Articles | Volume 20, issue 1
https://doi.org/10.5194/os-20-241-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-241-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Numerical investigation of interaction between anticyclonic eddy and semidiurnal internal tide in the northeastern South China Sea
Liming Fan
Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266100/572024, China
Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266100/572024, China
Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266100/572024, China
Laoshan Laboratory, Qingdao, 266100, China
Jianing Li
Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, 266100/572024, China
Related authors
No articles found.
Jianing Li, Qingxuan Yang, and Hui Sun
Ocean Sci., 21, 829–849, https://doi.org/10.5194/os-21-829-2025, https://doi.org/10.5194/os-21-829-2025, 2025
Short summary
Short summary
The Osborn relation is widely used to estimate the diapycnal mixing rate, but its accuracy is questioned due to the assumed constant dissipation ratio (Γ) without identifying mixing types. We identify a salt finger and turbulence in the western Pacific and midlatitude Atlantic, finding that Γ is highly variable and related to turbulence parameters, through which we improve mixing rate estimates. Identifying mixing types and refining Γ are necessary to improve mixing parameterization accuracy.
Related subject area
Approach: Numerical Models | Properties and processes: Internal waves, turbulence and mixing
Coupled estimation of internal tides and turbulent motions via statistical modal decomposition
Non-negligible impact of Stokes drift and wave-driven Eulerian currents on simulated surface particle dispersal in the Mediterranean Sea
Process-based modelling of nonharmonic internal tides using adjoint, statistical, and stochastic approaches. Part I: statistical model and analysis of observational data
Seasonal variability in the semidiurnal internal tide – a comparison between sea surface height and energetics
Internal and forced ocean variability in the Mediterranean Sea
Internal tides off the Amazon shelf – Part 1: The importance of the structuring of ocean temperature during two contrasted seasons
Regional modeling of internal-tide dynamics around New Caledonia – Part 1: Coherent internal-tide characteristics and sea surface height signature
Igor Maingonnat, Gilles Tissot, and Noé Lahaye
Ocean Sci., 21, 807–827, https://doi.org/10.5194/os-21-807-2025, https://doi.org/10.5194/os-21-807-2025, 2025
Short summary
Short summary
The entanglement of waves and currents in observational data complicates their respective estimation. We propose a data-driven method that provides a reduced set of modes for waves and currents. These sets of modes are correlated with each other, enabling us to perform a coupled estimation of these two physical processes. This methodology is capable of producing estimates from an instantaneous observation of sea surface height and for a strong jet signal.
Siren Rühs, Ton van den Bremer, Emanuela Clementi, Michael C. Denes, Aimie Moulin, and Erik van Sebille
Ocean Sci., 21, 217–240, https://doi.org/10.5194/os-21-217-2025, https://doi.org/10.5194/os-21-217-2025, 2025
Short summary
Short summary
Simulating the transport of floating particles on the ocean surface is crucial for solving many societal issues. Here, we investigate how the representation of wind-generated surface waves impacts particle transport simulations. We find that different wave-driven processes can alter transport patterns and that commonly adopted approximations are not always adequate. This suggests that ideally coupled ocean–wave models should be used for surface particle transport simulations.
Kenji Shimizu
EGUsphere, https://doi.org/10.5194/egusphere-2024-4192, https://doi.org/10.5194/egusphere-2024-4192, 2025
Short summary
Short summary
This paper demonstrates the importance of viewing internal tides (internal waves at tidal frequencies) as the sum of many random waves, because statistical principles introduce characteristics that do not exist for the sum of a few random waves. This view leads us to the existence of a universal probability distribution for internal tides, which can be used for scientific and engineering purposes in the future, as is the case of surface waves.
Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver
Ocean Sci., 20, 1187–1208, https://doi.org/10.5194/os-20-1187-2024, https://doi.org/10.5194/os-20-1187-2024, 2024
Short summary
Short summary
This study examines the seasonal variability in internal tide sea surface height in a global model simulation. We also compare this with altimetry and the seasonal variability in the internal tide energy terms. Georges Bank and the Arabian Sea show the strongest seasonal variability. This study also reveals that sea surface height may not be the most accurate indicator of the true seasonal variability in the internal tides because it is modulated by the seasonal variability in stratification.
