. Observations remain temporally and spatially limited; hence near-real-time monitoring is only possible with reanalyses. We assess how well ocean reanalyses depict the intensity of the ITF via comparison to observations. The results show that reanalyses agree reasonably well with in situ observations; however, some aspects require higher-resolution products.
Cited articles
Antonov, J. I., Seidov, D., Boyer, T. P., Locarnini, R. A., Mishonov, A. V., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Vol. 2, Salinity, Washington, DC, NOAA Atlas NESDIS 69, U.S. Government Printing Office, https://www.ncei.noaa.gov/sites/default/files/2020-04/woa09_vol2_text.pdf (last access: 5 September 2023), 2010.
Boland, E. J. D., Jones, D. C., Meijers, A. J. S., Forget, G., and Josey, S. A.: Local and remote influences on the heat content of Southern Ocean mode water formation regions, J. Geophys. Res.-Ocean., 126, e2020JC016585, https://doi.org/10.1029/2020JC016585 2021.
Böning, C. W., Rhein, M., Dengg, J., and Dorow, C.: Modeling CFC inventories and formation rates of Labrador Sea Water, Geophys. Res. Lett., 30, 1050, https://doi.org/10.1029/2002GL014855, 2, 2003.
Brambilla, E., Talley, L. D., and Robbins, P. E.: Subpolar Mode Water in the northeastern Atlantic: 2. Origin and transformation, J. Geophys. Res., 113, C04026, https://doi.org/10.1029/2006JC004063, 2008.
Campin, J.-M., Heimbach, P., Losch, M., Forget, G., Hill, E., Adcroft, A., amolod, Menemenlis, D., Ferreira, D., Jahn, O., Hill, C., Scott, J., stephdut, Mazloff, M., Fox-Kemper, B., Nguyen, A, Doddridge, E., Fenty, I., Bates, M., Smith, T., Eichmann, A., Heisey, C. W., Lauderdale, J., Martin, T., Abernathey, R., Wang, O., Khatiwala, S., Goldberg, D. N., Zhang, H., and Deremble, B.: MITgcm/MITgcm: ckeckpoint68r (Version checkpoint68r), Zenodo [code], https://doi.org/10.5281/zenodo.8208482, 2023.
Crameri, F.: Scientific colour maps, Zenodo, https://doi.org/10.5281/zenodo.1243862, 2018.
Crameri, F., Shephard, G. E., and Heron, P. J.: The misuse of colour in science communication, Nat. Commun., 11, 5444, https://doi.org/10.1038/s41467-020-19160-7, 2020.
Curry, R. G., McCartney, M. S., and Joyce, T. M.: Oceanic transport of subpolar climate signals to mid-depth subtropical waters, Nature, 391, 575–577, 1998.
Czeschel, L.: The role of eddies for the deep water formation in the Labrador Sea, Ph.D. thesis, Kiel University, Leibniz-Institut für Meereswissenschaften, https://oceanrep.geomar.de/id/eprint/997/1/d1342.pdf (last access: 5 September 2023), 2004.
Czeschel, L., Marshall, D. P., and Johnson, H. L.: Oscillatory sensitivity of Atlantic overturning to high-latitude forcing, Geophys. Res. Lett., 37, L10601, https://doi.org/10.1029/2010GL043177, 2010.
de Jong, M. F., Bower, A. S., and Furey, H. H.: Two years of observations of warm-core anticyclones in the Labrador Sea and their seasonal cycle in heat and salt stratification, J. Phys. Oceanogr., 44, 427–444, https://doi.org/10.1175/JPO-D-13-070.1, 2014.
Desbruyères, D. G., McDonagh, E. L., King, B. A., Garry, F. K., Blaker, A. T., Moat, B. I., and Mercier, H.: Full-depth temperature trends in the northeastern Atlantic through the early 21st century, Geophys. Res. Lett., 41, 7971–7979, https://doi.org/10.1002/2014GL061844, 2014.
