Cao, A., Guo, Z., Lv, X., Song, J., and Zhang, J.: Coherent and incoherent features, seasonal behaviors, and spatial variations of internal tides in the northern South China Sea, J. Marine Syst., 172, 75–83, https://doi.org/10.1016/j.jmarsys.2017.03.005, 2017.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216, https://doi.org/10.1016/j.pocean.2011.01.002, 2011.
Chen, G., Hou, Y., and Chu, X.: Mesoscale eddies in the South China Sea: Mean properties, spatiotemporal variability, and impact on thermohaline structure, J. Geophys. Res.-Ocean., 116, C06018, https://doi.org/10.1029/2010JC006716, 2011.
Chen, G., Gan, J., Xie, Q., Chu, X., Wang, D., and Hou, Y.: Eddy heat and salt transports in the South China Sea and their seasonal modulations, J. Geophys. Res.-Ocean., 117, C05021, https://doi.org/10.1029/2011JC007724, 2012.
Cheng, X. and Qi, Y.: Variations of eddy kinetic energy in the South China Sea, J. Oceanogr., 66, 85–94, https://doi.org/10.1007/s10872-010-0007-y, 2010.
Chu, X., Xue, H., Qi, Y., Chen, G., Mao, Q., Wang, D., and Chai, F.: An exceptional anticyclonic eddy in the South China Sea in 2010, J. Geophys. Res.-Ocean., 119, 881–897, 2014.
Clément, L., Frajka-Williams, E., Sheen, K. L., Brearley, J. A., and Garabato, A. N.: Generation of internal waves by eddies impinging on the western boundary of the North Atlantic, J. Phys. Oceanogr., 46, 1067–1079, https://doi.org/10.1175/JPO-D-14-0241.1, 2016.
Cummings, J. A. and Smedstad, O. M.: Variational data assimilation for the global ocean, in: Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, Vol. II, edited by: Park, S. K. and Xu, L., Springer, Berlin, Heidelberg, Germany, 303–343, https://doi.org/10.1007/978-3-642-35088-7, 2013.
Cusack, J. M., Brearley, J. A., Garabato, A. C. N., Smeed, D. A., Polzin, K. L., Velzeboer, N., and Shakespeare, C. J.: Observed eddy–internal wave interactions in the Southern Ocean, J. Phys. Oceanogr., 50, 3043–3062, https://doi.org/10.1175/JPO-D-20-0001.1, 2020.
Da Silva, J. C. B., New, A. L., Srokosz, M. A., and Smyth, T. J.: On the observability of internal tidal waves in remotely-sensed ocean colour data, Geophys. Res. Lett., 29, 10–14, https://doi.org/10.1029/2001GL013888, 2002.
Duda, T. F., Lin, Y. T., Newhall, A. E., Helfrich, K. R., Zhang, W. G., Badiey, M., Lermusiaux, P. F., Colosi, J. A., and Lynch, J. F.: The “Integrated Ocean Dynamics and Acoustics” (IODA) hybrid modeling effort, in: Proceedings of the international conference on Underwater Acoustics-2014, Rhodes, Greece, 22–27 June 2014, 621–628, https://doi.org/10.13140/2.1.2853.3123, 2014.
Dunphy, M. and Lamb, K. G.: Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction, J. Geophys. Res.-Ocean., 119, 523–536, https://doi.org/10.1002/2013JC009293, 2014.
Dunphy, M., Ponte, A. L., Klein, P., and Le Gentil, S.: Low-mode internal tide propagation in a turbulent eddy field, J. Phys. Oceanogr., 47, 649–665, https://doi.org/10.1175/JPO-D-16-0099.1, 2017.
Egbert, G. D. and Ray, R. D.: Semi-diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry, Geophys. Res. Lett., 30, 1907, https://doi.org/10.1029/2003GL017676, 2003.
Egbert, G. D., and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean. Tech., 19, 183–204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002.
Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., and Kumar, V.: A daily global mesoscale ocean eddy dataset from satellite altimetry, Sci. Data, 2, 1–16, https://doi.org/10.1038/sdata.2015.28, 2015.
Fernández-Castro, B., Evans, D. G., Frajka-Williams, E., Vic, C., and Naveira-Garabato, A. C.: Breaking of internal waves and turbulent dissipation in an anticyclonic mode water eddy, J. Phys. Oceanogr., 50, 1893–1914, https://doi.org/10.1175/JPO-D-19-0168.1, 2020.