Roberta Benincasa, Giovanni Liguori, Nadia Pinardi, and Hans von Storch
Ocean Sci., 20, 1003–1012, https://doi.org/10.5194/os-20-1003-2024, https://doi.org/10.5194/os-20-1003-2024, 2024
Short summary
Short summary
Ocean dynamics result from the interplay of internal processes and external inputs, primarily from the atmosphere. It is crucial to discern between these factors to gauge the ocean's intrinsic predictability and to be able to attribute a signal under study to either external factors or internal variability. Employing a simple analysis, we successfully characterized this variability in the Mediterranean Sea and compared it with the oceanic response induced by atmospheric conditions.
Fernand Assene, Ariane Koch-Larrouy, Isabelle Dadou, Michel Tchilibou, Guillaume Morvan, Jérôme Chanut, Alex Costa da Silva, Vincent Vantrepotte, Damien Allain, and Trung-Kien Tran
Ocean Sci., 20, 43–67, https://doi.org/10.5194/os-20-43-2024, https://doi.org/10.5194/os-20-43-2024, 2024
Short summary
Short summary
Twin simulations, with and without tides, are used to assess the impact of internal tides (ITs) on ocean temperature off the Amazon mouth at a seasonal scale. We found that in the surface layers, ITs and barotropic tides cause a cooling effect on sea surface temperature, subsequently leading to an increase in the net heat flux between the atmosphere and ocean. Vertical mixing is identified as the primary driver, followed by vertical and horizontal advection.
Arne Bendinger, Sophie Cravatte, Lionel Gourdeau, Laurent Brodeau, Aurélie Albert, Michel Tchilibou, Florent Lyard, and Clément Vic
Ocean Sci., 19, 1315–1338, https://doi.org/10.5194/os-19-1315-2023, https://doi.org/10.5194/os-19-1315-2023, 2023
Short summary
Short summary
New Caledonia is a hot spot of internal-tide generation due to complex bathymetry. Regional modeling quantifies the coherent internal tide and shows that most energy is converted in shallow waters and on very steep slopes. The region is a challenge for observability of balanced dynamics due to strong internal-tide sea surface height (SSH) signatures at similar wavelengths. Correcting the SSH for the coherent internal tide may increase the observability of balanced motion to < 100 km.
Cited articles
Alford, M. H., Simmons, H. L., Marques, O. B., and Girton, J. B.: Internal tide attenuation in the North Pacific, Geophys. Res. Lett., 46, 8205–8213, https://doi.org/10.1029/2019GL082648, 2019.
Barkan, R., Winters, K. B., and McWilliams, J. C.: Stimulated imbalance and the enhancement of eddy kinetic energy dissipation by internal waves, J. Phys. Oceanogr., 47, 181–198, https://doi.org/10.1175/JPO-D-16-0117.1, 2017.
Barkan, R., Srinivasan, K., Yang, L., McWilliams, J. C., Gula, J., and Vic, C.: Oceanic mesoscale eddy depletion catalyzed by internal waves, Geophys. Res. Lett., 48, e2021GL094376, https://doi.org/10.1029/2021GL094376, 2021.
Book, D. L., Boris, J. P., and Hain, K.: Flux-corrected transport II: Generalizations of the method, J. Comput. Phys., 18, 248–283, https://doi.org/10.1016/0021-9991(75)90002-9, 1975.
Buijsman, M. C., Stephenson, G. R., Ansong, J. K., Arbic, B. K., Green, J. M., Richman, J. G., Shriver, J. F., Vic, C., Wallcraft., A. J., and Zhao, Z.: On the interplay between horizontal resolution and wave drag and their effect on tidal baroclinic mode waves in realistic global ocean simulations, Ocean Model., 152, 101656, https://doi.org/10.1016/j.ocemod.2020.101656, 2020.
Cao, A., Guo, Z., Lv, X., Song, J., and Zhang, J.: Coherent and incoherent features, seasonal behaviors, and spatial variations of internal tides in the northern South China Sea, J. Marine Syst., 172, 75–83, https://doi.org/10.1016/j.jmarsys.2017.03.005, 2017.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Chen, G., Hou, Y., and Chu, X.: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure, J. Geophys. Res.-Ocean., 116, C06018, https://doi.org/10.1029/2010JC006716, 2011.