Desbruyères, D. G., Mercier, H., Maze, G., and Daniault, N.: Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic, Ocean Sci., 15, 809–817, https://doi.org/10.5194/os-15-809-2019, 2019.
Dickson, R. R., Lazier, J., Meincke, J., Rhines, P., and Swift, J.: Longterm coordinated changes in the convective activity of the North Atlantic, Prog. Oceanogr., 38, 241–295, 1996.
ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.: Synopsis of the ECCO Central Production Global Ocean and Sea-Ice State Estimate, Version 4 Release 4, Zenodo, https://doi.org/10.5281/zenodo.4533349, 2021.
ECCO Consortium, Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.: ECCO Central Estimate (Version 4), https://ecco.jpl.nasa.gov/drive/ (last access: 5 September 2023), 2023.
Feucher, C. E., Garcia-Quintana, Y., Yashayaev, I., Hu, X., and Myers, P. G.: Labrador Sea Water formation rate and its impact on the local Meridional Overturning Circulation, J. Geophys. Res.-Ocean., 124, 5654–5670, https://doi.org/10.1029/2019JC015065, 2019.
Fine, R. A., Rhein, M., and Andrié, C.: Using a CFC effective age to estimate propagation and storage of climate anomalies in the deep western North Atlantic, Geophys. Res. Lett., 29, 2227–2230. https://doi.org/10.1029/2002GL015618, 2002.
Florindo-López, C., Bacon, S., Aksenov, Y., Chafik, L., Colbourne, E., and Holliday, N. P.: Arctic Ocean and Hudson Bay Freshwater Exports: New Estimates from Seven Decades of Hydrographic Surveys on the Labrador Shelf, J. Clim., 33, 8849–8868, https://doi.org/10.1175/JCLI-D-19-0083.1, 2020.
Forget, G. and Fenty, I.: gaelforget/ECCOv4: (v1.11), Zenodo [code], https://doi.org/10.5281/zenodo.8384906, 2023.
Forget, G., Campin, J. M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCOv4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015.
Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.: ECCOv4 Release 3, MIT Libraries, http://hdl.handle.net/1721.1/110380 (last access: 5 September 2023), 2017.
Garcia-Quintana, Y., Courtois, P., Hu, X., Pennelly, C., Kieke, D., and Myers, P. G.: Sensitivity of Labrador Sea Water formation to changes in model resolution, atmospheric forcing, and freshwater input, J. Geophys. Res.-Ocean., 124, 2126–2152, https://doi.org/10.1029/2018JC014459, 2019.
Gelderloos, R., Katsman, C. A., and Drijfhout, S. S.: Assessing the roles of three eddy types in restratifying the Labrador Sea after deep convection, J. Phys. Oceanogr., 41, 2102–2119, https://doi.org/10.1175/JPO-D-11-054.1, 2011.
Gerdes, R., Hurka, J., Karcher, M., Kauker, F., and Köberle, C.: Simulated history of convection in the Greenland and Labrador Seas 1948–2001, AGU, Geophys. Monogr. Ser., 158, 370 pp., 2005.
Giering, R.: Transformation of algorithms in Fortran Version 1.15 (TAF Version 1.9.70), FastOpt, http://www.fastopt.com/products/taf/taf.shtml (last access: 15 July 2022), 2010.
Gou, R., Li, P., Wiegand, K. N., Pennelly, C., Kieke, D., and Myers, P. G.: Variability of Eddy Formation off the West Greenland Coast from a 1/60° Model, J. Phys. Oceanogr., 53, 2475–2490, https://doi.org/10.1175/JPO-D-23-0004.1, 2023.
Haine, T., Böning, C., Brandt, P., Fischer, J., Funk, A., Kieke, D., Kvaleberg, E., Rhein, M., and Visbeck, M.: North Atlantic Deep Water formation in the Labrador Sea, recirculation through the subpolar gyre, and discharge to the subtropics, Arctic-Subarctic ocean fluxes, Netherlands, Dordrecht, Springer, 653–701, https://doi.org/10.1007/978-1-4020-6774-7_28, 2008.
