Articles | Volume 20, issue 6
https://doi.org/10.5194/os-20-1677-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-1677-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Contrasting two major Arctic coastal polynyas: the role of sea ice in driving diel vertical migrations of zooplankton in the Laptev and Beaufort seas
Igor A. Dmitrenko
CORRESPONDING AUTHOR
Centre for Earth Observation Science, University of Manitoba, Winnipeg, R3T 2N2, Manitoba, Canada
Vladislav Petrusevich
Northwest Atlantic Fisheries Centre, Fisheries and Oceans Canada, St. John's, A1A 5J7, Newfoundland and Labrador, Canada
Andreas Preußer
Climate Sciences Division, Alfred Wegener Institute for Polar and Marine Research, 27570 Bremerhaven, Germany
now at: German Space Agency, German Aerospace Center (DLR), 53227 Bonn, Germany
Ksenia Kosobokova
Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, 117218, Russia
Caroline Bouchard
Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, 3900, Greenland
Département de Biologie, Université Laval, Québec, G1V 0A6, Quebec, Canada
Maxime Geoffroy
Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, A1C 5R3, Newfoundland and Labrador, Canada
Department of Arctic and Marine Biology, Arctic University of Norway, Tromsø, 9019, Norway
Alexander S. Komarov
Data Assimilation and Satellite Meteorology Research Section, Environment and Climate Change Canada, Ottawa, K1A 0H3, Ontario, Canada
David G. Babb
Centre for Earth Observation Science, University of Manitoba, Winnipeg, R3T 2N2, Manitoba, Canada
Sergei A. Kirillov
Centre for Earth Observation Science, University of Manitoba, Winnipeg, R3T 2N2, Manitoba, Canada
David G. Barber
Centre for Earth Observation Science, University of Manitoba, Winnipeg, R3T 2N2, Manitoba, Canada
deceased
Related authors
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Igor A. Dmitrenko, Denis L. Volkov, Tricia A. Stadnyk, Andrew Tefs, David G. Babb, Sergey A. Kirillov, Alex Crawford, Kevin Sydor, and David G. Barber
Ocean Sci., 17, 1367–1384, https://doi.org/10.5194/os-17-1367-2021, https://doi.org/10.5194/os-17-1367-2021, 2021
Short summary
Short summary
Significant trends of sea ice in Hudson Bay have led to a considerable increase in shipping activity. Therefore, understanding sea level variability is an urgent issue crucial for safe navigation and coastal infrastructure. Using the sea level, atmospheric and river discharge data, we assess environmental factors impacting variability of sea level at Churchill. We find that it is dominated by wind forcing, with the seasonal cycle generated by the seasonal cycle in atmospheric circulation.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Vladislav Y. Petrusevich, Igor A. Dmitrenko, Andrea Niemi, Sergey A. Kirillov, Christina Michelle Kamula, Zou Zou A. Kuzyk, David G. Barber, and Jens K. Ehn
Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, https://doi.org/10.5194/os-16-337-2020, 2020
Short summary
Short summary
The diel vertical migration of zooplankton is considered the largest daily migration of biomass on Earth. This study investigates zooplankton distribution, dynamics, and factors controlling them during open-water and ice cover periods in Hudson Bay, a large seasonally ice-covered Canadian inland sea. The presented data constitute the first-ever observed diel vertical migration of zooplankton in Hudson Bay during winter and its interaction with the tidal dynamics.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
Mathieu Plante, Jean-François Lemieux, L. Bruno Tremblay, Amélie Bouchat, Damien Ringeisen, Philippe Blain, Stephen Howell, Mike Brady, Alexander S. Komarov, Béatrice Duval, and Lekima Yakuden
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-227, https://doi.org/10.5194/essd-2024-227, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
Sea ice forms a thin boundary between the ocean and the atmosphere, with a complex crust-like dynamics and ever-changing networks of sea ice leads and ridges. Statistics of these dynamical features are often used to evaluate sea ice models. Here, we present a new pan-Arctic dataset of sea ice deformations derived from satellite imagery, from 01 September 2017 to 31 August 2023. We discuss the dataset coverage and some limitations associated with uncertainties in the computed values.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Alexandra M. Zuhr, Erik Loebel, Marek Muchow, Donovan Dennis, Luisa von Albedyll, Frigga Kruse, Heidemarie Kassens, Johanna Grabow, Dieter Piepenburg, Sören Brandt, Rainer Lehmann, Marlene Jessen, Friederike Krüger, Monika Kallfelz, Andreas Preußer, Matthias Braun, Thorsten Seehaus, Frank Lisker, Daniela Röhnert, and Mirko Scheinert
Polarforschung, 91, 73–80, https://doi.org/10.5194/polf-91-73-2023, https://doi.org/10.5194/polf-91-73-2023, 2023
Short summary
Short summary
Polar research is an interdisciplinary and multi-faceted field of research. Its diversity ranges from history to geology and geophysics to social sciences and education. This article provides insights into the different areas of German polar research. This was made possible by a seminar series, POLARSTUNDE, established in the summer of 2020 and organized by the German Society of Polar Research and the German National Committee of the Association of Polar Early Career Scientists (APECS Germany).
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023, https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Short summary
Observations of large-scale ice thickness have unfortunately only been available since 2003, a short record for researching trends and variability. We generated a proxy for sea ice thickness in the Canadian Arctic for 1996–2020. This is the longest available record for large-scale sea ice thickness available to date and the first record reliably covering the channels between the islands in northern Canada. The product shows that sea ice has thinned by 21 cm over the 25-year record in April.
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Stephen E. L. Howell, Mike Brady, and Alexander S. Komarov
The Cryosphere, 16, 1125–1139, https://doi.org/10.5194/tc-16-1125-2022, https://doi.org/10.5194/tc-16-1125-2022, 2022
Short summary
Short summary
We describe, apply, and validate the Environment and Climate Change Canada automated sea ice tracking system (ECCC-ASITS) that routinely generates large-scale sea ice motion (SIM) over the pan-Arctic domain using synthetic aperture radar (SAR) images. The ECCC-ASITS was applied to the incoming image streams of Sentinel-1AB and the RADARSAT Constellation Mission from March 2020 to October 2021 using a total of 135 471 SAR images and generated new SIM datasets (i.e., 7 d 25 km and 3 d 6.25 km).
Igor A. Dmitrenko, Denis L. Volkov, Tricia A. Stadnyk, Andrew Tefs, David G. Babb, Sergey A. Kirillov, Alex Crawford, Kevin Sydor, and David G. Barber
Ocean Sci., 17, 1367–1384, https://doi.org/10.5194/os-17-1367-2021, https://doi.org/10.5194/os-17-1367-2021, 2021
Short summary
Short summary
Significant trends of sea ice in Hudson Bay have led to a considerable increase in shipping activity. Therefore, understanding sea level variability is an urgent issue crucial for safe navigation and coastal infrastructure. Using the sea level, atmospheric and river discharge data, we assess environmental factors impacting variability of sea level at Churchill. We find that it is dominated by wind forcing, with the seasonal cycle generated by the seasonal cycle in atmospheric circulation.