Chen, G., Gan, J., Xie, Q., Chu, X., Wang, D., and Hou, Y.: Eddy heat and salt transports in the South China Sea and their seasonal modulations, J. Geophys. Res.-Ocean., 117, C05021, https://doi.org/10.1029/2011JC007724, 2012.
Cheng, X. and Qi, Y.: Variations of eddy kinetic energy in the South China Sea, J. Oceanogr., 66, 85–94, https://doi.org/10.1007/s10872-010-0007-y, 2010.
Chu, X., Xue, H., Qi, Y., Chen, G., Mao, Q., Wang, D., and Chai, F.: An exceptional anticyclonic eddy in the South China Sea in 2010, J. Geophys. Res.-Ocean., 119, 881–897, 2014.
Clément, L., Frajka-Williams, E., Sheen, K. L., Brearley, J. A., and Garabato, A. N.: Generation of internal waves by eddies impinging on the western boundary of the North Atlantic, J. Phys. Oceanogr., 46, 1067–1079, https://doi.org/10.1175/JPO-D-14-0241.1, 2016.
Cummings, J. A. and Smedstad, O. M.: Variational data assimilation for the global ocean, in: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, edited by: Park, S. K. and Xu, L., Springer, Berlin, Heidelberg, Germany, 303–343, https://doi.org/10.1007/978-3-642-35088-7, 2013.
Cusack, J. M., Brearley, J. A., Garabato, A. C. N., Smeed, D. A., Polzin, K. L., Velzeboer, N., and Shakespeare, C. J.: Observed eddy–internal wave interactions in the Southern Ocean, J. Phys. Oceanogr., 50, 3043–3062, https://doi.org/10.1175/JPO-D-20-0001.1, 2020.
Da Silva, J. C. B., New, A. L., Srokosz, M. A., and Smyth, T. J.: On the observability of internal tidal waves in remotely-sensed ocean colour data, Geophys. Res. Lett., 29, 10–14, https://doi.org/10.1029/2001GL013888, 2002.
Duda, T. F., Lin, Y. T., Newhall, A. E., Helfrich, K. R., Zhang, W. G., Badiey, M., Lermusiaux, P. F., Colosi, J. A., and Lynch, J. F.: The “Integrated Ocean Dynamics and Acoustics” (IODA) hybrid modeling effort, in: Proceedings of the international conference on Underwater Acoustics-2014, Rhodes, Greece, 22–27 June 2014, 621–628, https://doi.org/10.13140/2.1.2853.3123, 2014.
Dunphy, M. and Lamb, K. G.: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction, J. Geophys. Res.-Ocean., 119, 523–536, https://doi.org/10.1002/2013JC009293, 2014.
Dunphy, M., Ponte, A. L., Klein, P., and Le Gentil, S.: Low-mode internal tide propagation in a turbulent eddy field, J. Phys. Oceanogr., 47, 649–665, https://doi.org/10.1175/JPO-D-16-0099.1, 2017.
Egbert, G. D. and Ray, R. D.: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry, Geophys. Res. Lett., 30, 1907, https://doi.org/10.1029/2003GL017676, 2003.
Egbert, G. D., and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., and Kumar, V.: A daily global mesoscale ocean eddy dataset from satellite altimetry, Sci. Data, 2, 1–16, https://doi.org/10.1038/sdata.2015.28, 2015.
Fernández-Castro, B., Evans, D. G., Frajka-Williams, E., Vic, C., and Naveira-Garabato, A. C.: Breaking of internal waves and turbulent dissipation in an anticyclonic mode water eddy, J. Phys. Oceanogr., 50, 1893–1914, https://doi.org/10.1175/JPO-D-19-0168.1, 2020.
Ferrari, R. and Wunsch, C.: Ocean circulation kinetic energy: Reservoirs, sources, and sinks, Annu. Rev. Fluid Mech., 41, 253–282, https://doi.org/10.1146/annurev.fluid.40.111406.102139, 2009.
Goldsworth, F., Marshall, D., and Johnson, H.: Symmetric instability in cross-equatorial western boundary currents, J. Phys. Oceanogr., 51, 2049–2067, https://doi.org/10.1175/JPO-D-20-0273.1, 2021.