Hakkinen, S. and Rhines, P. B.: Shifting surface currents in the northern North Atlantic Ocean, J. Geophys. Res., 114, C04005, https://doi.org/10.1029/2008JC004883, 2009.
Hátún, H., Eriksen, C. C., and Rhines, P. B.: Buoyant eddies entering the Labrador Sea observed with gliders and altimetry, J. Phys. Oceanogr., 37, 2838–2854, https://doi.org/10.1175/2007JPO3567.1, 2007.
Heimbach, P., Wunsch, C., Ponte, R. M., Forget, G., Hill, C., and Utke, J.: Timescales and regions of the sensitivity of Atlantic meridional volume and heat transport: Toward observing system design, Deep-Sea Res. Pt. II, 58, 1858–1879, https://doi.org/10.1016/j.dsr2.2010.10.065, 2011.
Heimbach, P., Fukumori, I., Hill, C. N., Ponte, R. M., Stammer, D., Wunsch, C., Campin, J.-M., Cornuelle, B., Fenty, I., Forget, G., Köhl, A., Mazloff, M., Menemenlis, D., Nguyen, A. T., Piecuch, C., Trossman, D., Verdy, A., Wang, O., and Zhang, H.: Putting It All Together: Adding Value to the Global Ocean and Climate Observing Systems With Complete Self-Consistent Ocean State and Parameter Estimates, Front. Mar. Sci., 6, 55, https://doi.org/10.3389/fmars.2019.00055, 2019.
Holdsworth, A. M. and Myers, P. G.: The Influence of high-frequency atmospheric forcing on the circulation and deep convection of the Labrador Sea, J. Clim., 28, 4980–4996, https://doi.org/10.1175/JCLI-D-14-00564.1, 2015.
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S., Florindo-López, C., Hátún, H., Johns, W., Josey, S. A., Larsen, K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V., Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the largest freshening event for 120 years in eastern subpolar North Atlantic, Nat. Commun., 11, 585, https://doi.org/10.1038/s41467-020-14474-y, 2020.
Houpert, L., Inall, M. E., Dumont, E., Gary, S., Johnson, C., Porter, M., Johns, W. E., and Cunningham, S. A.: Structure and transport of the north atlantic current in the Eastern Subpolar Gyre from sustained glider observations, J. Geophys. Res.-Ocean., 123, 6019–6038, https://doi.org/10.1029/2018JC014162, 2018.
Jackson, L. C., Dubois, C., Forget, G., Haines, K., Harrison, M., Iovino, D., Köhl, A., Mignac, D., Masina, S., Peterson, K. A., Piecuch, C. G., Roberts, C. D., Robson, J., Storto, A., Toyoda, T., Valdivieso, M., Wilson, C., Wang, Y., and Zuo, H.: The mean state and variability of the North Atlantic circulation: A perspective from ocean reanalyses, J. Geophys. Res.-Ocean., 124, 9141–9170, https://doi.org/10.1029/2019JC015210, 2019.
Jones, D. C., Forget, G., Sinha, B., Josey, S. A., Boland, E. J. D., Meijers, A. J. S., and Shuckburgh, E.: Local and remote influences on the heat content of the Labrador sea: an adjoint sensitivity study, J. Geophys. Res.-Ocean., 123, 2646–2667, https://doi.org/10.1002/2018JC013774, 2018.
Jones, S. C., Fraser, N. J., Cunningham, S. A., Fox, A. D., and Inall, M. E.: Observation-based estimates of volume, heat, and freshwater exchanges between the subpolar North Atlantic interior, its boundary currents, and the atmosphere, Ocean Sci., 19, 169–192, https://doi.org/10.5194/os-19-169-2023, 2023.
Jung, T., Serrar, S., and Wang, Q.: The oceanic response to mesoscale atmospheric forcing, Geophys. Res. Lett., 41, 1255–1260, https://doi.org/10.1002/2013GL059040, 2014.
