Articles | Volume 20, issue 5
https://doi.org/10.5194/os-20-1109-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-1109-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new airborne system for simultaneous high-resolution ocean vector current and wind mapping: first demonstration of the SeaSTAR mission concept in the macrotidal Iroise Sea
David L. McCann
CORRESPONDING AUTHOR
National Oceanography Centre, Liverpool, L55DA, UK
Adrien C. H. Martin
National Oceanography Centre, Liverpool, L55DA, UK
NOVELTIS, Labège, 31670, France
Karlus A. C. de Macedo
MetaSensing BV, Noordwijk, 2201 DK, the Netherlands
Ruben Carrasco Alvarez
Department of Radar Hydrography, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
Jochen Horstmann
Department of Radar Hydrography, Helmholtz-Zentrum Hereon, Geesthacht, 21502, Germany
Louis Marié
Laboratoire d'Océanographie Physique et Spatiale (LOPS), Ifremer, Plouzané, 29280, France
José Márquez-Martínez
Radarmetrics SL, Santander, 39005, Spain
Marcos Portabella
Physical and Technological Oceanography, Institut de Ciències del Mar, Barcelona, 08003, Spain
Adriano Meta
MetaSensing BV, Noordwijk, 2201 DK, the Netherlands
Christine Gommenginger
National Oceanography Centre, Liverpool, L55DA, UK
Petronilo Martin-Iglesias
European Space Research and Technology Centre, European Space Agency, Noordwijk, 2201 AZ, the Netherlands
Tania Casal
European Space Research and Technology Centre, European Space Agency, Noordwijk, 2201 AZ, the Netherlands
Related authors
No articles found.
Renée M. Fredensborg Hansen, Henriette Skourup, Eero Rinne, Arttu Jutila, Isobel R. Lawrence, Andrew Shepherd, Knut V. Høyland, Jilu Li, Fernando Rodriguez-Morales, Sebastian B. Simonsen, Jeremy Wilkinson, Gaelle Veyssiere, Donghui Yi, René Forsberg, and Taniâ G. D. Casal
EGUsphere, https://doi.org/10.5194/egusphere-2024-2854, https://doi.org/10.5194/egusphere-2024-2854, 2024
Short summary
Short summary
In December 2022, an airborne campaign collected unprecedented coincident multi-frequency radar and lidar data over sea ice along a CryoSat-2 and ICESat-2 (CRYO2ICE) orbit in the Weddell Sea useful for evaluating microwave penetration. We found limited snow penetration at Ka- and Ku-bands, with significant contributions from the air-snow interface, contradicting traditional assumptions. These findings challenge current methods for comparing air- and spaceborne altimeter estimates of sea ice.
Phoebe A. Hudson, Adrien C. H. Martin, Simon A. Josey, Alice Marzocchi, and Athanasios Angeloudis
Ocean Sci., 20, 341–367, https://doi.org/10.5194/os-20-341-2024, https://doi.org/10.5194/os-20-341-2024, 2024
Short summary
Short summary
Satellite salinity data are used for the first time to study variability in Arctic freshwater transport from the Lena River and are shown to be a valuable tool for studying this region. These data confirm east/westerly wind is the main control on fresh water and sea ice transport rather than the volume of river runoff. The strong role of the wind suggests understanding how wind patterns will change is key to predicting future Arctic circulation and sea ice concentration.
Juha Lemmetyinen, Juval Cohen, Anna Kontu, Juho Vehviläinen, Henna-Reetta Hannula, Ioanna Merkouriadi, Stefan Scheiblauer, Helmut Rott, Thomas Nagler, Elisabeth Ripper, Kelly Elder, Hans-Peter Marshall, Reinhard Fromm, Marc Adams, Chris Derksen, Joshua King, Adriano Meta, Alex Coccia, Nick Rutter, Melody Sandells, Giovanni Macelloni, Emanuele Santi, Marion Leduc-Leballeur, Richard Essery, Cecile Menard, and Michael Kern
Earth Syst. Sci. Data, 14, 3915–3945, https://doi.org/10.5194/essd-14-3915-2022, https://doi.org/10.5194/essd-14-3915-2022, 2022
Short summary
Short summary
The manuscript describes airborne, dual-polarised X and Ku band synthetic aperture radar (SAR) data collected over several campaigns over snow-covered terrain in Finland, Austria and Canada. Colocated snow and meteorological observations are also presented. The data are meant for science users interested in investigating X/Ku band radar signatures from natural environments in winter conditions.