Ferrari, R. and Wunsch, C.: Ocean circulation kinetic energy: Reservoirs, sources, and sinks, Annu. Rev. Fluid Mech., 41, 253–282, https://doi.org/10.1146/annurev.fluid.40.111406.102139, 2009.
Goldsworth, F., Marshall, D., and Johnson, H.: Symmetric instability in cross-equatorial western boundary currents, J. Phys. Oceanogr., 51, 2049–2067, https://doi.org/10.1175/JPO-D-20-0273.1, 2021.
Gong, Y., Rayson, M. D., Jones, N. L., and Ivey, G. N.: Directional decomposition of internal tides propagating from multiple generation sites, Ocean Model., 162, 101801, https://doi.org/10.1016/j.ocemod.2021.101801, 2021.
Guo, P., Fang, W., Liu, C., and Qiu, F.: Seasonal characteristics of internal tides on the continental shelf in the northern South China Sea, J. Geophys. Res.-Ocean., 117, C04023, https://doi.org/10.1029/2011JC007215, 2012.
Guo, Z., Wang, S., Cao, A., Xie, J., Song, J., and Guo, X.: Refraction of the M
2 internal tides by mesoscale eddies in the South China Sea, Deep-Sea Res. Pt. I, 192, 103946, https://doi.org/10.1016/j.dsr.2022.103946, 2023.
Hall, R. A., Huthnance, J. M., and Williams, R. G.: Internal wave reflection on shelf slopes with depth-varying stratification, J. Phys. Oceanogr., 43, 248–258, https://doi.org/10.1175/JPO-D-11-0192.1, 2013.
Hamann, M. M., Alford, M. H., Lucas, A. J., Waterhouse, A. F., and Voet, G.: Turbulence driven by reflected internal tides in a supercritical submarine canyon, J. Phys. Oceanogr., 51, 591–609, https://doi.org/10.1175/JPO-D-20-0123.1, 2021.
Hu, J., Gan, J., Sun, Z., Zhu, J., and Dai, M.: Observed three-dimensional structure of a cold eddy in the southwestern South China Sea, J. Geophys. Res.-Ocean., 116, C05016, https://doi.org/10.1029/2010JC006810, 2011.
Hu, Q., Huang, X., Zhang, Z., Zhang, X., Xu, X., Sun, H., Zhou, C., Zhao, W., and Tian, J.: Cascade of internal wave energy catalyzed by eddy-topography interactions in the deep South China Sea, Geophys. Res. Lett., 47, e2019GL086510, https://doi.org/10.1029/2019GL086510, 2020.
Huang, X., Wang, Z., Zhang, Z., Yang, Y., Zhou, C., Yang, Q., Zhao, W., and Tian, J.: Role of mesoscale eddies in modulating the semidiurnal internal tide: Observation results in the northern South China Sea, J. Phys. Oceanogr., 48, 1749–1770, https://doi.org/10.1175/JPO-D-17-0209.1, 2018.
Jan, S., Lien, R. C., and Ting, C. H.: Numerical study of baroclinic tides in Luzon Strait, J. Oceanogr., 64, 789–802, https://doi.org/10.1007/s10872-008-0066-5, 2008.
Johnston, T. M. S., Rudnick, D. L., and Kelly, S. M.: Standing internal tides in the Tasman Sea observed by gliders, J. Phys. Oceanogr., 45, 2715–2737, https://doi.org/10.1175/JPO-D-15-0038.1, 2015.
Kelly, S. M. and Lermusiaux, P. F.: Internal-tide interactions with the Gulf Stream and Middle Atlantic Bigh
t shelfbreak front, J. Geophys. Res.-Ocean., 121, 6271–6294, https://doi.org/10.1002/2016JC011639, 2016.
Kelly, S. M., Nash, J. D., Martini, K. I., Alford, M. H., and Kunze, E.: The cascade of tidal energy from low to high modes on a continental slope, J. Phys. Oceanogr., 42, 1217–1232, https://doi.org/10.1175/JPO-D-11-0231.1, 2012.
Kelly, S. M., Lermusiaux, P. F., Duda, T. F., and Haley Jr, P. J.: A coupled-mode shallow-water model for tidal analysis: Internal tide reflection and refraction by the Gulf Stream, J. Phys. Oceanogr., 46, 3661–3679, https://doi.org/10.1175/JPO-D-16-0018.1, 2016.
Kelly, S. M., Jones, N. L., and Nash, J. D.: A coupled model for Laplace's tidal equations in a fluid with one horizontal dimension and variable depth, J. Phys. Oceanogr., 43, 1780–1797, https://doi.org/10.1175/JPO-D-12-0147.1, 2013.