Marcel Kleinherenbrink, Anton Korosov, Thomas Newman, Andreas Theodosiou, Alexander S. Komarov, Yuanhao Li, Gert Mulder, Pierre Rampal, Julienne Stroeve, and Paco Lopez-Dekker
The Cryosphere, 15, 3101–3118, https://doi.org/10.5194/tc-15-3101-2021, https://doi.org/10.5194/tc-15-3101-2021, 2021
Short summary
Short summary
Harmony is one of the Earth Explorer 10 candidates that has the chance of being selected for launch in 2028. The mission consists of two satellites that fly in formation with Sentinel-1D, which carries a side-looking radar system. By receiving Sentinel-1's signals reflected from the surface, Harmony is able to observe instantaneous elevation and two-dimensional velocity at the surface. As such, Harmony's data allow the retrieval of sea-ice drift and wave spectra in sea-ice-covered regions.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Vladislav Y. Petrusevich, Igor A. Dmitrenko, Andrea Niemi, Sergey A. Kirillov, Christina Michelle Kamula, Zou Zou A. Kuzyk, David G. Barber, and Jens K. Ehn
Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, https://doi.org/10.5194/os-16-337-2020, 2020
Short summary
Short summary
The diel vertical migration of zooplankton is considered the largest daily migration of biomass on Earth. This study investigates zooplankton distribution, dynamics, and factors controlling them during open-water and ice cover periods in Hudson Bay, a large seasonally ice-covered Canadian inland sea. The presented data constitute the first-ever observed diel vertical migration of zooplankton in Hudson Bay during winter and its interaction with the tidal dynamics.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
Andreas Preußer, Günther Heinemann, Sascha Willmes, and Stephan Paul
The Cryosphere, 10, 3021–3042, https://doi.org/10.5194/tc-10-3021-2016, https://doi.org/10.5194/tc-10-3021-2016, 2016
Short summary
Short summary
We present spatial and temporal characteristics of 17 Arctic polynya regions. By using an energy balance model, daily thin-ice thickness distributions are derived from TIR satellite and atmospheric reanalysis data. All polynyas combined yield an average ice production of about 1811 km3 per winter. Interestingly, we find distinct regional differences in calculated trends over the last 13 years. Finally, we set a special focus on the Laptev Sea region and its relation to the Transpolar Drift.
Oliver Gutjahr, Günther Heinemann, Andreas Preußer, Sascha Willmes, and Clemens Drüe
The Cryosphere, 10, 2999–3019, https://doi.org/10.5194/tc-10-2999-2016, https://doi.org/10.5194/tc-10-2999-2016, 2016
Short summary
Short summary
We estimated the formation of new sea ice within polynyas in the Laptev Sea (Siberia) with the regional climate model COSMO-CLM at 5 km horizontal resolution. Fractional sea ice and the representation of thin ice is often neglected in atmospheric models. Our study demonstrates, however, that the way thin ice in polynyas is represented in the model considerably affects the amount of newly formed sea-ice and the air–ice–ocean heat flux. Both processes impact the Arctic sea-ice budget.
A. Preußer, S. Willmes, G. Heinemann, and S. Paul
The Cryosphere, 9, 1063–1073, https://doi.org/10.5194/tc-9-1063-2015, https://doi.org/10.5194/tc-9-1063-2015, 2015
Short summary
Short summary
The Storfjorden polynya (Svalbard) forms regularly under the influence of strong north-easterly winds. In this study, spatial and temporal characteristics for the period 2002/03-2013/14 were inferred from daily calculated thin-ice thickness distributions, based on MODIS ice surface temperatures and ERA-interim reanalysis.
With an estimated average ice production of 28.3km³/winter, this polynya system is of particular interest regarding its potential contribution to deep water formation.
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
Related subject area
Approach: In situ Observations | Properties and processes: Coastal and near-shore processes
Intensified upwelling: normalized sea surface temperature trends expose climate change in coastal areas
Importance of tides and winds in influencing the nonstationary behaviour of coastal currents in offshore Singapore
Coastal and regional marine heatwaves and cold spells in the northeastern Atlantic
Miguel Ángel Gutiérrez-Guerra, María Dolores Pérez-Hernández, and Pedro Vélez-Belchí
Ocean Sci., 20, 1291–1308, https://doi.org/10.5194/os-20-1291-2024, https://doi.org/10.5194/os-20-1291-2024, 2024
Short summary
Short summary
Eastern boundary upwelling systems (EBUSs) are crucial for resources, but climate change poses uncertainties for their future. To assess global warming's impact, we examine Andrew Bakun's 1990 hypothesis of intensified upwelling using deseasonalized sea surface temperature data. A new index, αUI, normalizes upwelling trends against non-upwelling processes, confirming intensification in all EBUSs and supporting Bakun's hypothesis.
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024, https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Short summary
Coastal currents have wide implications for port activities, transport of sediments, and coral reef ecosystems; thus a deeper understanding of their characteristics is needed. We collected data on current velocities for a year using current meters at shallow waters in Singapore. The strength of the currents is primarily affected by tides and winds and generally increases during the monsoon seasons across various frequencies.
Amélie Simon, Coline Poppeschi, Sandra Plecha, Guillaume Charria, and Ana Russo
Ocean Sci., 19, 1339–1355, https://doi.org/10.5194/os-19-1339-2023, https://doi.org/10.5194/os-19-1339-2023, 2023
Short summary
Short summary
In the coastal northeastern Atlantic and for three subregions (the English Channel, Bay of Brest and Bay of Biscay) over the period 1982–2022, marine heatwaves are more frequent and longer and extend over larger areas, while the opposite is seen for marine cold spells. This result is obtained with both in situ and satellite datasets, although the satellite dataset underestimates the amplitude of these extremes.
Cited articles
Abramova, E.: Composition, abundance and population structure of spring-time zooplankton in the shelf-zone of the Laptev Sea, in: Land-Ocean Systems in the Siberian Arctic: Dynamics and History, edited by: Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L. A., Springer-Verlag, Berlin, Germany, 161–168, https://doi.org/10.1007/978-3-642-60134-7_16, 1999.
Abramova, E. and Tuschling, K.: A 12-year study of the seasonal and interannual dynamics of mesozooplankton in the Laptev Sea: Significance of salinity regime and life cycle patterns, Global Planet. Change, 48, 141–164, https://doi.org/10.1016/j.gloplacha.2004.12.010, 2005.
Ackerman, S., Frey, R., Strabala, K., Liu, Y., Gumley, L., Baum, B., and Menzel, P.: Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35), Version 6.1. MODIS Cloud Mask Team, Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin: Madison, WI, USA, https://modis.gsfc.nasa.gov/data/atbd/atbd_mod06.pdf (last access: 22 October 2024), 2010.