Bérengère Dubrulle, François Daviaud, Davide Faranda, Louis Marié, and Brice Saint-Michel
Nonlin. Processes Geophys., 29, 17–35, https://doi.org/10.5194/npg-29-17-2022, https://doi.org/10.5194/npg-29-17-2022, 2022
Short summary
Short summary
Present climate models discuss climate change but show no sign of bifurcation in the future. Is this because there is none or because they are in essence too simplified to be able to capture them? To get elements of an answer, we ran a laboratory experiment and discovered that the answer is not so simple.
Louis Marié, Fabrice Collard, Frédéric Nouguier, Lucia Pineau-Guillou, Danièle Hauser, François Boy, Stéphane Méric, Peter Sutherland, Charles Peureux, Goulven Monnier, Bertrand Chapron, Adrien Martin, Pierre Dubois, Craig Donlon, Tania Casal, and Fabrice Ardhuin
Ocean Sci., 16, 1399–1429, https://doi.org/10.5194/os-16-1399-2020, https://doi.org/10.5194/os-16-1399-2020, 2020
Short summary
Short summary
With present-day techniques, ocean surface currents are poorly known near the Equator and globally for spatial scales under 200 km and timescales under 30 d. Wide-swath radar Doppler measurements are an alternative technique. Such direct surface current measurements are, however, affected by platform motions and waves. These contributions are analyzed in data collected during the DRIFT4SKIM airborne and in situ experiment, demonstrating the possibility of measuring currents from space globally.
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Roshin P. Raj, Sourav Chatterjee, Laurent Bertino, Antonio Turiel, and Marcos Portabella
Ocean Sci., 15, 1729–1744, https://doi.org/10.5194/os-15-1729-2019, https://doi.org/10.5194/os-15-1729-2019, 2019
Short summary
Short summary
In this study we investigated the variability of the Arctic Front (AF), an important biologically productive region in the Norwegian Sea, using a suite of satellite data, atmospheric reanalysis and a regional coupled ocean–sea ice data assimilation system. We show evidence of the two-way interaction between the atmosphere and the ocean at the AF. The North Atlantic Oscillation is found to influence the strength of the AF and may have a profound influence on the region's biological productivity.
Carolina Gabarro, Antonio Turiel, Pedro Elosegui, Joaquim A. Pla-Resina, and Marcos Portabella
The Cryosphere, 11, 1987–2002, https://doi.org/10.5194/tc-11-1987-2017, https://doi.org/10.5194/tc-11-1987-2017, 2017
Short summary
Short summary
We present a new method to estimate sea ice concentration in the Arctic Ocean using different brightness temperature observations from the Soil Moisture Ocean Salinity (SMOS) satellite. The method employs a maximum-likelihood estimator. Observations at L-band frequencies such as those from SMOS (i.e. 1.4 GHz) are advantageous to remote sensing of sea ice because the atmosphere is virtually transparent at that frequency and little affected by physical temperature changes.
W. Lin, M. Portabella, A. Stoffelen, and A. Verhoef
Atmos. Meas. Tech., 6, 1053–1060, https://doi.org/10.5194/amt-6-1053-2013, https://doi.org/10.5194/amt-6-1053-2013, 2013
Related subject area
Approach: Remote Sensing | Properties and processes: Coastal and near-shore processes
Surface circulation characterization along the middle-south coastal region of Vietnam from high-frequency radar and numerical modelling
Ensemble reconstruction of missing satellite data using a denoising diffusion model: application to chlorophyll a concentration in the Black Sea
Drivers of Laptev Sea interannual variability in salinity and temperature
Thanh Huyen Tran, Alexei Sentchev, Duy Thai To, Marine Herrmann, Sylvain Ouillon, and Kim Cuong Nguyen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2323, https://doi.org/10.5194/egusphere-2024-2323, 2024
Short summary
Short summary
For the first time, high-resolution surface current data from high-frequency radar have been obtained along the central and southern coasts of Vietnam, and combined with a modelling approach, this is helping scientists to understand coastal processes. The research showed that the surface circulation is not only driven by winds, but also by other factors. This can enrich public knowledge of the coastal dynamics that govern other environmental impacts along the coasts.