Gong, Y., Rayson, M. D., Jones, N. L., and Ivey, G. N.: Directional decomposition of internal tides propagating from multiple generation sites, Ocean Model., 162, 101801, https://doi.org/10.1016/j.ocemod.2021.101801, 2021.
Guo, P., Fang, W., Liu, C., and Qiu, F.: Seasonal characteristics of internal tides on the continental shelf in the northern South China Sea, J. Geophys. Res.-Ocean., 117, C04023, https://doi.org/10.1029/2011JC007215, 2012.
Guo, Z., Wang, S., Cao, A., Xie, J., Song, J., and Guo, X.: Refraction of the M2 internal tides by mesoscale eddies in the South China Sea, Deep-Sea Res. Pt. I, 192, 103946, https://doi.org/10.1016/j.dsr.2022.103946, 2023.
Hall, R. A., Huthnance, J. M., and Williams, R. G.: Internal wave reflection on shelf slopes with depth-varying stratification, J. Phys. Oceanogr., 43, 248–258, https://doi.org/10.1175/JPO-D-11-0192.1, 2013.
Hamann, M. M., Alford, M. H., Lucas, A. J., Waterhouse, A. F., and Voet, G.: Turbulence driven by reflected internal tides in a supercritical submarine canyon, J. Phys. Oceanogr., 51, 591–609, https://doi.org/10.1175/JPO-D-20-0123.1, 2021.
Hu, J., Gan, J., Sun, Z., Zhu, J., and Dai, M.: Observed three-dimensional structure of a cold eddy in the southwestern South China Sea, J. Geophys. Res.-Ocean., 116, C05016, https://doi.org/10.1029/2010JC006810, 2011.
Hu, Q., Huang, X., Zhang, Z., Zhang, X., Xu, X., Sun, H., Zhou, C., Zhao, W., and Tian, J.: Cascade of internal wave energy catalyzed by eddy-topography interactions in the deep South China Sea, Geophys. Res. Lett., 47, e2019GL086510, https://doi.org/10.1029/2019GL086510, 2020.
Huang, X., Wang, Z., Zhang, Z., Yang, Y., Zhou, C., Yang, Q., Zhao, W., and Tian, J.: Role of mesoscale eddies in modulating the semidiurnal internal tide: Observation results in the northern South China Sea, J. Phys. Oceanogr., 48, 1749–1770, https://doi.org/10.1175/JPO-D-17-0209.1, 2018.
Jan, S., Lien, R. C., and Ting, C. H.: Numerical study of baroclinic tides in Luzon Strait, J. Oceanogr., 64, 789–802, https://doi.org/10.1007/s10872-008-0066-5, 2008.
Johnston, T. M. S., Rudnick, D. L., and Kelly, S. M.: Standing internal tides in the Tasman Sea observed by gliders, J. Phys. Oceanogr., 45, 2715–2737, https://doi.org/10.1175/JPO-D-15-0038.1, 2015.
Kelly, S. M. and Lermusiaux, P. F.: Internal-tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front, J. Geophys. Res.-Ocean., 121, 6271–6294, https://doi.org/10.1002/2016JC011639, 2016.
Kelly, S. M., Nash, J. D., Martini, K. I., Alford, M. H., and Kunze, E.: The cascade of tidal energy from low to high modes on a continental slope, J. Phys. Oceanogr., 42, 1217–1232, https://doi.org/10.1175/JPO-D-11-0231.1, 2012.
Kelly, S. M., Lermusiaux, P. F., Duda, T. F., and Haley Jr, P. J.: A coupled-mode shallow-water model for tidal analysis: Internal tide reflection and refraction by the Gulf Stream, J. Phys. Oceanogr., 46, 3661–3679, https://doi.org/10.1175/JPO-D-16-0018.1, 2016.
Kelly, S. M., Jones, N. L., and Nash, J. D.: A coupled model for Laplace's tidal equations in a fluid with one horizontal dimension and variable depth, J. Phys. Oceanogr., 43, 1780–1797, https://doi.org/10.1175/JPO-D-12-0147.1, 2013.
Kelly, S. M., Waterhouse, A. F., and Savage, A. C.: Global dynamics of the stationary M2 mode-1 internal tide, Geophys. Res. Lett., 48, e2020GL091692, https://doi.org/10.1029/2020GL091692, 2021.