Arashkevich, E. G., Drits, A. V., Pasternak, A. F., Flint, M. V., Demidov, A. B., Amelina, A. B., Kravchishina, M. D., Sukhanova, I. N., and Shchuka, S. A.: Distribution and Feeding of Herbivorous Zooplankton in the Laptev Sea, Oceanology, 58, 381–395, https://doi.org/10.1134/S0001437018030013, 2018.
Archibald, K., Siegel, D. A., and Doney, S. C.: Modeling the impact of zooplankton diel vertical migration on the carbon export flux of the biological pump, Global Biogeochem. Cy., 33, 181–199, https://doi.org/10.1029/2018GB005983, 2019.
Arrigo, K. R.: Chapter 7 Physical Control of Primary Productivity in Arctic and Antarctic Polynyas, in: Polynyas: Windows to the World, edited by: Smith, W. O. and Barber D. G., Elsevier Oceanography Series, 74, 223–238, https://doi.org/10.1016/S0422-9894(06)74007-7, 2007.
Arrigo, K. R. and van Dijken, G. L.: Annual cycles of sea ice and phytoplankton in Cape Bathurst polynya, southeastern Beaufort Sea, Canadian Arctic, Geophys. Res. Lett., 31, L08304, https://doi.org/10.1029/2003GL018978, 2004.
Aune, M., Raskhozheva, E., Andrade, H., Augustine, S., Bambulyak, A., Camus, L., Carroll, J. L., Dolgov, A. V., Hop, H., Moiseev, D., Renaud, P. E., and Varpe, Ø.: Distribution and ecology of polar cod (Boreogadus saida) in the eastern Barents Sea: a review of historical literature, Mar. Environ. Res., 166, 105262, https://doi.org/10.1016/j.marenvres.2021.105262, 2021.
Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V., and Eiane, K.: Two hundred years of zooplankton vertical migration research, Biol. Rev., 96, 1077–1693, https://doi.org/10.1111/brv.12715, 2021.
Barber, D. G. and Hanesiak, J. M.: Meteorological forcing of sea ice concentrations in the southern Beaufort Sea over the period 1979 to 2000, J. Geophys. Res.-Oceans, 109, C06014, https://doi.org/10.1029/2003JC002027, 2004.
Barber, D. G. and Massom, R.: Chapter 1 The Role of Sea Ice in Arctic and Antarctic Polynyas, in: Polynyas: Windows to the World, edited by: Smith, W. O. and Barber D. G., Elsevier Oceanography Series, 74, 1–54, https://doi.org/10.1016/S0422-9894(06)74001-6, 2007.
Barber, D. G., Asplin, M. G., Gratton, Y., Lukovich, J. V., Galley, R. J., Raddatz, R. L., and Leitch, D.: The International polar year (IPY) circumpolar flaw lead (CFL) system study: Overview and the physical system, Atmos.-Ocean, 48, 225–243, https://doi.org/10.3137/OC317.2010, 2010.
Belter, H. J., Janout, M., Hölemann, J. A., and Krumpen, T.: Data from: Daily Mean Sea Ice Draft From Moored Upward-Looking Acoustic Doppler Current Profilers (ADCPs) in the Laptev Sea from 2003 to 2016, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.912927, 2020.
Belter, H. J., Krumpen, T., Janout, M. A., Ross, E., and Haas, C.: An Adaptive Approach to Derive Sea Ice Draft from Upward-Looking Acoustic Doppler Current Profilers (ADCPs), Validated by Upward-Looking Sonar (ULS) Data, Remote Sens., 13, 4335, https://doi.org/10.3390/rs13214335, 2021.
Benoit, D., Simard, Y., Gagné, J., Geoffroy, M., and Fortier, L.: From polar night to midnight sun: photoperiod, seal predation, and the diel vertical migrations of polar cod (Boreogadus saida) under landfast ice in the Arctic Ocean, Polar Biol., 33, 1505–1520, https://doi.org/10.1007/s00300-010-0840-x, 2010.
Berge, J., Cottier, F., Last, K. S., Varpe, Ø, Leu, E., Søreide, J., Eiane, K., Falk-Petersen, S., Willis, K., Nygård, H., Vogedes, D., Griffiths, C., Johnsen, G., Lorentzen, D., and Brierley, A. S.: Diel vertical migration of Arctic the zooplankton during the polar night, Biol. Lett., 5, 69–72, https://doi.org/10.1098/rsbl.2008.0484, 2009.
Berge, J., Renaud, P. E., Darnis, G., Cottier, F., Last, K., Gabrielsen, T. M., Johnsen, G., Seuthe, L., Weslawski, J. M., Leu, E., Moline, M., Nahrgang, J., Søreide, J. E., Varpe, Ø., Lønne, O. J., Daase, M., and Falk-Petersen, S.: In the dark: a review of ecosystem processes during the Arctic polar night, Prog. Oceanogr., 139, 258–271, https://doi.org/10.1016/j.pocean.2015.08.005, 2015.
Bianchi, D., Galbraith, E. D., Carozza, D. A., Mislan, K. A. S., and Stock, C. A.: Intensification of open-ocean oxygen depletion by vertically migrating animals, Nat. Geosci., 6, 545–548, https://doi.org/10.1038/ngeo1837, 2013.
Bouchard, C. and Fortier, L.: Effects of polynyas on the hatching season, early growth and survival of polar cod Boreogadus saida in the Laptev Sea, Mar. Ecol. Prog. Ser., 355, 247–256, https://doi.org/10.3354/meps07335, 2008.
Bouchard, C. and Fortier, L.: The importance of Calanus glacialis for the feeding success of young polar cod: a circumpolar synthesis, Polar Biol., 43, 1095–1107, https://doi.org/10.1007/s00300-020-02643-0, 2020.
Brierley, A. S.: Diel vertical migration, Curr. Biol., 24, R1074–R1076, https://doi.org/10.1016/j.cub.2014.08.054, 2014.
Buckley, T. and Whitehouse, A.: Variation in the diet of Arctic Cod (Boreogadus saida) in the Pacific Arctic and Bering Sea, Environ. Biol. Fish., 100, 421–442, https://doi.org/10.1007/s10641-016-0562-1, 2017.
Carmack, E. C. and Macdonald, R. W.: Oceanography of the Canadian Shelf of the Beaufort Sea: A setting for Marine Life, Arctic, 56, 29–45, https://doi.org/10.14430/arctic733, 2002.
Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally, H. J.: Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data, Version 1, Boulder, Colorado, USA, NASA National Snow and Ice Data Center [data set], https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.
Cavalieri, D. J., Markus, T., and Comiso, J. C.: AMSR-E/Aqua Daily L3 12.5 km Brightness Temperature, Sea Ice Concentration, & Snow Depth Polar Grids, Version 3, Boulder, Colorado, USA, NASA National Snow and Ice Data Center [data set], https://doi.org/10.5067/AMSR-E/AE_SI12.003, 2014.