Alexander Barth, Julien Brajard, Aida Alvera-Azcárate, Bayoumy Mohamed, Charles Troupin, and Jean-Marie Beckers
EGUsphere, https://doi.org/10.5194/egusphere-2024-1075, https://doi.org/10.5194/egusphere-2024-1075, 2024
Short summary
Short summary
Most satellite observations have gaps, for example, due to clouds. This paper presents a method to reconstruct missing data in satellite observation of the chlorophyll a concentration in the Black Sea. Rather than giving a single possible reconstructed field, the discussed method provides an ensemble of possible reconstructions using a generative neural network. The resulting ensemble is validated using techniques from numerical weather prediction and ocean modelling.
Phoebe A. Hudson, Adrien C. H. Martin, Simon A. Josey, Alice Marzocchi, and Athanasios Angeloudis
Ocean Sci., 20, 341–367, https://doi.org/10.5194/os-20-341-2024, https://doi.org/10.5194/os-20-341-2024, 2024
Short summary
Short summary
Satellite salinity data are used for the first time to study variability in Arctic freshwater transport from the Lena River and are shown to be a valuable tool for studying this region. These data confirm east/westerly wind is the main control on fresh water and sea ice transport rather than the volume of river runoff. The strong role of the wind suggests understanding how wind patterns will change is key to predicting future Arctic circulation and sea ice concentration.
Cited articles
Anderson, C., Bonekamp, H., Duff, C., Figa-Saldana, J., and Wilson, J. J. W.: Analysis of ASCAT Ocean Backscatter Measurement Noise, IEEE T. Geosci. Remote, 50, 2449–2457, https://doi.org/10.1109/TGRS.2012.2190739, 2012.
Bricheno, L. M., Soret, A., Wolf, J., Jorba, O., and Baldasano, J. M.: Effect of high-resolution meteorological forcing on nearshore wave and current model performance, J. Atmos. Ocean. Tech., 30, 1021–1037, https://doi.org/10.1175/jtech-d-12-00087.1, 2013.
Buck, C.: An extension to the wide swath ocean altimeter concept, in: Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, 29 July 2005 Seoul, Korea(South), IGARSS '05, vol. 8, IEEE, N. Y., 5436–5439, https://doi.org/10.1109/IGARSS.2005.1525970, 2005.
Chapron, B., Collard, F., and Ardhuin, F.: Direct measurements of ocean surface velocity from space: Interpretation and validation, J. Geophys. Res., 110, https://doi.org/:10.1029/2004JC002809, 2005.
de Kloe, J., Stoffelen, A., and Verhoef, A.: Improved Use of Scatterometer Measurements by Using Stress-Equivalent Reference Winds, IEEE J-STARS, 5, 2340–2347, https://doi.org/10.1109/JSTARS.2017.2685242, 2017.
Doglioli, A. and Gregori, G.: BioSWOT-Med cruise, RV L'Atalante, Ifremer, https://doi.org/10.17600/18002392, 2023.
Elyouncha, A., Broström, G., and Johnsen, H.: Synergistic utilization of spaceborne SAR observations for monitoring the Baltic Sea flow through the Danish straits, ESS Open Archive, https://doi.org/10.22541/essoar.171466079.98038905/v1, 2024.
European Space Agency (ESA): 2022 SEASTARex, [data set], https://doi.org/10.57780/esa-633ce94, 2024.
Filipot, J.-F., Guimaraes, P., Leckler, F., Hortsmann, J., Carrasco, R., Leroy, E., Fady, N., Accensi, M., Prevosto, M., Duarte, R., Roeber, V., Benetazzo, A., Raoult, C., Franzetti, M., Varing, A., and Le Dantec, N.: La Jument lighthouse: a real-scale laboratory for the study of giant waves and their loading on marine structures, Philos. T. Roy. Soc. A, 377, 20190008, https://doi.org/10.1098/rsta.2019.0008, 2019.
Goldstein, R. and Zebker, H.: Interferometric radar measurement of ocean surface currents, Nature, 328, 707–709, https://doi.org/10.1038/328707a0, 1987.