Jutras, M., Dufour, C. O., Mucci, A., and Talbot, L. C.: Large-scale control of the retroflection of the Labrador Current, Nat. Commun., 14, 2623, https://doi.org/10.1038/s41467-023-38321-y, 2023.
Khatiwala, S. and Visbeck, M.: An estimate of the eddy-induced circulation in the Labrador Sea, Geophys. Res. Lett., 27, 2277–2280, https://doi.org/10.1029/1999GL011073, 2000.
Kieke, D. and Yashayaev, I.: Studies of Labrador Sea Water formation and variability in the subpolar North Atlantic in the light of international partnership and collaboration, Prog. Oceanogr., 132, 220–232, https://doi.org/10.1016/j.pocean.2014.12.010, 2015.
Koelling, J., Atamanchuk, D., Karstensen, J., Handmann, P., and Wallace, D. W. R.: Oxygen export to the deep ocean following Labrador Sea Water formation, Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, 2022.
Kostov, Y.: LSW-Volume: Surface factors controlling the volume of accumulated Labrador Sea Water, Zenodo [code], https://zenodo.org/records/10909254 (last access: 3 April 2024), 2024.
Kostov, Y., Johnson, H. L., and Marshall, D. P.: AMOC sensitivity to surface buoyancy fluxes: the role of air–sea feedback mechanisms, Clim. Dynam., 53, 4521–4537, https://doi.org/10.1007/s00382-019-04802-4, 2019.
Kostov, Y., Johnson, H. L., Marshall, D. P., Heimbach, P., Forget, G., Holliday, N. P., Lozier, M. S., Li, F., Pillar, H. R., and Smith, T.: Distinct sources of interannual subtropical and subpolar Atlantic overturning variability, Nat. Geosci., 14, 491–495, https://doi.org/10.1038/s41561-021-00759-4, 2021.
Kostov, Y., Messias, M. J., Mercier, H., Johnson, H. L., and Marshall, D. P.: Fast mechanisms linking the Labrador Sea with subtropical Atlantic overturning, Clim. Dynam., 60, 2687–2712, https://doi.org/10.1007/s00382-022-06459-y, 2022.
Lazier, J., Hendry, R., Clarke, A., Yashayaev, I., and Rhines, P.: Convection and restratification in the Labrador Sea, 1990–2000, Deep-Sea Res. Pt. I., 49, 1819-1835, https://doi.org/10.1016/S0967-0637(02)00064-X, 2002.
LeBel, D. A., Smethie, W. M., Rhein, M., Kieke, D., Fine, R. A., Bullister, J. L., Min, D.-H., Roether, W., Weiss, R. F., Andrié, C., Smythe-Wright, D., and Jones, E. P.: The formation rate of North Atlantic Deep Water and Eighteen DegreeWater calculated fromCFC-11 inventories observed duringWOCE, Deep-Sea Res. Pt. I., 55, 891–910, https://doi.org/10.1016/j.dsr.2008.03.009, 2008.
Li, F., Lozier, M. S., Danabasoglu, G., Holliday, N. P., Kwon, Y.-O., Romanou, A., Yeager, S. G., and Zhang, R.: Local and Downstream Relationships between Labrador Sea Water Volume and North Atlantic Meridional Overturning Circulation Variability, J. Clim., 32, 3883–3898, https://doi.org/10.1175/JCLI-D-18-0735.1, 2019.
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R.: World Ocean Atlas 2009, Vol. 1, Temperature. Washington, DC, NOAA Atlas NESDIS 68, U.S. Government Printing Office, https://www.ncei.noaa.gov/sites/default/files/2020-04/woa09_vol1_text.pdf (last access: 5 September 2023), 2010.
Loose, N., Heimbach, P., Pillar, H. R., and Nisancioglu, K. H.: Quantifying dynamical proxy potential through shared adjustment physics in the North Atlantic, J. Geophys. Res.-Ocean., 125, e2020JC016112, https://doi.org/10.1029/2020JC016112, 2020.