Cohen, J. H. and Forward Jr., R. B.: Spectral sensitivity of vertically migrating marine copepods, Biol. Bull., 203, 307–314, https://doi.org/10.2307/1543573, 2002.
Cohen, J. H. and Frank, T. M.: Visual physiology of the Antarctic amphipod Abyssorchomene plebs, Biol. Bull., 211, 140–148, https://doi.org/10.2307/4134588, 2006.
Cohen, J. H., Berge, J., Moline, M. A., Sørensen, A.J., Last, K., Falk-Petersen, S., Renaud, P. E., Leu, E. S., Grenvald, J., Cottier, F., Cronin, H., Menze, S., Norgren, P., Varpe, Ø., Daase, M., Darnis, G., and Johnsen, G.: Is ambient light during the high Arctic polar night sufficient to act as a visual cue for zooplankton?, PLoS One, 10, e0126247, https://doi.org/10.1371/journal.pone.0126247, 2015.
Comiso, J. C., Cavalieri, D. J., Parkinson, C. L., and Gloersen, P.: Passive microwave algorithms for sea ice concentration: a comparison of two techniques, Remote Sens. Environ., 60, 357–384, https://doi.org/10.1016/S0034-4257(96)00220-9, 1997.
Conover, R. J. and Huntley, M.: Copepods in ice-covered seas – distribution, adaptations to seasonally limited food, metabolism, growth patterns and life cycle strategies in polar seas, J. Mar. Res., 2, 1–41, https://doi.org/10.1016/0924-7963(91)90011-I, 1991.
Conover, R. J. and Siferd, T. D.: Dark-Season Survival Strategies of Coastal Zone Zooplankton in the Canadian Arctic, Arctic, 46, 303–311, https://doi.org/10.14430/arctic1357, 1993.
Cottier, F. R., Tarling, G. A., Wold, A., and Falk-Petersen, S.: Unsynchronised and synchronised vertical migration of the zooplankton in a high Arctic fjord, Limnol. Oceanogr., 51, 2586–2599, https://doi.org/10.4319/lo.2006.51.6.2586, 2006.
Cusa, M., Berge, J., and Varpe, Ø.: Seasonal shifts in feeding patterns: individual and population realized specialization in a high Arctic fish, Ecol. Evol., 9, 11112–11121, https://doi.org/10.1002/ece3.5615, 2019.
Daase, M., Eiane, K., Aksnes, D. L., and Vogedes, D.: Vertical distribution of Calanus spp. and Metridia longa at four Arctic locations, Mar. Biol. Res., 4, 193–207, https://doi.org/10.1080/17451000801907948, 2008.
Darnis, G. and Fortier, L.: Zooplankton respiration and the export of carbon at depth in the Amundsen Gulf (Arctic Ocean), J. Geophys. Res.-Oceans, 117, C04013, https://doi.org/10.1029/2011JC007374, 2012.
Darnis, G. and Fortier, L.: Temperature, food and the seasonal vertical migration of key arctic copepods in the thermally stratified Amundsen Gulf (Beaufort Sea, Arctic Ocean), J. Plankton Res., 36, 1092–1108, https://doi.org/10.1093/plankt/fbu035, 2014.
Darnis, G., Geoffroy, M., Dezutter, T., Aubry, C., Massicotte, P., Brown, T., Babin, M., Cote, D., and Fortier, L.: Zooplankton assemblages along the North American Arctic: Ecological connectivity shaped by ocean circulation and bathymetry from the Chukchi Sea to Labrador Sea, Elementa. Sci. Anth., 10, 00053, https://doi.org/10.1525/elementa.2022.00053, 2022.
David, C., Lange, B., Krumpen, T., Schaafsma, F., van Franeker, J. A., and Flores, H.: Under-ice distribution of polar cod Boreogadus saida in the central Arctic Ocean and their association with sea-ice habitat properties, Polar Biol., 39, 981–994, https://doi.org/10.1007/s00300-015-1774-0, 2016.
Deines, K. L.: Backscatter estimation using broadband acoustic Doppler current profilers, in: Proceedings of the IEEE 6th Working Conference on Current Measurement Cat. No. 99CH36331, IEEE, 13 March 1999, San Diego, CA, USA, 249–253, https://doi.org/10.1109/CCM.1999.755249, 1999.
Dmitrenko, I.: ADCP data from moorings Khatanga, Anabar, CA05, and CA08, Mendeley Data, V1 [data set], https://doi.org/10.17632/75rk5kbnn4.1, 2024.
Dmitrenko, I., Kirillov, S., Eicken, H., and Markova, N.: Wind-driven summer surface hydrography of the eastern Siberian shelf, Geophys. Res. Lett., 32, L14613, https://doi.org/10.1029/2005GL023022, 2005a.
Dmitrenko, I., Tyshko, K., Kirillov, S., Hölemann, J., Eicken, H., and Kassens, H.: Impact of flaw polynyas on the hydrography of the Laptev Sea, Global Planet. Change, 48, 9–27, https://doi.org/10.1016/j.gloplacha.2004.12.016, 2005b.
Dmitrenko, I. A., Kirillov, S. A., and Tremblay, L.B.: The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: Implication for climatic change, J. Geophys. Res.-Oceans, 113, C03007, https://doi.org/10.1029/2007JC004304, 2008.
Dmitrenko, I. A., Kirillov, S. A., Tremblay, L. B., Bauch, D., and Willmes, S.: Sea-ice production over the Laptev Sea shelf inferred from historical summer-to-winter hydrographic observations of 1960s–1990s, Geophys. Res. Lett., 36, L13605, https://doi.org/10.1029/2009GL038775, 2009.
Dmitrenko, I. A., Wegner, C., Kassens, H., Kirillov, S. A, Krumpen, T., Heinemann, G., Helbig, A., Schröder, D., Hölemann, J. A., Klagge, T., Tyshko, K. P., and Busche, T.: Observations of supercooling and frazil ice formation in the Laptev Sea coastal polynya, J. Geophys. Res.-Oceans, 115, C05015, https://doi.org/10.1029/2009JC005798, 2010a.
Dmitrenko, I. A., Kirillov, S. A., Krumpen, T., Makhotin, M., Abrahamsen, E. P., Willmes, S., Bloshkina, E., Hölemann, J. A., Kassens, H., and Wegner, C.: Wind-driven diversion of summer river runoff preconditions the Laptev Sea coastal polynya hydrography: Evidence from summer-to-winter hydrographic records of 2007–2009, Cont. Shelf Res., 30, 1656–1664, https://doi.org/10.1016/j.csr.2010.06.012, 2010b.
Dmitrenko, I. A., Kirillov, S. A., Bloshkina, E., and Lenn, Y.-D.: Tide-induced vertical mixing in the Laptev Sea coastal polynya, J. Geophys. Res.-Oceans, 117, C00G14, https://doi.org/10.1029/2011JC006966, 2012.