Kelly, S. M., Waterhouse, A. F., and Savage, A. C.: Global dynamics of the stationary M
2 mode-1 internal tide, Geophys. Res. Lett., 48, e2020GL091692, https://doi.org/10.1029/2020GL091692, 2021.
Krauss, W.: Internal tides resulting from the passage of surface tides through an eddy field, J. Geophys. Res.-Ocean., 104, 18323–18331, https://doi.org/10.1029/1999JC900067, 1999.
Kvale, E. P.: The origin of neap-spring tidal cycles, Mar. Geol., 235, 5–18, https://doi.org/10.1016/j.margeo.2006.10.001, 2006.
Klymak, J. M., Simmons, H. L., Braznikov, D., Kelly, S., MacKinnon, J. A., Alford, M. H., Pinkel, R., and Nash, J. D.: Reflection of linear internal tides from realistic topography: The Tasman continental slope, J. Phys. Oceanogr., 46, 3321–3337, https://doi.org/10.1175/JPO-D-16-0061.1, 2016.
Lahaye, N., Gula, J., and Roullet, G.: Internal tide cycle and topographic scattering over the North Mid-Atlantic Ridge, J. Geophys. Res.-Ocean., 125, e2020JC016376, https://doi.org/10.1029/2020JC016376, 2020.
Legg, S.: Scattering of low-mode internal waves at finite isolated topography, J. Phys. Oceanogr., 44, 359–383, https://doi.org/10.1175/JPO-D-12-0241.1, 2014.
Lelong, M. P. and Kunze, E.: Can barotropic tide–eddy interactions excite internal waves?, J. Fluid Mech., 721, 1–27, https://doi.org/10.1017/jfm.2013.1, 2013.
Lermusiaux, P. F., Xu, J., Chen, C. F., Jan, S., Chiu, L. Y., and Yang, Y. J.: Coupled ocean–acoustic prediction of transmission loss in a continental shelfbreak region: Predictive skill, uncertainty quantification, and dynamical sensitivities, IEEE J. Oceanic Eng., 35, 895–916, https://doi.org/10.1109/JOE.2010.2068611, 2010.
Li, M., Hou, Y., Li, Y., and Hu, P.: Energetics and temporal variability of internal tides in Luzon Strait: a nonhydrostatic numerical simulation, Chin. J. Oceanol. Limn., 30, 852–867, https://doi.org/10.1007/s00343-012-1289-2, 2012.
Li, Q., Sun, L., and Xu, C.: The lateral eddy viscosity derived from the decay of oceanic mesoscale eddies, Open J. Mar. Sci., 8, 152–172, https://doi.org/10.4236/ojms.2018.81008, 2017.
Lin, H., Liu, Z., Hu, J., Menemenlis, D., and Huang, Y.: Characterizing meso-to submesoscale features in the South China Sea, Prog. Oceanogr., 188, 102420, https://doi.org/10.1016/j.pocean.2020.102420, 2020.
Lin, X., Dong, C., Chen, D., Liu, Y., Yang, J., Zou, B., and Guan, Y.: Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output, Deep-Sea Res. Pt. I, 99, 46–64, https://doi.org/10.1016/j.dsr.2015.01.007, 2015.
Liu, M., Chen, R., Flierl, G. R., Guan, W., Zhang, H., and Geng, Q.: Scale-dependent eddy diffusivities at the Kuroshio Extension: A particle-based estimate and comparison to theory, J. Phys. Oceanogr., 53, 1851–1869, https://doi.org/10.1175/JPO-D-22-0223.1, 2023.
Liu, Q., Xie, X., Shang, X., Chen, G., and Wang, H.: Modal structure and propagation of internal tides in the northeastern South China Sea, Acta Oceanol. Sin., 38, 12–23, https://doi.org/10.1007/s13131-019-1473-1, 2019.
Liu, Y., Zhang, X., Sun, Z., Zhang, Z., Sasaki, H., Zhao, W., and Tian, J.: Region-dependent eddy kinetic energy budget in the northeastern South China Sea revealed by submesoscale-permitting simulations, J. Marine Syst., 235, 103797, https://doi.org/10.1016/j.jmarsys.2022.103797, 2022.
Liu, Z. and Gan, J.: Open boundary conditions for tidally and subtidally forced circulation in a limited-area coastal model using the Regional ing System (ROMS), J. Geophys. Res.-Ocean., 121, 6184–6203, https://doi.org/10.1002/2016JC011975, 2016.