Krauss, W.: Internal tides resulting from the passage of surface tides through an eddy field, J. Geophys. Res.-Ocean., 104, 18323–18331, https://doi.org/10.1029/1999JC900067, 1999.
Kvale, E. P.: The origin of neap-spring tidal cycles, Mar. Geol., 235, 5–18, https://doi.org/10.1016/j.margeo.2006.10.001, 2006.
Klymak, J. M., Simmons, H. L., Braznikov, D., Kelly, S., MacKinnon, J. A., Alford, M. H., Pinkel, R., and Nash, J. D.: Reflection of linear internal tides from realistic topography: The Tasman continental slope, J. Phys. Oceanogr., 46, 3321–3337, https://doi.org/10.1175/JPO-D-16-0061.1, 2016.
Lahaye, N., Gula, J., and Roullet, G.: Internal tide cycle and topographic scattering over the North Mid-Atlantic Ridge, J. Geophys. Res.-Ocean., 125, e2020JC016376, https://doi.org/10.1029/2020JC016376, 2020.
Legg, S.: Scattering of low-mode internal waves at finite isolated topography, J. Phys. Oceanogr., 44, 359–383, https://doi.org/10.1175/JPO-D-12-0241.1, 2014.
Lelong, M. P. and Kunze, E.: Can barotropic tide–eddy interactions excite internal waves?, J. Fluid Mech., 721, 1–27, https://doi.org/10.1017/jfm.2013.1, 2013.
Lermusiaux, P. F., Xu, J., Chen, C. F., Jan, S., Chiu, L. Y., and Yang, Y. J.: Coupled ocean–acoustic prediction of transmission loss in a continental shelfbreak region: Predictive skill, uncertainty quantification, and dynamical sensitivities, IEEE J. Oceanic Eng., 35, 895–916, https://doi.org/10.1109/JOE.2010.2068611, 2010.
Li, M., Hou, Y., Li, Y., and Hu, P.: Energetics and temporal variability of internal tides in Luzon Strait: a nonhydrostatic numerical simulation, Chin. J. Oceanol. Limn., 30, 852–867, https://doi.org/10.1007/s00343-012-1289-2, 2012.
Li, Q., Sun, L., and Xu, C.: The lateral eddy viscosity derived from the decay of oceanic mesoscale eddies, Open J. Mar. Sci., 8, 152–172, https://doi.org/10.4236/ojms.2018.81008, 2017.
Lin, H., Liu, Z., Hu, J., Menemenlis, D., and Huang, Y.: Characterizing meso-to submesoscale features in the South China Sea, Prog. Oceanogr., 188, 102420, https://doi.org/10.1016/j.pocean.2020.102420, 2020.
Lin, X., Dong, C., Chen, D., Liu, Y., Yang, J., Zou, B., and Guan, Y.: Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output, Deep-Sea Res. Pt. I, 99, 46–64, https://doi.org/10.1016/j.dsr.2015.01.007, 2015.
Liu, M., Chen, R., Flierl, G. R., Guan, W., Zhang, H., and Geng, Q.: Scale-dependent eddy diffusivities at the Kuroshio Extension: A particle-based estimate and comparison to theory, J. Phys. Oceanogr., 53, 1851–1869, https://doi.org/10.1175/JPO-D-22-0223.1, 2023.
Liu, Q., Xie, X., Shang, X., Chen, G., and Wang, H.: Modal structure and propagation of internal tides in the northeastern South China Sea, Acta Oceanol. Sin., 38, 12–23, https://doi.org/10.1007/s13131-019-1473-1, 2019.
Liu, Y., Zhang, X., Sun, Z., Zhang, Z., Sasaki, H., Zhao, W., and Tian, J.: Region-dependent eddy kinetic energy budget in the northeastern South China Sea revealed by submesoscale-permitting simulations, J. Marine Syst., 235, 103797, https://doi.org/10.1016/j.jmarsys.2022.103797, 2022.
Liu, Z. and Gan, J.: Open boundary conditions for tidally and subtidally forced circulation in a limited-area coastal model using the Regional ing System (ROMS), J. Geophys. Res.-Ocean., 121, 6184–6203, https://doi.org/10.1002/2016JC011975, 2016.