Dmitrenko, I. A., Kirillov, S. A., Forest, A., Gratton, Y., Volkov, D. L., Williams, W. J., Lukovich, J. V., Bélanger, C., and Barber, D. G.: Shelfbreak current over the Canadian Beaufort Sea continental slope: wind-driven events in January 2005, J. Geophys. Res.-Oceans, 121, 2447–2468, https://doi.org/10.1002/2015JC011514, 2016.
Dmitrenko, I. A., Kirillov, S. A., Myers, P. G., Forest, A., Tremblay, B., Lukovich, J. V., Gratton, Y., Rysgaard, S., and Barber, D. G.: Wind-forced depth-dependent currents over the eastern Beaufort Sea continental slope: implications for pacific water transport, Elem. Sci. Anth., 6, 66, https://doi.org/10.1525/elementa.321, 2018.
Dmitrenko, I. A., Petrusevich, V., Darnis, G., Kirillov, S. A., Komarov, A. S., Ehn, J. K., Forest, A., Fortier, L., Rysgaard, S., and Barber, D. G.: Sea-ice and water dynamics and moonlight impact the acoustic backscatter diurnal signal over the eastern Beaufort Sea continental slope, Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, 2020.
Dmitrenko, I. A., Petrusevich, V. Y., Kosobokova, K., Komarov, A. S., Bouchard, C., Geoffroy, M., Koldunov, N. V., Babb, D. G., Kirillov, S. A., and Barber, D. G.: Coastal Polynya Disrupts the Acoustic Backscatter Diurnal Signal Over the Eastern Laptev Sea Shelf, Front. Mar. Sci., 8, 791096, https://doi.org/10.3389/fmars.2021.791096, 2021.
Elias, S. A.: Overview: Ice Sheets and Polar Deserts – Ice of Life, Encyclopedia of the World's Biomes, 274–285, https://doi.org/10.1016/B978-0-12-409548-9.12118-9, 2020.
Flores, H., Veyssière, G., Castellani, G., Wilkinson, J., Hoppmann, M., Karcher, M., Valcic, L., Cornils, A., Geoffroy, M., Nicolaus, M., Niehoff, B., Priou, P., Schmidt, K., and Stroeve, J.: Sea-ice decline could keep zooplankton deeper for longer, Nat. Clim. Change, 13, 1122–1130, https://doi.org/10.1038/s41558-023-01779-1, 2023.
Gaston, K. J., Duffy, J. P., Gaston, S., Bennie, J., and Davies, T. W.: Human alteration of natural light cycles: causes and ecological consequences, Oecologia, 176, 917–931, https://doi.org/10.1007/s00442-014-3088-2, 2014.
Geoffroy, M., Robert, D., Darnis, G., and Fortier, L.: The aggregation of polar cod (Boreogadus saida) in the deep Atlantic layer of ice-covered Amundsen Gulf (Beaufort Sea) in winter, Polar Biol., 34, 1959–1971, https://doi.org/10.1007/s00300-011-1019-9, 2011.
Geoffroy, M., Majewski, A., LeBlanc, M., Gauthier, S., Walkusz, W., Reist, J. D., and Fortier, L.: Vertical segregation of age-0 and age-1+ polar cod (Boreogadus saida) over the annual cycle in the Canadian Beaufort Sea, Polar Biol., 39, 1023–1037, https://doi.org/10.1007/s00300-015-1811-z, 2016.
Geoffroy, M., Bouchard, C., Flores, H., Robert, D., Gjøsæter, H., Hoover, C., Hop, H., Hussey, N. E., Nahrgang, J., Steiner, N., Bender, M., Berge, J., Castellani, G., Chernova, N., Copeman, L., David, C. L., Deary, A., Divoky, G., Dolgov, A. V., Duffy-Anderson, J., Dupont, N., Durant, J. M., Elliott, K., Gauthier, S., Goldstein, E. D., Gradinger, R., Hedges, K., Herbig, J., Laurel, B., Loseto, L., Maes, S., Mark, F. C., Mosbech, A., Pedro, S., Pettitt-Wade, H., Prokopchuk, I., Renaud, P. E., Schembri, S., Vestfals, C., and Walkusz, W.: The circumpolar impacts of climate change and anthropogenic stressors on Arctic cod (Boreogadus saida) and its ecosystem, Elem. Sci. Anth., 11, 00097, https://doi.org/10.1525/elementa.2022.00097, 2023.
Gradinger, R. R. and Bluhm, B. A.: In-situ observations on the distribution and behavior of amphipods and Arctic cod (Boreogadus saida) under the sea ice of the high Arctic Canada Basin, Polar Biol., 27, 595–603, https://doi.org/10.1007/s00300-004-0630-4, 2004.
Gratton, Y., Guillot, P., Lago, V., Rail M.-E., and Simard, A.: ArcticNet 0501c – Beaufort Sea CTD data, Polar Data Catalogue, CCIN Ref. 449, 2014a.
Gratton, Y., Dumont, D., Rail, M.-E., Simard, A., and Thanassekos, S.: Data from: ArcticNet 0603a – Beaufort Sea CTD data, Polar Data Catalogue, CCIN Ref. 502, 2014b.
Grenfell, C. G. and Maykut, G. A.: The optical properties of ice and snow in the Arctic Basin, J. Glaciol., 18, 445–463, https://doi.org/10.3189/S0022143000021122, 1977.
Gutjahr, O., Heinemann, G., Preußer, A., Willmes, S., and Drüe, C.: Quantification of ice production in Laptev Sea polynyas and its sensitivity to thin-ice parameterizations in a regional climate model, The Cryosphere, 10, 2999–3019, https://doi.org/10.5194/tc-10-2999-2016, 2016.
Hall, D. K., Key, J. R., Casey, K. A., Riggs, G. A., and Cavalieri, D. J.: Sea-ice surface temperature product from MODIS, IEEE T. Geosci. Remote, 42, 1076–1087, https://doi.org/10.1109/TGRS.2004.825587, 2004.
Hays, G. C.: A review of the adaptive significance and ecosystem consequences of the zooplankton diel vertical migrations, Hydrobiologia, 503, 163–170, https://doi.org/10.1023/B:HYDR.0000008476.23617.b0, 2003.
Heide-Jørgensen, M. P., Burt, L. M., Hansen, R. G., Nielsen, N. H., Rasmussen, M., Fossette, S., and Stern, H.: The Significance of the North Water Polynya to Arctic Top Predators, Ambio, 42, 596–610, https://doi.org/10.1007/s13280-012-0357-3, 2013.
Hendricks, S., Paul, S., and Rinne, E.: ESA Sea Ice Climate Change Initiative (Sea_Ice_cci): Northern Hemisphere Sea Ice Thickness from the CryoSat-2 Satellite on a Monthly Grid (L3C), v2.0., Centre for Environmental Data Analysis [data set], https://doi.org/10.5285/ff79d140824f42dd92b204b4f1e9e7c2, 2018.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Hobbs, L., Cottier, F. R., Last, K. S., and Berge, J.: Pan-Arctic diel vertical migration during the polar night, Mar. Ecol. Prog. Ser., 605, 61–72, https://doi.org/10.3354/meps12753, 2018.