Lozier, M. S., Gary, S. F., and Bower, A. S.: Simulated pathways of the overflow waters in the North Atlantic: Subpolar to subtropical export Deep-Sea Res. Pt. II, 85, 147–153, https://doi.org/10.1016/j.dsr2.2012.07.037, 2012.
Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong, M. F., de Steur, L., Deyoung, B., Fischer, J., Gary, S. F., Greenan, B. J. W., Heimbach, P., Holliday, N. P., Houpert, L., Inall, M. E., Johns, W. E., Johnson, H. L., Karstensen, J., Li, F., Lin, X., Mackay, N., Marshall, D. P., Mercier, H., Myers, P. G., Pickart, R. S., Pillar, H. R., Straneo, F., Thierry, V., Weller, R. A., Williams, R. G., Wilson, C., Yang, J., Zhao, J., and Zika, J. D.: Overturning in the Subpolar North Atlantic Program: A New International Ocean Observing System, Bull. Am. Meteorol. Soc., 98, 737–752, https://doi.org/10.1175/BAMS-D-16-0057.1, 2017.
Mackay, N., Wilson, C., Zika, J., and Holliday, N. P.: A Regional Thermohaline Inverse Method for Estimating Circulation and Mixing in the Arctic and Subpolar North Atlantic, J. Atmos. Ocean. Technol., 35, 2383–2403, https://doi.org/10.1175/JTECH-D-17-0198.1, 2018.
Mackay, N. S., Wilson, C., Holliday, P., and Zika, J. D.: The observation-based application of a Regional Thermohaline Inverse Method to diagnose the formation and transformation of Labrador Sea water from 2013–2015, J. Phys. Oceanogr., 50, 1533–1555, https://doi.org/10.1175/JPO-D-19-0188.1, 2020.
Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory, and models, Rev. Geophys., 37, 1–64, https://doi.org/10.1029/98RG02739, 1999.
Marshall, J., Hill, C., Perelman, L., and Adcroft, A.: Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling, J. Geophys. Res., 102, 5733–5752, https://doi.org/10.1029/96JC02776, 1997.
Marotzke, J., Giering, R., Zhang, K. Q., Stammer, D., Hill, C., and Lee, T.: Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity, J. Geophys. Res., 104, 29529–29547, https://doi.org/10.1029/1999JC900236, 1999.
McCartney, M. S. and Talley, L. D.: The Subpolar Mode Water of the North Atlantic, J. Phys. Oceanogr., 12, 1169–1188, 1982.
Messias, M. J. and Mercier, H.: The redistribution of anthropogenic excess heat is a key driver of warming in the North Atlantic, Commun. Earth Environ., 3, 118, https://doi.org/10.1038/s43247-022-00443-4, 2022.
NOAA: National Weather Service, North Atlantic Oscillation (NAO): https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml (last access: 21 October 2022), 2005.
Oldenburg, D. D., Wills, R. C. J., Armour, K. C., Thompson, L., and Jackson, L. C.: Mechanisms of Low-Frequency Variability in North Atlantic Ocean Heat Transport and AMOC, J. Clim., 34, 4733–4755, https://doi.org/10.1175/JCLI-D-20-0614.1, 2021.
Ortega, P., Robson, J., Sutton, R. T., and Andrews, M. B.: Mechanisms of decadal variability in the Labrador Sea and the wider North Atlantic in a high-resolution climate model, Clim. Dynam., 49, 2625–2647, https://doi.org/10.1007/s00382-016-3467-y, 2017.
Pérez, F. F., Vázquez-Rodríguez, M., Mercier, H., Velo, A., Lherminier, P., and Ríos, A. F.: Trends of anthropogenic CO2 storage in North Atlantic water masses, Biogeosciences 7, 1789–1807, https://doi.org/10.5194/bg-7-1789-2010, 2010.