Löb, J., Köhler, J., Mertens, C., Walter, M., Li, Z., von Storch, J. S., Zhao, Z., and Rhein, M.: Observations of the low-mode internal tide and its interaction with mesoscale flow south of the Azores, J. Geophys. Res.-Ocean., 125, e2019JC015879, https://doi.org/10.1029/2019JC015879, 2020.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res.-Ocean., 102, 5753–5766, https://doi.org/10.1029/96JC02775, 1997.
Martini, K. I., Alford, M. H., Nash, J. D., Kunze, E., and Merrifield, M. A.: Diagnosing a partly standing internal wave in Mamala Bay, Oahu, Geophys. Res. Lett., 34, L17604, https://doi.org/10.1029/2007GL029749, 2007.
Mazloff, M. R., Cornuelle, B., Gille, S. T., and Wang, J.: The importance of remote forcing for regional modeling of internal waves, J. Geophys. Res.-Ocean., 125, e2019JC015623, https://doi.org/10.1029/2019JC015623, 2020.
McGillicuddy Jr, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G., Goldthwait, S. A. Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Li, Q. P., Siegel, D. A., and Steinberg, D. K.: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256, 2007.
Menemenlis, D., Hill, C., Henze, C. E., Wang, J., and Fenty, I.: Pre-SWOT Level-4 Hourly MITgcm LLC4320 Native 2 km Grid Oceanographic Version 1.0 [data set], https://doi.org/10.5067/PRESW-YOJ10, 2021.
Müller, M., Cherniawsky, J. Y., Foreman, M. G. G., and von Storch, J. S.: Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modelling, Geophys. Res. Lett., 39, L19607, https://doi.org/10.1029/2012GL053320, 2012.
Munk, W. and Wunsch, C.: Abyssal recipes II: Energetics of tidal and wind mixing, Deep-Sea Res. Pt. I, 45, 1977–2010, https://doi.org/10.1016/S0967-0637(98)00070-3, 1998.
Nikurashin, M. and Legg, S.: A mechanism for local dissipation of internal tides generated at rough topography, J. Phys. Oceanogr., 41, 378–395, https://doi.org/10.1175/2010JPO4522.1, 2011.
Niwa, Y. and Hibiya, T.: Three-dimensional numerical simulation of M2 internal tides in the East China Sea, J. Geophys. Res.-Ocean., 109, C04027, https://doi.org/10.1029/2003JC001923, 2004.
Pan, Y., Haley, P. J., and Lermusiaux, P. F.: Interactions of internal tides with a heterogeneous and rotational ocean, J. Fluid Mech., 920, A18, https://doi.org/10.1017/jfm.2021.423, 2021.
Park, J. H. and Farmer, D.: Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter, J. Geophys. Res.-Ocean., 118, 7081–7094, https://doi.org/10.1002/2013JC008983, 2013.
Pedlosky, J.: Waves in the ocean and atmosphere: introduction to wave dynamics, Vol. 260, Springer, Berlin, Germany, https://doi.org/10.1007/978-3-662-05131-3, 2003.
Rocha, C. B., Chereskin, T. K., Gille, S. T., and Menemenlis, D.: Mesoscale to submesoscale wavenumber spectra in Drake Passage, J. Phys. Oceanogr., 46, 601–620, https://doi.org/10.1175/JPO-D-15-0087.1, 2016.
Savage, A. C., Waterhouse, A. F., and Kelly, S. M.: Internal tide nonstationarity and wave–mesoscale interactions in the Tasman Sea, J. Phys. Oceanogr., 50, 2931–2951, https://doi.org/10.1175/JPO-D-19-0283.1, 2020.
Sharples, J., Moore, C. M., Hickman, A. E., Holligan, P. M., Tweddle, J. F., Palmer, M. R., and Simpson, J. H.: Internal tidal mixing as a control on continental margin ecosystems, Geophys. Res. Lett., 36, L23603, https://doi.org/10.1029/2009GL040683, 2009.
Smyth, W. D., Moum, J. N., and Nash, J. D.: Narrowband oscillations in the upper equatorial ocean, Part II: Properties of shear instabilities, J. Phys. Oceanogr., 41, 412–428, https://doi.org/10.1175/2010JPO4451.1, 2011.