Hobbs, L., Banas, N. S., Cohen, J. H., Cottier, F. R., Berge, J., and Varpe, Ø.: A marine zooplankton community vertically structured by light across diel to interannual timescales, Biol. Lett., 17, 20200810, https://doi.org/10.1098/rsbl.2020.0810, 2021.
Hölemann, J. A., Kirillov, S., Klagge, T., Novikhin, A., Kassens H., and Timokhov, L.: Near-bottom water warming in the Laptev Sea in response to atmospheric and sea-ice conditions in 2007, Polar Res., 30, 6425, https://doi.org/10.3402/polar.v30i0.6425, 2011.
Ito, M., Fukamachi, Y., Ohshima, K. I., and Shirasawa, K.: Observational evidence of supercooling and frazil ice formation throughout the water column in a coastal polynya in the Sea of Okhotsk, Cont. Shelf Res., 196, 104072, https://doi.org/10.1016/j.csr.2020.104072, 2020.
Jakobsson, M., Cherkis, N., Woodward, J., Macnab, R., and Coakley, B.: New grid of Arctic bathymetry aids scientists and mapmakers, EOS, Transactions of the American Geophysical Union, 81, 89–96, https://doi.org/10.1029/00EO00059, 2000.
Johnson, M. A. and Eicken, H.: Estimating Arctic sea-ice freeze-up and break-up from the satellite record: A comparison of different approaches in the Chukchi and Beaufort Seas, Elem. Sci. Anth., 4, 000124, https://doi.org/10.12952/journal.elementa.000124, 2016.
Jönsson, M., Varpe, Ø, Kozłowski, T., Berge, J., and Kröger, R. H. H.: Differences in lens optical plasticity in two gadoid fishes meeting in the Arctic, J. Comp. Physiol. A, 200, 949–957, https://doi.org/10.1007/s00359-014-0941-z, 2014.
Kassens, H.: The Eurasian shelf seas in the Arctic's changing environment: frontal zones and polynya systems in the Laptev Sea, 10th Workshop on Russian-German Cooperation: Laptev Sea System, Kiel, Germany, 17–20 December 2012, Abstracts volume, 5–6, https://oceanrep.geomar.de/id/eprint/20220 (last access: 12 December 2024), 2012.
Kelly, T. B., Davison, P. C., Goericke, R., Landry, M. R., Ohman, M. D., and Stukel, M. R.: The importance of mesozooplankton diel vertical migration for sustaining a mesopelagic food web, Front. Mar. Sci., 6, 508, https://doi.org/10.3389/fmars.2019.00508, 2019.
Khanal, S. and Wang, Z.: Uncertainties in MODIS-Based Cloud Liquid Water Path Retrievals at High Latitudes Due to Mixed-Phase Clouds and Cloud Top Height Inhomogeneity, J. Geophys. Res.-Atmos., 123, 11154–11172, https://doi.org/10.1029/2018JD028558, 2018.
Kirillov, S. A., Dmitrenko, I. A., Hölemann, J. A., Kassens, H., and Bloshkina, E.: The penetrative mixing in the Laptev Sea coastal polynya pycnocline layer, Con. Shelf Res., 63, 34–42, https://doi.org/10.1016/j.csr.2013.04.040, 2013.
Kosobokova, K. N., Hanssen, H., Hirche, H.-J., and Knickmeier, K.: Composition and Distribution of Zooplankton in the Laptev Sea and Adjacent Nansen Basin During Summer, Polar Biol., 19, 63–76, https://doi.org/10.1007/s003000050216, 1998.
Langbehn, T. J. and Varpe, Ø.: Sea-ice loss boosts visual search: Fish foraging and changing pelagic interactions in polar oceans, Glob. Change Biol., 23, 5318–5330, https://doi.org/10.1111/gcb.13797, 2017.
Last, K. S., Hobbs, L., Berge, J., Brierley, A. S., and Cottier, F.: Moonlight drives ocean-scale mass vertical migration of the zooplankton during the Arctic Winter, Curr. Biol., 26, 244–251, https://doi.org/10.1016/j.cub.2015.11.038, 2016.
Leise, T. L., Indic, P., Paul, M. J., and Schwartz, W. J.: Wavelet meets actogram, J. Biol. Rhythms, 28, 62–68, https://doi.org/10.1177/0748730412468693, 2013.
Lemon, D. D., Gower, J. F. R., and Clarke, M. R.: The acoustic water column profiler: a tool for long-term monitoring of zooplankton populations, in: Proceedings of the MTS/IEEE Oceans 2001, An Ocean Odyssey Conference, Proceedings IEEE Cat. No.01CH37295, Vol. 3, 5–8 November 2001, Honolulu, HI, USA, 1904–1909. https://doi.org/10.1109/OCEANS.2001.968137, 2001.
Lemon, D. D., Billenness, D., and Buermans, J.: Comparison of acoustic measurements of zooplankton populations using an Acoustic Water Column Profiler and an ADCP, in: Proceedings of the OCEANS 2008, IEEE Xplore, 15–18 September 2008, Quebec City, QC, Canada, 1–8, https://doi.org/10.1109/OCEANS.2008.5152009, 2008.
Lorke, A., Mcginnis, D. F., Spaak, P., and Wüest, A.: Acoustic observations of zooplankton in lakes using a Doppler current profiler, Freshw. Biol., 49, 1280–1292, https://doi.org/10.1111/j.1365-2427.2004.01267.x, 2004.
Ludvigsen, M., Berge, J., Geoffroy, M., Cohen, J. H., De La Torre, P. R., Nornes, S. M., Singh, H., Sørensen, A. J., Daase, M., and Johnsen, G.: Use of an Autonomous Surface Vehicle reveals small-scale diel vertical migrations of zooplankton and susceptibility to light pollution under low solar irradiance, Sci. Adv, 4, eaap9887, https://doi.org/10.1126/sciadv.aap9887, 2018.
Miller, G. S.: Mysis Vertical Migration in Grand Traverse Bay, Lake Michigan, Observed by an Acoustic Doppler Current Profiler, J. Great Lakes Res., 29, 427–435, https://doi.org/10.1016/S0380-1330(03)70448-1, 2003.
Mol, J., Thomas, H., Myers, P. G., Hu, X., and Mucci, A.: Inorganic carbon fluxes on the Mackenzie Shelf of the Beaufort Sea, Biogeosciences, 15, 1011–1027, https://doi.org/10.5194/bg-15-1011-2018, 2018.
Mulligan, R. P. and Perrie, W.: Circulation and structure of the Mackenzie River plume in the coastal Arctic Ocean, Cont. Shelf Res., 177, 59–68, https://doi.org/10.1016/j.csr.2019.03.006, 2019.