Pérez, F. F., Mercier, H., Vázquez-Rodríguez, M., Lherminier, P., Velo, A., Pardo, P. C., Rosón, G., and Ríos, A. F.: Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation, Nat. Geosci., 6, 146–152, https://doi.org/10.1038/ngeo1680, 2013.
Petit, T., Lozier, M. S., Josey, S. A., and Cunningham, S. A.: Atlantic deep water formation occurs primarily in the Iceland Basin and Irminger Sea by local buoyancy forcing, Geophys. Res. Lett., 47, e2020GL091028, https://doi.org/10.1029/2020GL091028, 2020.
Petit, T., Lozier, M. S., Josey, S. A., and Cunningham, S. A.: Role of air–sea fluxes and ocean surface density in the production of deep waters in the eastern subpolar gyre of the North Atlantic, Ocean Sci., 17, 1353–1365, https://doi.org/10.5194/os-17-1353-2021, 2021.
Petit, T., Robson, J., Ferreira, D., and Jackson, L. C.: Understanding the sensitivity of the North Atlantic subpolar overturning in different resolution versions of HadGEM3-GC3.1, J. Geophys. Res.-Ocean., 128, e2023JC019672, https://doi.org/10.1029/2023JC019672, 2023.
Pickart, R. S., Straneo, F., and Moore, G.: Is Labrador Sea Water formed in the Irminger basin?, Deep-Sea Res. Pt. I, 50, 23–52, https://doi.org/10.1016/S0967-0637(02)00134-6, 2003a.
Pickart, R. S., Spall, M. A., Ribergaard, M. H., Moore, G. W., and Milliff, R. F.: Deep convection in the Irminger Sea forced by the Greenland tip jet, Nature, 10, 152–156, https://doi.org/10.1038/nature01729, 2003b.
Pillar, H., Heimbach, P., Johnson, H., and Marshall, D.: Dynamical attribution of recent variability in Atlantic overturning, J. Clim., 29, 3339–3352, https://doi.org/10.1175/JCLI-D-15-0727.1, 2016.
Raj, R. P., Nilsen, J. E. Ø., Johannessen, J. A., Furevik, T., Andersen, O. B., and Bertino, L.: Quantifying Atlantic Water transport to the Nordic Seas by remote sensing, Remote Sens. Environ., 216, 758–769, https://doi.org/10.1016/j.rse.2018.04.055, 2018.
Raj, R. P., Chatterjee, S., Bertino, L., Turiel, A., and Portabella, M.: The Arctic Front and its variability in the Norwegian Sea, Ocean Sci., 15, 1729–1744, https://doi.org/10.5194/os-15-1729-2019, 2019.
Rhein, M., Fischer, J., Smethie, W. M., Smythe-Wright, D., Weiss, R. F., Mertens, C., Min, D.-H., Fleischmann, U., and Putzka, A.: Labrador SeaWater: pathways, CFC inventory, and formation rates, J. Phys. Oceanogr., 32, 648–665, https://doi.org/10.1175/1520-0485(2002)032<0648:LSWPCI>2.0.CO;2, 2002.
Rhein, M., Kieke, D., and Steinfeldt, R.: Advection of North Atlantic Deep Water from the Labrador Sea to the southern hemisphere, J. Geophys. Res., 20, 2471–2487, https://doi.org/10.1002/2014JC010605, 2015.
Rhein, M., Steinfeldt, R., Kieke, D., Stendardo, I., and Yashayaev, I.: Ventilation variability of Labrador Sea Water and its impact on oxygen and anthropogenic carbon: a review, Philos. T. R. Soc. A, 375, 20160321, https://doi.org/10.1098/rsta.2016.0321, 2017.