Gommenginger, C., Chapron, B., Hogg, A., Buckingham, C., Fox-Kemper, B., Eriksson, L., Soulat, F., Ubelmann, C., Ocampo-Torres, F., Nardelli, B. B., Griffin, D., Lopez-Dekker, P., Knudsen, P., Andersen, O., Stenseng, L., Stapleton, N., Perrie, W., Violante-Carvalho, N., Schulz-Stellenfleth, J., Woolf, D., Isern-Fontanet, J., Ardhuin, F., Klein, P., Mouche, A., Pascual, A., Capet, X., Hauser, D., Stoffelen, A., Morrow, R., Aouf, L., Breivik, Ø., Fu, L.-L., Johannessen, J. A., Aksenov, Y., Bricheno, L., Hirschi, J., Martin, A. C. H., Martin, A. P., Nurser, G., Polton, J., Wolf, J., Johnsen, H., Soloviev, A., Jacobs, G. A., Collard, F., Groom, S., Kudryavtsev, V., Wilkin, J., Navarro, V., Babanin, A., Martin, M., Siddorn, J., Saulter, A., Rippeth, T., Emery, B., Maximenko, N., Romeiser, R., Graber, H., Azcarate, A. A., Hughes, C. W., Vandemark, D., da Silva, J., van Leeuwen P. J., Naveira-Garabato, A., Gemmrich, J., Mahadevan, A., Marquez, J., Munro, Y., Doody, S., and Burbidge, G.: SEASTAR: A Mission to Study Ocean Submesoscale Dynamics and Small-Scale Atmosphere-Ocean Processes in Coastal, Shelf and Polar Seas, Front. Mar. Sci., 6, 457, https://doi.org/10.3389/fmars.2019.00457, 2019.
Hauser, D., Abdalla, S., Ardhuin, F., Bidlot, J.-F., Bourassa, M., Cotton, D., Gommenginger, C., Evers-King, H., Johnsen, H., Knaff, J., Lavender, S., Mouche, A., Reul, N., Sampson, C., Steele, E. C. C., and Stoffelen, A.: Satellite Remote Sensing of Surface Winds, Waves, and Currents: Where are we Now?, Surv. Geophys., 44, 1357–1446, https://doi.org/10.1007/s10712-023-09771-2, 2023.
Holt, J., Hyder, P., Ashworth, M., Harle, J., Hewitt, H. T., Liu, H., New, A. L., Pickles, S., Porter, A., Popova, E., Allen, J. I., Siddorn, J., and Wood, R.: Prospects for improving the representation of coastal and shelf seas in global ocean models, Geosci. Model Dev., 10, 499–523, https://doi.org/10.5194/gmd-10-499-2017, 2017.
Horstmann, J., Bődewadt, J., Carrasco, R., Cysewski, M., Seemann, J., and Stresser, M.: A coherent on receive x-band marine radar for ocean observations, Sensors, 21, 7828, https://doi.org/10.3390/s21237828, 2021.
Huang, W., Carrasco, R., Chengxi, S., Gill, E. W., and Horstmann, J.: Surface current measurements using X-band marine radar with vertical polarization, IEEE T. Geosci. Remote, 54, 2988–2996, https://doi.org/10.1109/TGRS.2015.2509781, 2016.
Kudryavtsev, V., Kozlov, I., Chapron, B., and Johannessen, J.: Quad-polarization SAR features of ocean currents, J. Geophys. Res.-Oceans, 119, 6046–6065, https://doi.org/10.1002/2014JC010173, 2014.
Lazure, P. and Dumas, F.: An external–internal mode coupling for a 3D hydrodynamical model for applications at regional scale (MARS), Adv. Water Resour., 31, 233–250, https://doi.org/10.1016/j.advwatres.2007.06.010, 2008.
Lévy, M., Ferrari, R., Franks, P. J., Martin, A. P., and Rivière, P.: Bringing physics to life at the submesoscale, Geophys. Res. Lett., 39, L14602, https://doi.org/10.1029/2012GL052756, 2012.
Martin, A. and Richards, K.: Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy, Deep-Sea Res. Pt. II, 48, 757–773, https://doi.org/10.1016/S0967-0645(00)00096-5, 2001.