Mulligan, R. P., Perrie, W., and Solomon, S.: Dynamics of the Mackenzie River plume on the inner Beaufort shelf during an open water period in summer, Estuarine, Coast. Shelf Sci., 89, 214–220, https://doi.org/10.1016/j.ecss.2010.06.010, 2010.
Mullison, J.: Backscatter Estimation Using Broadband Acoustic Doppler Current Profilers – Updated, in: Proceedings of the ASCE Hydraulic Measurements & Experimental Methods Conference, Durham, NH, USA, 9–12 July, 1–5, https://www.teledynemarine.com/en-us/support/SiteAssets/RDI/Technical Notes/FSA Documents/FSA031.pdf (last access: 11 December 2024), 2017.
Ochoa, J., Maske, H., Sheinbaum, J., and Candela, J.: Diel and lunar cycles of vertical migration extending to below 1000 m in the ocean and the vertical connectivity of depth-tiered populations, Limnol. Oceanogr.-Meth., 58, 1207–1214, https://doi.org/10.4319/lo.2013.58.4.1207, 2013.
Ofek, E. O.: MATLAB Package for Astronomy and Astrophysics, Astrophysics Source Code Library, bibcode: 2014ascl.soft07005O, https://ui.adsabs.harvard.edu/abs/2014ascl.soft07005O (last access: 11 December 2024), 2014.
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C.: Seasonal and Regional Manifestation of Arctic Sea Ice Loss, J. Climate, 31, 4917–4932, https://doi.org/10.1175/JCLI-D-17-0427.1, 2018.
Pasternak, A., Drits, A., Arashkevich, E., and Flint, M.: Differential Impact of the Khatanga and Lena (Laptev Sea) Runoff on the Distribution and Grazing of Zooplankton, Front. Mar. Sci., 9, 881383, https://doi.org/10.3389/fmars.2022.881383, 2022.
Perovich, D. K.: The optical properties of sea ice, CRREL Monogr. 96–1, 25 pp., https://apps.dtic.mil/sti/tr/pdf/ADA310586.pdf (last access: 11 December 2024), 1996.
Petrusevich, V., Dmitrenko, I. A., Kirillov, S. A., Rysgaard, S., Falk-Petersen, S., Barber, D. G., Boone, W., and Ehn, J. K.: Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord, J. Geophys. Res.-Oceans, 121, 4804–4818, https://doi.org/10.1002/2016JC011703, 2016.
Petrusevich, V. Y., Dmitrenko, I. A., Niemi, A., Kirillov, S. A., Kamula, C. M., Kuzyk, Z. Z. A., Barber, D. G., and Ehn, J. K.: Impact of tidal dynamics on diel vertical migration of zooplankton in Hudson Bay, Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, 2020.
Pivovarov, S. V., Hölemann, J. A., Kassens, H., Antonow, M., and Dmitrenko, I.: Dissolved oxygen, silicon, phosphorous and suspended matter concentrations during the spring breakup of the Lena River, in: Land-Ocean Systems in the Siberian Arctic: Dynamics and History, edited by: Kassens, H., Bauch, H. A., Dmitrenko, I. A., Eicken, H., Hubberten, H.-W., Melles, M., Thiede, J., and Timokhov, L. A., Springer-Verlag, Berlin, Germany, 251–264, https://doi.org/10.1007/978-3-642-60134-7_23, 1999.
Platnick, S., King, M., and Wind, G.: MODIS Atmosphere L2 Cloud Product (06_L2), NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA [data set], https://doi.org/10.5067/MODIS/MYD06_L2.061, 2017.
Plueddemann, A. J. and Pinkel, R.: Characterization of the patterns of diel migration using a Doppler sonar, Deep-Sea Res. Pt. I, 36, 509–530, https://doi.org/10.1016/0198-0149(89)90003-4, 1989.
Preußer, A., Heinemann, G., Willmes, S., and Paul, S.: Circumpolar polynya regions and ice production in the Arctic: results from MODIS thermal infrared imagery from 2002/2003 to 2014/2015 with a regional focus on the Laptev Sea, The Cryosphere, 10, 3021–3042, https://doi.org/10.5194/tc-10-3021-2016, 2016.
Preußer, A., Ohshima, K. I., Iwamoto, K., Willmes, S., and Heinemann, G.: Retrieval of wintertime sea ice production in Arctic polynyas using thermal infrared and passive microwave remote sensing data, J. Geophys. Res.-Oceans, 124, 5503–5528, https://doi.org/10.1029/2019JC014976, 2019.
Preußer, A., Heinemann, G., Schefczyk, L., and Willmes, S.: A Model-Based Temperature Adjustment Scheme for Wintertime Sea-Ice Production Retrievals from MODIS, Remote Sens., 14, 2036, https://doi.org/10.3390/rs14092036, 2022.
Reiser, F., Willmes, S., and Heinemann, G.: A New Algorithm for Daily sea-ice Lead Identification in the Arctic and Antarctic Winter from Thermal-Infrared Satellite Imagery, Remote Sens., 12, 1957, https://doi.org/10.3390/rs12121957, 2020.
Riggs, G. and Hall, D.: MODIS sea-ice Products User Guide to Collection 6, National Snow and Ice Data Center, University of Colorado: Boulder, CO, USA, https://nsidc.org/sites/default/files/modis-sea-ice-user-guide-c65b15d.pdf (last access: 22 October 2024), 2015.
Rood, S. B., Kaluthota, S., Philipsen, L. J., Rood, N. J., and Zanewich, K. P.: Increasing discharge from the Mackenzie River system to the Arctic Ocean, Hydrol. Process., 31, 150–160, https://doi.org/10.1002/hyp.10986, 2017.
Runge, J. A. and Ingram, R. G.: Under-ice feeding and diel migration by the planktonic copepods Calanus glacialis and Pseudocalanus minutus in relation to the ice algal production cycle in southeastern Hudson Bay, Canada, Mar. Biol., 108, 217–225, https://doi.org/10.1007/BF01344336, 1991.
Sévigny, C., Gratton, Y. and Galbraith, P. S.: Frontal structures associated with coastal upwelling and ice-edge subduction events in southern Beaufort Sea during the Canadian Arctic Shelf Exchange Study, J. Geophys. Res.-Oceans, 120, 2523–2539, https://doi.org/10.1002/2014JC010641, 2015.
Schweiger, A., Lindsay, R., Zhang, J., Steele, M., Stern, H., and Kwok, R.: Uncertainty in modeled Arctic sea ice volume, J. Geophys. Res.-Oceans, 116, C00D06, https://doi.org/10.1029/2011JC007084, 2011.
Sharma, G. D.: Beaufort Sea Shelf, in: The Alaskan Shelf. Hydrographic, Sedimentary, and Geochemical Environment, 418–433, Springer, New York, NY, USA, https://doi.org/10.1007/978-1-4612-6194-0_12, 1979.