Riser, S. C., Freeland, H. J., Roemmich, D., Wijffels, S., Troisi, A., Belbéoch, M., Gilbert, D., Xu, J., Pouliquen, S., Thresher, A., Le Traon, P. Y., Maze, G., Klein, B., Ravichandran, M., Grant, F., Poulain, P. M., Suga, T., Lim, B., Sterl, A., Sutton, P., Mork, K. A., Vélez-Belchí, P. J., Ansorge, I., King, B., Turton, J., Baringer, M., and Jayne, S. R.: Fifteen years of ocean observations with the global Argo array, Nat. Clim. Change, 6, 145–153, https://doi.org/10.1038/nclimate2872, 2016.
Roemmich, D., Johnson, G., Riser, S., Davis, R., Gilson, J., Owens, W. B., Garzoli, S. L., Schmid, C., and Ignaszewski, M.: The argo program: observing the global oceans with profiling floats, Oceanography, 22, 34–43, https://doi.org/10.5670/oceanog.2009.36, 2009.
Roquet, F., Wunsch, C., Forget, G., Heimbach, P., Guinet, C., Reverdin, G., Charrassin, J.-B., Bailleul, F., Costa, D. P., Huckstadt, L. A., Goetz, K. T., Kovacs, K. M., Lydersen, C., Biuw, M., Nøst, O. A., Bornemann, H., Ploetz, J., Bester, M. N., Mcintyre, T., Muelbert, M. C., Hindell, M. A., McMahon, C. R., Williams, G., Harcourt, R., Field, I. C., Chafik, L., Nicholls, K. W., Boehme, L., and Fedak, M. A.: Estimates of the Southern Ocean general circulation improved by animal-borne instruments, Geophys. Res. Lett., 40, 6176–6180, https://doi.org/10.1002/2013GL058304, 2013.
Roussenov, V. M., Williams, R. G., Lozier, M. S., Holliday, N. P., and Smith, D. M.: Historical reconstruction of subpolar North Atlantic overturning and its relationship to density, J. Geophys. Res., 127, e2021JC017732, https://doi.org/10.1029/2021JC017732, 2022.
Schulze, L. M., Pickart, R. S., and Moore, G. W. K.: Atmospheric forcing during active convection in the Labrador Sea and its impact on mixed-layer depth, J. Geophys. Res.-Ocean., 121, 6978–6992, https://doi.org/10.1002/2015JC011607, 2016.
Smith, T. and Heimbach, P.: Atmospheric origins of variability in the South Atlantic meridional overturning circulation, J. Clim., 32, 1483–1500, https://doi.org/10.1175/JCLI-D-18-0311.1, 2019.
Spall, M. A.: Boundary currents and watermass transformation in marginal seas, J. Phys. Oceanogr., 34, 1197–1213, 2004.
Speer, K. and Tziperman, E.: Rates of water mass formation in the North Atlantic ocean, J. Phys. Oceanogr., 22, 93–104, 1992
Steinfeldt, R., Rhein, M., Bullister, J. L., and Tanhua, T.: Inventory changes in anthropogenic carbon from 1997–2003 in the Atlantic Ocean between 20° S and 65° N, Global Biogeochem. Cy., 23, GB3010, https://doi.org/10.1029/2008GB003311, 2009.
Straneo, F., Pickart, R. S., and Lavender, K.: Spreading of Labrador sea water: an advective-diffusive study based on Lagrangian data, Deep-Sea Res. Pt. I, 50, 701–719, https://doi.org/10.1016/S0967-0637(03)00057-8, 2003.
Sy, A., Rhein, M., Lazier, J. R. N., Koltermann, K. P., Meincke, J., Putzka, A., and Bersch, M.: Surprisingly rapid spreading of newly formed intermediate waters across the North Atlantic Ocean, Nature, 386, 675–679, 1997.
Talley, L. D. and McCartney, M. S.: Distribution and Circulation of Labrador Sea Water, J. Phys. Oceanogr., 12, 1189–1205, https://doi.org/10.1175/1520-0485(1982)012<1189:DACOLS>2.0.CO;2, 1982.