Martin, A. C. H. and Gommenginger, C.: Towards wide-swath high-resolution mapping of total ocean surface current vectors from space: Airborne proof-of-concept and validation, Remote Sens. Environ., 197, 58–71, https://doi.org/10.1016/j.rse.2017.05.020, 2017.
Martin, A. C. H., Gommenginger, C., Marquez, J., Doody, S., Navarro, V., and Buck, C.: Wind-Wave induced velocity in ATI SAR Ocean Surface Currents: First experimental evidence from an airborne campaign, J. Geophys. Res.-Oceans, 121, 1640–1653, https://doi.org/10.1002/2015JC011459, 2016.
Martin, A. C. H., Gommenginger, C., and Quilfen, Y.: Simultaneous ocean surface current and wind vectors retrieval with squinted SAR interferometry: Geophysical inversion and performance assessment, Remote Sens. Environ., 216, 798–808, https://doi.org/10.1016/j.rse.2018.06.013, 2018.
Martin, A. C. H., McCann, D. L., Gommenginger, C., Macedo, K. A. C., and Le Merle, E.: Seastar project, Zenodo [code], https://doi.org/10.5281/zenodo.10026593, 2023.
Maskell, J.: Modelling storm surges in the Irish and Celtic seas using a finite element model (TELEMAC), PhD dissertation, University of Liverpool, 280 pp., 2012.
Mass, C. F., Owens, D., Westrick, K., and Colle, B. A.: Does increasing horizontal resolution produce more skillful forecasts?, B. Am. Meteorol. Soc., 83, 406–430, https://doi.org/10.1175/1520-0477(2002)083<0407:DIHRPM>2.3.CO;2, 2002.
McWilliams, J. C.: Submesoscale currents in the ocean, Proc. Math. Phys. Eng. Sci., 472, 20160117, https://doi.org/10.1098/rspa.2016.0117, 2016.
Mejia, C., Badran, F., Bentamy, A., Crepon, M., Thiria, S., and Tran, N.: Determination of the geophysical model function of NSCAT and its corresponding variance by the use of neural networks, J. Geophys. Res.-Oceans, 104, 11539–11556, https://doi.org/10.1029/1998JC900118, 1999.
Mouche, A. C. H., Collard, F., Chapron, B., Dagestad, K-F., Guitton, G., Johannessen, J., Kerabol, V., and Hansen, M. W.: On the use of Doppler shift for sea surface wind retrieval from SAR, IEEE T. Geosci. Remote, 50, 2901–2909, https://doi.org/10.1109/TGRS.2011.2174998, 2012.
Muller, H., Blanke, B., Dumas, F., Lekien, F., and Mariette, V.: Estimating the Lagrangian residual circulation in the Iroise Sea, J. Marine Syst., 78, S17–S36, https://doi.org/10.1016/j.jmarsys.2009.01.008, 2009.
Neil, S. P. and Hashemi, M. R.: Chapter 8 – Ocean Modelling for Resource Characterization, in: Fundamentals of Ocean Renewable Energy, Academic Press, 193–235, https://doi.org/10.1016/B978-0-12-810448-4.00008-2, 2018.
Polverari, F., Wineteer, A., Rodríguez, E., Perkovic-Martin, D., Siqueira, P., Farrar, J. T., Adam, M., Closa Tarrés, M., and Edson, J. B.: A Ka-Band Wind Geophysical Model Function Using Doppler Scatterometer Measurements from the Air-Sea Interaction Tower Experiment, Remote Sens.-Basel, 14, 2067, https://doi.org/10.3390/rs14092067, 2022.
Portabella, M. and Stoffelen, A.: A probabilistic approach for seawinds data assimilation, Q. J. Roy. Meteor. Soc., 130, 127–152, https://doi.org/10.1256/qj.02.205, 2004.
Portabella, M. and Stoffelen, A.: Scatterometer Backscatter Uncertainty Due to Wind Variability, IEEE T. Geosci. Remote, 44, 3356–3362, https://doi.org/10.1109/TGRS.2006.877952, 2006.
Portabella, M., Stoffelen, J., and Johannessen, A.: Toward an optimal inversion method for synthetic aperture radar wind retrieval, J. Geophys. Res.-Oceans, 107, 3086, https://doi.org/10.1029/2001JC000925, 2002.