Song, P. and Chen, X.: Investigation of the internal tides in the Northwest Pacific Ocean considering the background circulation and stratification, J. Phys. Oceanogr., 50, 3165–3188, https://doi.org/10.1175/JPO-D-19-0177.1, 2020
Stastna, M. and Lamb, K. G.: Sediment resuspension mechanisms associated with internal waves in coastal waters, J. Geophys. Res.-Ocean., 113, C10016, https://doi.org/10.1029/2007JC004711, 2008.
St. Laurent, L. and Garrett, C.: The role of internal tides in mixing the deep ocean, J. Phys. Oceanogr., 32, 2882–2899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2, 2002.
Su, Z., Torres, H., Klein, P., Thompson, A. F., Siegelman, L., Wang, J., Menemenlis, D., and Hill, C.: High-frequency submesoscale motions enhance the upward vertical heat transport in the global ocean, J. Geophys. Res.-Ocean., 125, e2020JC016544, https://doi.org/10.1029/2020JC016544, 2020.
TPXO database: Egbert, G. D. and Erofeeva, S. Y., OSU, COAS [data set], Oregon State University, USA, https://www.tpxo.net/global, last access: 18 February 2024.
Vic, C., Naveira Garabato, A. C., Green, J. M., Waterhouse, A. F., Zhao, Z., Melet, A., de Lavergne, C., Buijsman, M. C., and Stephenson, G. R.: Deep-ocean mixing driven by small-scale internal tides, Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5, 2019.
Wang, S., Cao, A., Li, Q., and Chen, X.: Reflection of K1 internal tides at the continental slope in the northern South China Sea, J. Geophys. Res.-Ocean., 126, e2021JC017260, https://doi.org/10.1029/2021JC017260, 2021.
Wang, X., Peng, S., Liu, Z., Huang, R. X., Qian, Y. K., and Li, Y.: Tidal mixing in the South China Sea: An estimate based on the internal tide energetics, J. Phys. Oceanogr., 46, 107–124, https://doi.org/10.1175/JPO-D-15-0082.1, 2016.
Wang, S., Chen, X., Li, Q., Wang, J., Meng, J., and Zhao, M.: Scattering of low-mode internal tides at different shaped continental shelves, Cont. Shelf Res., 169, 17–24, https://doi.org/10.1016/j.csr.2018.09.010, 2018.
Wang, S., Chen, X., Wang, J., Li, Q., Meng, J., and Xu Y.: Scattering of low-mode internal tides at a continental shelf, J. Phys. Oceanogr., 49, 453–468, https://doi.org/10.1175/JPO-D-18-0179.1, 2019.
Wang, S., Cao, A., Chen, X., Li, Q., Song, J., and Meng, J.: Estimation of the reflection of internal tides on a slope, J. Ocean U. China, 19, 489–496, https://doi.org/10.1007/s11802-020-4291-x, 2020.
Whalen, C. B., MacKinnon, J. A., and Talley, L. D.: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves, Nat. Geosic., 11, 842–847, https://doi.org/10.1038/s41561-018-0213-6, 2018.
Wunsch, C.: Where do ocean eddy heat fluxes matter?, J. Geophys. Res.-Ocean., 104, 13235–13249, https://doi.org/10.1029/1999JC900062, 1999.
Xu, L., Li, P., Xie, S. P., Liu, Q., Liu, C., and Gao, W.: Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific, Nat. Commun., 7, 10505, https://doi.org/10.1038/ncomms10505, 2016.
Xu, Z., Liu, K., Yin, B., Zhao, Z., Wang, Y., and Li, Q.: Long-range propagation and associated variability of internal tides in the South China Sea, J. Geophys. Res.-Ocean., 121, 8268–8286, https://doi.org/10.1002/2016JC012105, 2016.
Xu, Z., Wang, Y., Liu, Z., McWilliams, J. C., and Gan, J.: Insight into the dynamics of the radiating internal tide associated with the Kuroshio Current, J. Geophys. Res.-Ocean., 126, e2020JC017018, https://doi.org/10.1029/2020JC017018, 2021.
Yang, Q., Nikurashin, M., Sasaki, H., Sun, H., and Tian, J.: Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea, Sci. Rep.-UK, 9, 556, https://doi.org/10.1038/s41598-018-36610-x, 2019.