Löb, J., Köhler, J., Mertens, C., Walter, M., Li, Z., von Storch, J. S., Zhao, Z., and Rhein, M.: Observations of the low-mode internal tide and its interaction with mesoscale flow south of the Azores, J. Geophys. Res.-Ocean., 125, e2019JC015879, https://doi.org/10.1029/2019JC015879, 2020.
Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res.-Ocean., 102, 5753–5766, https://doi.org/10.1029/96JC02775, 1997.
Martini, K. I., Alford, M. H., Nash, J. D., Kunze, E., and Merrifield, M. A.: Diagnosing a partly standing internal wave in Mamala Bay, Oahu, Geophys. Res. Lett., 34, L17604, https://doi.org/10.1029/2007GL029749, 2007.
Mazloff, M. R., Cornuelle, B., Gille, S. T., and Wang, J.: The importance of remote forcing for regional modeling of internal waves, J. Geophys. Res.-Ocean., 125, e2019JC015623, https://doi.org/10.1029/2019JC015623, 2020.
McGillicuddy Jr, D. J., Anderson, L. A., Bates, N. R., Bibby, T., Buesseler, K. O., Carlson, C. A., Davis, C. S., Ewart, C., Falkowski, P. G., Goldthwait, S. A. Hansell, D. A., Jenkins, W. J., Johnson, R., Kosnyrev, V. K., Ledwell, J. R., Li, Q. P., Siegel, D. A., and Steinberg, D. K.: Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms, Science, 316, 1021–1026, https://doi.org/10.1126/science.1136256, 2007.
Menemenlis, D., Hill, C., Henze, C. E., Wang, J., and Fenty, I.: Pre-SWOT Level-4 Hourly MITgcm LLC4320 Native 2 km Grid Oceanographic Version 1.0 [data set], https://doi.org/10.5067/PRESW-YOJ10, 2021.
Müller, M., Cherniawsky, J. Y., Foreman, M. G. G., and von Storch, J. S.: Global M
2 internal tide and its seasonal variability from high resolution ocean circulation and tide modelling, Geophys. Res. Lett., 39, L19607, https://doi.org/10.1029/2012GL053320, 2012.
Munk, W. and Wunsch, C.: Abyssal recipes II: Energetics of tidal and wind mixing, Deep-Sea Res. Pt. I, 45, 1977–2010, https://doi.org/10.1016/S0967-0637(98)00070-3, 1998.
Nikurashin, M. and Legg, S.: A mechanism for local dissipation of internal tides generated at rough topography, J. Phys. Oceanogr., 41, 378–395, https://doi.org/10.1175/2010JPO4522.1, 2011.
Niwa, Y. and Hibiya, T.: Three-dimensional numerical simulation of M
2 internal tides in the East China Sea, J. Geophys. Res.-Ocean., 109, C04027, https://doi.org/10.1029/2003JC001923, 2004.
Pan, Y., Haley, P. J., and Lermusiaux, P. F.: Interactions of internal tides with a heterogeneous and rotational ocean, J. Fluid Mech., 920, A18, https://doi.org/10.1017/jfm.2021.423, 2021.
Park, J. H. and Farmer, D.: Effects of Kuroshio intrusions on nonlinear internal waves in the South China Sea during winter, J. Geophys. Res.-Ocean., 118, 7081–7094, https://doi.org/10.1002/2013JC008983, 2013.
Pedlosky, J.: Waves in the ocean and atmosphere: introduction to wave dynamics, Vol. 260, Springer, Berlin, Germany, https://doi.org/10.1007/978-3-662-05131-3, 2003.
Rocha, C. B., Chereskin, T. K., Gille, S. T., and Menemenlis, D.: Mesoscale to submesoscale wavenumber spectra in Drake Passage, J. Phys. Oceanogr., 46, 601–620, https://doi.org/10.1175/JPO-D-15-0087.1, 2016.
Savage, A. C., Waterhouse, A. F., and Kelly, S. M.: Internal tide nonstationarity and wave–mesoscale interactions in the Tasman Sea, J. Phys. Oceanogr., 50, 2931–2951, https://doi.org/10.1175/JPO-D-19-0283.1, 2020.
Sharples, J., Moore, C. M., Hickman, A. E., Holligan, P. M., Tweddle, J. F., Palmer, M. R., and Simpson, J. H.: Internal tidal mixing as a control on continental margin ecosystems, Geophys. Res. Lett., 36, L23603, https://doi.org/10.1029/2009GL040683, 2009.