Ruiz, S. A. G., Barriga, J. E. C., and Martínez, J. A.: Assessment and validation of wind power potential at convection-permitting resolution for the Caribbean region of Colombia, Energy, 244, 123127, https://doi.org/10.1016/j.energy.2022.123127, 2022.
Samelson, R. M.: Challenges and opportunities in coastal prediction, Eos T. Am. Geophys. Un., 100, https://doi.org/10.1029/2019EO113841, 2019.
Sasaki, H., Klein, P., and Sasai, Y.: Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere, Nat. Commun., 5, 5636, https://doi.org/10.1038/ncomms6636, 2014.
Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.: The AROME-France Convective-Scale Operational Model, Mon. Weather Rev., 139, 976–991, https://doi.org/10.1175/2010MWR3425.1, 2011.
Senet, C., Seemann, J., and Ziemer, F.: The near-surface current velocity determined from image sequences of the sea surface, IEEE T. Geosci. Remote, 39, 492–505, https://doi.org/10.1109/36.911108, 2001.
Sentchev, A., Forget, P., Barbin, Y., and Yaremchuk, M.: Surface circulation in the Iroise Sea (W. Brittany) from high resolution HF radar mapping, J. Marine Syst., 109–110, S153–S168, https://doi.org/10.1016/j.jmarsys.2011.11.024, 2013.
Schulz-Stellenfleth, J. and Stanev, E. V.: Analysis of the upscaling problem – A case study for the barotropic dynamics in the North Sea and the German Bight, Ocean Model., 100, 109–124, https://doi.org/10.1016/j.ocemod.2016.02.002, 2016
Stoffelen, A. and Portabella, M.: On Bayesian scatterometer wind inversion, IEEE T. Geosci. Remote, 44, 1523–1533, https://doi.org/10.1109/TGRS.2005.862502, 2006.
Streßer, M., Carrasco, R., and Horstmann, J.: Video-based estimation of surface currents using a low-cost quadcopter, IEEE Geosci. Remote S., 14, 2027–2031, https://doi.org/10.1109/LGRS.2017.2749120, 2017.
Trampuz, C., Gebert, N., Placidi, S., Izzy Hendricks, L., Speziali, F., Navarro, V., Martin, A. C. H., Gommenginger, C., Suess, M., and Meta, A.: OSCAR – The airborne interferometric and scatterometric radar instrument for accurate sea current and wind retrieval, EUSAR 2018, 12th European Conference on Synthetic Aperture Radar, Aachen, Germany, 4–7 June 2018, 1–16, 2018.
Villas Bôas, A. B., Ardhuin, F., Ayet, A., Bourassa, M. A., Brandt, P., Chapron, B., Cornuelle, B. D., Farrar, J. T., Fewings, M. R., Fox-Kemper, B., Gille, S. T., Gommenginger, C., Heimbach, P., Hell, M. C., Li, Q., Mazloff, M. R., Merrifield, S. T., Mouche, A., Rio, M. H., Rodriguez, E., Shutler, J. D., Subramanian, A. C., Terrill, E. J., Tsamados, M., Ubelmann, C., and van Sebille, E.: Integrated observations of global surface winds, currents, and waves: requirements and challenges for the next decade, Front. Mar. Sci., 6, 425, https://doi.org/10.3389/fmars.2019.00425, 2019.
Wang, Z., Stoffelen, A., Fois, F., Verhoef, A., Zhao, C., Lin, M., and Chen, G.: SST Dependence of Ku- and C-Band Backscatter Measurements, IEEE J-STARS, 10, 2135–2146, https://doi.org/10.1109/JSTARS.2016.2600749, 2017.
Yurovsky, Y., Kudryavtsev, V., Grodsky, S., and Chapron, B.: Sea surface Ka-band Doppler measurements: Analysis and model development, Remote Sens.-Basel, 11, 839, https://doi.org/10.3390/rs11070839, 2019.
Short summary
This paper presents the results of the first scientific campaign of a new method to remotely sense the small-scale, fast-evolving dynamics that are vital to our understanding of coastal and shelf sea processes. This work represents the first demonstration of the simultaneous measurement of current and wind vectors from this novel method. Comparisons with other current measuring systems and models around the dynamic area of the Iroise Sea are presented and show excellent agreement.
This paper presents the results of the first scientific campaign of a new method to remotely...