Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-857-2023
https://doi.org/10.5194/os-19-857-2023
Research article
 | 
22 Jun 2023
Research article |  | 22 Jun 2023

Unsupervised classification identifies coherent thermohaline structures in the Weddell Gyre region

Dani C. Jones, Maike Sonnewald, Shenjie Zhou, Ute Hausmann, Andrew J. S. Meijers, Isabella Rosso, Lars Boehme, Michael P. Meredith, and Alberto C. Naveira Garabato

Related authors

Unsupervised classification of the northwestern European seas based on satellite altimetry data
Lea Poropat, Dani Jones, Simon D. A. Thomas, and Céline Heuzé
Ocean Sci., 20, 201–215, https://doi.org/10.5194/os-20-201-2024,https://doi.org/10.5194/os-20-201-2024, 2024
Short summary
Technical note: Unsupervised classification of ozone profiles in UKESM1
Fouzia Fahrin, Daniel C. Jones, Yan Wu, James Keeble, and Alexander T. Archibald
Atmos. Chem. Phys., 23, 3609–3627, https://doi.org/10.5194/acp-23-3609-2023,https://doi.org/10.5194/acp-23-3609-2023, 2023
Short summary
Causes of the 2015 North Atlantic cold anomaly in a global state estimate
Rachael N. C. Sanders, Daniel C. Jones, Simon A. Josey, Bablu Sinha, and Gael Forget
Ocean Sci., 18, 953–978, https://doi.org/10.5194/os-18-953-2022,https://doi.org/10.5194/os-18-953-2022, 2022
Short summary
Defining Southern Ocean fronts using unsupervised classification
Simon D. A. Thomas, Daniel C. Jones, Anita Faul, Erik Mackie, and Etienne Pauthenet
Ocean Sci., 17, 1545–1562, https://doi.org/10.5194/os-17-1545-2021,https://doi.org/10.5194/os-17-1545-2021, 2021
Short summary
Sensitivity analysis of a data-driven model of ocean temperature
Rachel Furner, Peter Haynes, Dave Munday, Brooks Paige, Daniel C. Jones, and Emily Shuckburgh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2021-132,https://doi.org/10.5194/gmd-2021-132, 2021
Revised manuscript not accepted
Short summary

Cited articles

Abrahamsen, E. P., Meijers, A. J. S., Polzin, K. L., Naveira Garabato, A. C., King, B. A., Firing, Y. L., Sallée, J.-B., Sheen, K. L., Gordon, A. L., Huber, B. A., and Meredith, M. P.: Stabilization of dense Antarctic water supply to the Atlantic Ocean overturning circulation, Nat. Clim. Change, 9, 742–746, https://doi.org/10.1038/s41558-019-0561-2, 2019. a
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE [data set], https://doi.org/10.17882/42182, 2020. a
Belkina, A. C., Ciccolella, C. O., Anno, R., Halpert, R., Spidlen, J., and Snyder-Cappione, J. E.: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets, Nat. Commun., 10, 5415, https://doi.org/10.1038/s41467-019-13055-y, 2019. a
Boehme, L. and Rosso, I.: Classifying Oceanographic Structures in the Amundsen Sea, Antarctica, Geophys. Res. Lett., 48, e2020GL089412, https://doi.org/10.1029/2020GL089412, 2021. a
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K., Zweng, M. M.: World Ocean Database 2018, A.V. Mishonov, Technical Ed., NOAA Atlas NESDIS 87, [data set], https://www.ncei.noaa.gov/sites/default/files/2020-04/wod_intro_0.pdf (last access: 14 June 2023), 2018. a
Download
Short summary
Machine learning is transforming oceanography. For example, unsupervised classification approaches help researchers identify underappreciated structures in ocean data, helping to generate new hypotheses. In this work, we use a type of unsupervised classification to identify structures in the temperature and salinity structure of the Weddell Gyre, which is an important region for global ocean circulation and for climate. We use our method to generate new ideas about mixing in the Weddell Gyre.