Smyth, W. D., Moum, J. N., and Nash, J. D.: Narrowband oscillations in the upper equatorial ocean, Part II: Properties of shear instabilities, J. Phys. Oceanogr., 41, 412–428, https://doi.org/10.1175/2010JPO4451.1, 2011.
Song, P. and Chen, X.: Investigation of the internal tides in the Northwest Pacific Ocean considering the background circulation and stratification, J. Phys. Oceanogr., 50, 3165–3188, https://doi.org/10.1175/JPO-D-19-0177.1, 2020
Stastna, M. and Lamb, K. G.: Sediment resuspension mechanisms associated with internal waves in coastal waters, J. Geophys. Res.-Ocean., 113, C10016, https://doi.org/10.1029/2007JC004711, 2008.
St. Laurent, L. and Garrett, C.: The role of internal tides in mixing the deep ocean, J. Phys. Oceanogr., 32, 2882–2899, https://doi.org/10.1175/1520-0485(2002)032<2882:TROITI>2.0.CO;2, 2002.
Su, Z., Torres, H., Klein, P., Thompson, A. F., Siegelman, L., Wang, J., Menemenlis, D., and Hill, C.: High-frequency submesoscale motions enhance the upward vertical heat transport in the global ocean, J. Geophys. Res.-Ocean., 125, e2020JC016544, https://doi.org/10.1029/2020JC016544, 2020.
TPXO database: Egbert, G. D. and Erofeeva, S. Y., OSU, COAS [data set], Oregon State University, USA,
https://www.tpxo.net/global, last access: 18 February 2024.
Vic, C., Naveira Garabato, A. C., Green, J. M., Waterhouse, A. F., Zhao, Z., Melet, A., de Lavergne, C., Buijsman, M. C., and Stephenson, G. R.: Deep-ocean mixing driven by small-scale internal tides, Nat. Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5, 2019.
Wang, S., Cao, A., Li, Q., and Chen, X.: Reflection of K
1 internal tides at the continental slope in the northern South China Sea, J. Geophys. Res.-Ocean., 126, e2021JC017260, https://doi.org/10.1029/2021JC017260, 2021.
Wang, X., Peng, S., Liu, Z., Huang, R. X., Qian, Y. K., and Li, Y.: Tidal mixing in the South China Sea: An estimate based on the internal tide energetics, J. Phys. Oceanogr., 46, 107–124, https://doi.org/10.1175/JPO-D-15-0082.1, 2016.
Wang, S., Chen, X., Li, Q., Wang, J., Meng, J., and Zhao, M.: Scattering of low-mode internal tides at different shaped continental shelves, Cont. Shelf Res., 169, 17–24, https://doi.org/10.1016/j.csr.2018.09.010, 2018.
Wang, S., Chen, X., Wang, J., Li, Q., Meng, J., and Xu Y.: Scattering of low-mode internal tides at a continental shelf, J. Phys. Oceanogr., 49, 453–468, https://doi.org/10.1175/JPO-D-18-0179.1, 2019.
Wang, S., Cao, A., Chen, X., Li, Q., Song, J., and Meng, J.: Estimation of the reflection of internal tides on a slope, J. Ocean U. China, 19, 489–496, https://doi.org/10.1007/s11802-020-4291-x, 2020.
Whalen, C. B., MacKinnon, J. A., and Talley, L. D.: Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves, Nat. Geosic., 11, 842–847, https://doi.org/10.1038/s41561-018-0213-6, 2018.
Wunsch, C.: Where do ocean eddy heat fluxes matter?, J. Geophys. Res.-Ocean., 104, 13235–13249, https://doi.org/10.1029/1999JC900062, 1999.
Xu, L., Li, P., Xie, S. P., Liu, Q., Liu, C., and Gao, W.: Observing mesoscale eddy effects on mode-water subduction and transport in the North Pacific, Nat. Commun., 7, 10505, https://doi.org/10.1038/ncomms10505, 2016.
Xu, Z., Liu, K., Yin, B., Zhao, Z., Wang, Y., and Li, Q.: Long-range propagation and associated variability of internal tides in the South China Sea, J. Geophys. Res.-Ocean., 121, 8268–8286, https://doi.org/10.1002/2016JC012105, 2016.
Xu, Z., Wang, Y., Liu, Z., McWilliams, J. C., and Gan, J.: Insight into the dynamics of the radiating internal tide associated with the Kuroshio Current, J. Geophys. Res.-Ocean., 126, e2020JC017018, https://doi.org/10.1029/2020JC017018, 2021.