Terenzi, F., Hall, T. M., Khatiwala, S., Rodehacke, C. B., and LeBel, D. A.: Uptake of natural and anthropogenic carbon by the Labrador Sea, Geophys. Res. Lett., 34, L06608, https://doi.org/10.1029/2006GL028543, 2007.
Våge, K., Pickart, R. S., Spall, M. A., Moore, G. W. K., Valdimarsson, H., Torres, D. J., Erofeeva, S. Y., and Nilsen, J. E. Ø.: Revised circulation scheme north of the Denmark Strait, Deep-Sea Res. Pt. I, 79, 20–39, https://doi.org/10.1016/j.dsr.2013.05.007, 2013.
Vinogradova, N. T., Ponte, R. M., Fukumori, I., and Wang, O.: Estimating satellite salinity errors for assimilation of Aquarius and MOS data into climate models, J. Geophys. Res.-Ocean., 119, 4732–4744, https://doi.org/10.1002/2014JC009906, 2014.
Walin, G.: On the relation between sea-surface heat flow and thermal circulation in the ocean, Tellus, 34, 187–195, 1982.
Weijer, W., Haine, T. W. N., Siddiqui, A. H., Cheng, W., Veneziani, M., and Kurtakoti, P.: Interactions between the Arctic Mediterranean and the Atlantic Meridional Overturning Circulation: A review, Oceanography, 35, 118–127, https://doi.org/10.5670/oceanog.2022.130, 2022.
Yashayaev, I.: Intensification and shutdown of deep convection in the Labrador Sea were caused by changes in atmospheric and freshwater dynamics, Commun. Earth Environ., 5, 156, https://doi.org/10.1038/s43247-024-01296-9, 2024.
Yashayaev, I. and Loder, J. W.: Enhanced production of Labrador Sea Water in 2008, Geophys. Res. Lett., 36, L01606, https://doi.org/10.1029/2008GL036162, 2009.
Yashayaev, I. and Loder, J. W.: Further intensification of deep convection in the Labrador Sea in 2016, Geophys. Res. Lett., 44, 1429–1438, https://doi.org/10.1002/2016GL071668, 2017.
Yashayaev, I., Bersch, M., and van Aken, H. M.: Spreading of the Labrador Sea Water to the Irminger and Iceland basins, Geophys. Res. Lett., 34, L10602, https://doi.org/10.1029/2006GL028999, 2007a.
Yashayaev, I., van Aken, H. M., Holliday, N. P., and Bersch, M.: Transformation of the Labrador Sea Water in the subpolar North Atlantic, Geophys. Res. Lett., 34, L22605, https://doi.org/10.1029/2007GL031812, 2007b.
Yeager, S., Castruccio, F., Chang, P., Danabasoglu, G., Maroon, E., Small, J., Wang, H., Wu, L., and Zhang, S.: An outsized role for the Labrador Sea in the multidecadal variability of the Atlantic overturning circulation, Sci. Adv. 7, eabh3592, https://doi.org/10.1126/sciadv.abh3592, 2021.
Zhao, J., Bower, A., Yang, J., Lin, X., and Holliday, N. P.: Meridional heat transport variability induced by mesoscale processes in the subpolar North Atlantic, Nat. Commun., 9, 1124, https://doi.org/10.1038/s41467-018-03134-x, 2018.
Zou, S. and Lozier, M. S.: Breaking the linkage between Labrador Sea Water production and its advective export to the subtropical gyre, J. Phys. Oceanogr., 46, 2169–2182, https://doi.org/10.1175/JPO-D-15-0210.1, 2016.
Short summary
We examine factors affecting variability in the volume of Labrador Sea Water (LSW), a water mass that is important for the uptake and storage of heat and carbon in the Atlantic Ocean. We find that LSW accumulated in the Labrador Sea exhibits a lagged response to remote conditions: surface wind stress, heat flux, and freshwater flux anomalies, especially along the pathways of the North Atlantic Current branches. We use our results to reconstruct and attribute historical changes in LSW volume.
We examine factors affecting variability in the volume of Labrador Sea Water (LSW), a water mass...