You, J., Xu, Z., Li, Q., Zhang, P., Yin, B., and Hou, Y.: M2 Internal Tide Energetics and Behaviors in the Subpolar North Pacific, J. Phys. Oceanogr., 53, 1269–1290, https://doi.org/10.1175/JPO-D-22-0032.1, 2023.
You, J., Xu, Z., Zhang, P., Hu, X., Liao, G., Yin, B., and Robertson, R.: Mixing in the Philippine Sea: Geography variability and parameterization, Deep-Sea Res. Pt. II, 202, 105143, https://doi.org/10.1016/j.dsr2.2022.105143, 2022.
Yu, X., Ponte, A. L., Elipot, S., Menemenlis, D., Zaron, E. D., and Abernathey, R.: Surface kinetic energy distributions in the global oceans from a high-resolution numerical model and surface drifter observations, Geophys. Res. Lett., 46, 9757–9766, https://doi.org/10.1029/2019GL083074, 2019.
Zaron, E. D. and Egbert, G. D.: Time-variable refraction of the internal tide at the Hawaiian Ridge, J. Phys. Oceanogr., 44, 538–557, https://doi.org/10.1175/JPO-D-12-0238.1, 2014.
Zaron, E. D., Musgrave, R. C., and Egbert, G. D.: Baroclinic tidal energetics inferred from satellite altimetry, J. Phys. Oceanogr., 52, 1015–1032, https://doi.org/10.1175/JPO-D-21-0096.1, 2022.
Zhang, Z., Wang, W., and Qiu, B.: Oceanic mass transport by mesoscale eddies, Science, 345, 322–324, https://doi.org/10.1126/science.1252418, 2014.
Zhang, Z., Tian, J., Qiu, B., Zhao, W., Chang, P., Wu, D., and Wan, X.: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea, Sci. Rep.-UK, 6, 24349, https://doi.org/10.1038/srep24349, 2016.
Zhang, Z., Liu, Y., Qiu, B., Luo, Y., Cai, W., Yuan, Q., Liu, Y., Zhang, H., Liu, H., Miao, M., Zhao, J., Zhao, W., and Tian, J.: Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport, Nat. Commun., 14, 1335, https://doi.org/10.1038/s41467-023-36991-2, 2023.
Zhao, Z.: The global mode-1 S2 internal tide, J. Geophys. Res.-Ocean., 122, 8794–8812, https://doi.org/10.1002/2017JC013112, 2017.
Zhao, Z. and Qiu, B.: Seasonal west-east seesaw of M2 internal tides from the Luzon Strait, J. Geophys. Res.-Ocean., 128, e2022JC019281, https://doi.org/10.1029/2022JC019281, 2023.
Zhao, Z., Alford, M. H., MacKinnon, J. A., and Pinkel, R.: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge, J. Phys. Oceanogr., 40, 713–736, https://doi.org/10.1175/2009JPO4207.1, 2010.
Zhao, Z., Alford, M. H., Girton, J. B., Rainville, L., and Simmons, H. L.: Global observations of open-ocean mode-1 M2 internal tides, J. Phys. Oceanogr., 46, 1657–1684, https://doi.org/10.1175/JPO-D-15-0105.1, 2016.
Zhao, Z. X.: Internal tide radiation from the Luzon Strait, J. Geophys. Res.-Ocean., 119, 5434–5448, https://doi.org/10.1002/2014JC010014, 2014.
Zhou, C., Xiao, X., Zhao, W., Yang, J., Huang, X., Guan, S., Zhang, Z., and Tian, J.: Increasing deep-water overflow from the Pacific into the South China Sea revealed by mooring observations, Nat. Commun., 14, 2013, https://doi.org/10.1038/s41467-023-37767-4, 2023.
Zilberman, N. V., Becker, J. M., Merrifield, M. A., and Carter, G. S.: Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography, J. Phys. Oceanogr., 39, 2635–2651, https://doi.org/10.1175/2008JPO4136.1, 2009.
Short summary
Understanding internal tide generation and propagation is crucial for predicting large-scale circulation and climate change. Internal tides are prone to interacting with background currents with similar spatial scales during propagation. This paper investigates the physical mechanism of the interaction between semidiurnal internal tides and an anticyclonic eddy in the northeastern South China Sea using a numerical model with high spatial and temporal resolution.
Understanding internal tide generation and propagation is crucial for predicting large-scale...