Yang, Q., Nikurashin, M., Sasaki, H., Sun, H., and Tian, J.: Dissipation of mesoscale eddies and its contribution to mixing in the northern South China Sea, Sci. Rep.-UK, 9, 556, https://doi.org/10.1038/s41598-018-36610-x, 2019.
You, J., Xu, Z., Li, Q., Zhang, P., Yin, B., and Hou, Y.: M
2 Internal Tide Energetics and Behaviors in the Subpolar North Pacific, J. Phys. Oceanogr., 53, 1269–1290, https://doi.org/10.1175/JPO-D-22-0032.1, 2023.
You, J., Xu, Z., Zhang, P., Hu, X., Liao, G., Yin, B., and Robertson, R.: Mixing in the Philippine Sea: Geography variability and parameterization, Deep-Sea Res. Pt. II, 202, 105143, https://doi.org/10.1016/j.dsr2.2022.105143, 2022.
Yu, X., Ponte, A. L., Elipot, S., Menemenlis, D., Zaron, E. D., and Abernathey, R.: Surface kinetic energy distributions in the global oceans from a high-resolution numerical model and surface drifter observations, Geophys. Res. Lett., 46, 9757–9766, https://doi.org/10.1029/2019GL083074, 2019.
Zaron, E. D. and Egbert, G. D.: Time-variable refraction of the internal tide at the Hawaiian Ridge, J. Phys. Oceanogr., 44, 538–557, https://doi.org/10.1175/JPO-D-12-0238.1, 2014.
Zaron, E. D., Musgrave, R. C., and Egbert, G. D.: Baroclinic tidal energetics inferred from satellite altimetry, J. Phys. Oceanogr., 52, 1015–1032, https://doi.org/10.1175/JPO-D-21-0096.1, 2022.
Zhang, Z., Wang, W., and Qiu, B.: Oceanic mass transport by mesoscale eddies, Science, 345, 322–324, https://doi.org/10.1126/science.1252418, 2014.
Zhang, Z., Tian, J., Qiu, B., Zhao, W., Chang, P., Wu, D., and Wan, X.: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea, Sci. Rep.-UK, 6, 24349, https://doi.org/10.1038/srep24349, 2016.
Zhang, Z., Liu, Y., Qiu, B., Luo, Y., Cai, W., Yuan, Q., Liu, Y., Zhang, H., Liu, H., Miao, M., Zhao, J., Zhao, W., and Tian, J.: Submesoscale inverse energy cascade enhances Southern Ocean eddy heat transport, Nat. Commun., 14, 1335, https://doi.org/10.1038/s41467-023-36991-2, 2023.
Zhao, Z.: The global mode-1 S
2 internal tide, J. Geophys. Res.-Ocean., 122, 8794–8812, https://doi.org/10.1002/2017JC013112, 2017.
Zhao, Z. and Qiu, B.: Seasonal west-east seesaw of M
2 internal tides from the Luzon Strait, J. Geophys. Res.-Ocean., 128, e2022JC019281, https://doi.org/10.1029/2022JC019281, 2023.
Zhao, Z., Alford, M. H., MacKinnon, J. A., and Pinkel, R.: Long-range propagation of the semidiurnal internal tide from the Hawaiian Ridge, J. Phys. Oceanogr., 40, 713–736, https://doi.org/10.1175/2009JPO4207.1, 2010.
Zhao, Z., Alford, M. H., Girton, J. B., Rainville, L., and Simmons, H. L.: Global observations of open-ocean mode-1 M
2 internal tides, J. Phys. Oceanogr., 46, 1657–1684, https://doi.org/10.1175/JPO-D-15-0105.1, 2016.
Zhao, Z. X.: Internal tide radiation from the Luzon Strait, J. Geophys. Res.-Ocean., 119, 5434–5448, https://doi.org/10.1002/2014JC010014, 2014.
Zhou, C., Xiao, X., Zhao, W., Yang, J., Huang, X., Guan, S., Zhang, Z., and Tian, J.: Increasing deep-water overflow from the Pacific into the South China Sea revealed by mooring observations, Nat. Commun., 14, 2013, https://doi.org/10.1038/s41467-023-37767-4, 2023.
Zilberman, N. V., Becker, J. M., Merrifield, M. A., and Carter, G. S.: Model estimates of M2 internal tide generation over Mid-Atlantic Ridge topography, J. Phys. Oceanogr., 39, 2635–2651, https://doi.org/10.1175/2008JPO4136.1, 2009.