Skjoldal, H. R. and Aarflot, J. M.: Abundance and biomass of copepods and cladocerans in Atlantic and Arctic domains of the Barents Sea ecosystem, J. Plankton Res., 45, 870–884, https://doi.org/10.1093/plankt/fbad043, 2023.
Smith, M. and Rigby, B.: Distribution of polynyas in the Canadian Arctic, in: Polynyas in the Canadian Arctic, edited by: Stirling, I. and Cleator, H., 7–28, Canadian Wildlife Service, Occasional Paper No. 45, Ottawa, https://publications.gc.ca/collections/collection_2018/eccc/CW69-1-45-eng.pdf (last access: 22 October 2024), 1981.
Søreide J. E., Dmoch, K., Blachowiak-Samolyk, K., Trudnowska, E., and Daase, M.: Seasonal mesozooplankton patterns and timing of life history events in high-arctic fjord environments, Front. Mar. Sci., 9, 933461, https://doi.org/10.3389/fmars.2022.933461, 2022.
Stanton, T. K., Wiebe, P. H., Chu, D., Benfield, M. C., Scanlon, L., Martin, L., and Eastwood, R. L.: On acoustic estimates of zooplankton biomass, ICES J. Mar. Sci., 51, 505–512, https://doi.org/10.1006/jmsc.1994.1051, 1994.
Stirling, I.: The Biological Importance of Polynyas in the Canadian Arctic, Arctic, 33, 221–381, https://doi.org/10.14430/arctic2563, 1980.
Transdrift: Data from: TRANSDRIFT XIV. OSIS Ocean Science Information System for Expeditions, Numeric Models, Experiments, Leibniz Institute of Marine Sciences at Kiel University, Kiel, Germany, https://portal.geomar.de/metadata/leg/show/324296 (last access: 22 October 2024), 2007.
Transdrift: TRANSDRIFT XII, OSIS Ocean Science Information System for Expeditions, Numeric Models, Experiments, Leibniz Institute of Marine Sciences at Kiel University, Kiel, Germany, https://portal.geomar.de/metadata/cruise/show/317984 (last access: 22 October 2024), 2008.
Tremblay, J. E., Gratton, Y., Fauchot, J., and Price, N. M.: Climatic and oceanic forcing of new, net, and diatom production in the North Water, Deep-Sea Res. Pt. II, 49, 4927–4946, https://doi.org/10.1016/S0967-0645(02)00171-6, 2002.
Varpe, Ø., Daase, M., and Kristiansen, T.: A fish-eye view on the new Arctic lightscape, ICES J. Mar. Sci., 72, 2532– 2538, https://doi.org/10.1093/icesjms/fsv129, 2015.
Vestheim, H., Brucet, S., and Kaartvedt, S.: Vertical distribution, feeding and vulnerability to tactile predation in Metridia longa (Copepoda, Calanoida), Mar. Biol. Res., 9, 949–957, https://doi.org/10.1080/17451000.2013.793806, 2013.
Vestheim, H., Røstad, A., Klevjer, T. A., Solberg, I., and Kaartvedt, S.: Vertical distribution and diel vertical migration of krill beneath snow-covered ice and in ice-free waters, J. Plankton Res., 36, 503–512, https://doi.org/10.1093/plankt/fbt112, 2014.
Wallace, M. I., Cottier, F. R., Berge, J., Tarling, G. A., Griffiths, C., and Brierley, A. S.: Comparison of zooplankton vertical migration in an ice-free and a seasonally ice-covered Arctic fjord: an insight into the influence of sea ice cover on zooplankton behaviour, Limnol. Oceanogr., 55, 831–845, https://doi.org/10.4319/lo.2010.55.2.0831, 2010.
Walsh, J. E., Chapman, W. L., Fetterer, F., and Stewart, S.: Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward, Version 2, National Snow and Ice Data Center, Boulder, CO, USA, [data set], https://doi.org/10.7265/jj4s-tq79, 2019.
Wegner, C., Hölemann, J. A., Dmitrenko, I., Kirillov, S., and Kassens, H.: Seasonal variations in Arctic sediment dynamics – evidence from 1-year records in the Laptev Sea (Siberian Arctic), Global Planet. Change, 48, 126–140, https://doi.org/10.1016/j.gloplacha.2004.12.009, 2005.
Williams, W. and Carmack, E.: Combined effect of wind-forcing and isobath divergence on upwelling at Cape Bathurst, Beaufort Sea, J. Mar. Res., 66, 645–663, https://doi.org/10.1357/002224008787536808, 2008.
Willmes, S. and Heinemann, G.: Pan-Arctic lead detection from MODIS thermal infrared imagery, Ann. Glaciol., 56, 29–37, https://doi.org/10.3189/2015AoG69A615, 2015.
Willmes, S. and Heinemann, G.: Sea-Ice Wintertime Lead Frequencies and Regional Characteristics in the Arctic, 2003–2015, Remote Sens., 8, 4, https://doi.org/10.3390/rs8010004, 2016.
Willmes, S., Krumpen, T., Adams, S., Rabenstein, L., Haas, C., Hoelemann, J., Hendricks, S., and Heinemann, G.: Cross-validation of polynya monitoring methods from multisensory satellite and airborne data: a case study for the Laptev Sea, Can. J. Remote Sens., 36, S196–S210, https://doi.org/10.5589/m10-012, 2010.
Willmes, S., Adams, S., Schröder, D., and Heinemann, G.: Spatio-temporal variability of polynya dynamics and ice production in the Laptev Sea between the winters of 1979/80 and 2007/08, Polar Res., 30, 5971, https://doi.org/10.3402/polar.v30i0.5971, 2011.
Wood, T. M. and Gartner, J. W.: Use of acoustic backscatter and vertical velocity to estimate concentration and dynamics of suspended solids in Upper Klamath Lake, south-central Oregon: Implications for Aphanizomenon flos-aquae, USGS Scientific Investigations Report 5203, 1–20, https://doi.org/10.3133/sir20105203, 2010.
Yang, D., Kane, D. L., Hinzman, L., Zhang, X., Zhang, T., and Ye, H.: Siberian Lena River hydrologic regime and recent change, J. Geophys. Res.-Atmos., 107, 4694, https://doi.org/10.1029/2002JD002542, 2002.
Yang, D., Shi, X., and Marsh, P.: Variability and extreme of Mackenzie River daily discharge during 1973–2011, Quatern. Int., 380–381, 159–168, https://doi.org/10.1016/j.quaint.2014.09.023, 2015.
Zhang, J. L. and Rothrock, D. A.: Modeling global sea ice with a thickness and enthalpy distribution model in generalized curvilinear coordinates, Mon. Weather Rev., 131, 845–861, https://doi.org/10.1175/1520-0493(2003)131<0845:MGSIWA>2.0.CO;2, 2003.
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to...