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Abstract. The Weddell Gyre is a major feature of the South-
ern Ocean and an important component of the planetary cli-
mate system; it regulates air–sea exchanges, controls the for-
mation of deep and bottom waters, and hosts upwelling of
relatively warm subsurface waters. It is characterised by low
sea surface temperatures, ubiquitous sea ice formation, and
widespread salt stratification that stabilises the water column.
Observing the Weddell Gyre is challenging, as it is extremely
remote and largely covered with sea ice. At present, it is one
of the most poorly sampled regions of the global ocean, high-
lighting the need to extract as much value as possible from
existing observations. Here, we apply a profile classification
model (PCM), which is an unsupervised classification tech-
nique, to a Weddell Gyre profile dataset to identify coherent
regimes in temperature and salinity. We find that, despite not
being given any positional information, the PCM identifies
four spatially coherent thermohaline domains that can be de-
scribed as follows: (1) a circumpolar class, (2) a transition re-
gion between the circumpolar waters and the Weddell Gyre,
(3) a gyre edge class with northern and southern branches,
and (4) a gyre core class. PCM highlights, in an objective and
interpretable way, both expected and underappreciated struc-
tures in the Weddell Gyre dataset. For instance, PCM identi-
fies the inflow of Circumpolar Deep Water (CDW) across the
eastern boundary, the presence of the Weddell–Scotia Con-

fluence waters, and structured spatial variability in mixing
between Winter Water and CDW. PCM offers a useful com-
plement to existing expertise-driven approaches for charac-
terising the physical configuration and variability of oceano-
graphic regions, helping to identify coherent thermohaline
structures and the boundaries between them.

1 Introduction

The Southern Ocean is a key region in the global climate
system, hosting crucial transformations that supply waters to
both the upper and lower limbs of the global ocean overturn-
ing circulation (IPCC, 2022, chap. 3). The lower limb is re-
newed by dense waters that form and are exported northward,
flooding the majority of the global abyssal ocean (Johnson,
2008). The Weddell Sea is important for this dense water pro-
duction and export, with its southern and western continental
shelves hosting interactions with floating ice shelves, as well
as strong cooling and sea ice production in polynyas (Ver-
net et al., 2019). These exchanges result in shelf waters that
are extremely cold (some below the surface freezing point)
and comparatively saline; this gives them sufficient density
to spill from the shelf down the slope and into the deep Wed-
dell Sea, entraining mid-depth waters as they descend (Fos-
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ter and Carmack, 1976; Gill, 1973; Killworth, 1983; Gordon
et al., 2001).

In addition to this mode of deep-ocean ventilation, spo-
radic occurrences of deep convection over the deep Wed-
dell Sea have been observed, especially in the vicinity of
Maud Rise. Here, large-scale polynyas can emerge that en-
able dense water production and sinking; this was first noted
in the 1970s (Gordon, 1978), with indications that this may
have recently recurred after a decades-long hiatus (Campbell
et al., 2019). The dense waters that form in the Weddell Sea
penetrate northwards to supply the lower limb of the Atlantic
Meridional Overturning Circulation. There are signs that this
export has been dwindling in recent years (Johnson et al.,
2008), though hiatuses in the decline have been noted (Abra-
hamsen et al., 2019). To reach the Atlantic, the dense water
must navigate the complex bathymetry of the Scotia Arc, the
southern flank of which comprises the South Scotia Ridge.
The most direct route for dense water to cross this ridge is
Orkney Passage (Naveira Garabato et al., 2002), though the
possibility of significant outflow around the outside of the
Scotia Arc also exists (Jullion et al., 2014).

The Weddell Gyre region is a complex nexus of circumpo-
lar and gyre circulation, with ubiquitous water mass forma-
tion and transport (Fig. 1). Horizontal circulation to the north
of the gyre is dominated by the Antarctic Circumpolar Cur-
rent (ACC), the eastward-flowing current system that com-
prises several discrete fronts and which is characterised by
strong spatial variability (Sokolov and Rintoul, 2009; Rintoul
and Garabato, 2013). The Weddell Gyre separates the ACC
from Antarctica in the Atlantic sector; it is a cyclonic cir-
culation system that extends east from the eastern Antarctic
Peninsula. No topographic or distinct current feature forms
its eastern extent, but it is nominally placed at approximately
30◦ E or even further eastwards. In the meridional direction,
it extends from the continental slope to approximately 60◦ S
(Fahrbach et al., 1994; Park et al., 2001; Meijers et al., 2010;
Vernet et al., 2019). At its eastern flank, the voluminous mid-
depth Circumpolar Deep Water (CDW) from the ACC is en-
trained into the Weddell Gyre, where it mixes to become
cooler and fresher, and is usually termed Weddell Deep Wa-
ter or Warm Deep Water (WDW) (Fahrbach et al., 1994).
This is the oceanic source that penetrates onto the shelf and
is modified to become the dense waters that ultimately flow
northward at depth (Jullion et al., 2014; Naveira Garabato
et al., 2016). Circulation within the gyre exhibits a two-cell
structure, with the western cell centred around 40◦W and
the eastern gyre centred around 18◦ E (Reeve et al., 2019).
The gyre is forced by westerly winds over its northern edges,
producing upwelling in its centre; it is also forced by east-
erly winds over its southern edges, producing downwelling
along its southern limb (Naveira Garabato et al., 2016). In
addition, it is subject to strong buoyancy forcing. Separating
the ACC to the north from the Weddell Gyre to the south,
the Weddell–Scotia Confluence (WSC) follows close to the
complex bathymetry of the South Scotia Ridge (Fig. 1). The

WSC is identifiable from the waters on either side by char-
acteristically low stratification at mid-depths; this has been
ascribed to the injection and sinking of shelf waters from the
tip of the Antarctic Peninsula (Fig. 1).

Despite the importance of the Weddell Gyre and its sur-
roundings, its structure and dynamics are not thoroughly un-
derstood, partly because of the practical difficulties in ob-
serving the region. It is remote and inaccessible, especially
in winter when it is extremely challenging to reach by ship,
and it is frequently covered by clouds and long periods of
darkness, making it challenging to acquire complete satel-
lite observations in the visible spectrum. These limitations
underscore the importance of making the most of the sparse
data that we do have using a wide variety of observational
analysis and reanalysis techniques (e.g. Reeve et al., 2016).
One way to extract additional value from existing data is to
employ unsupervised classification, a broad suite of methods
for finding coherent patterns in unsorted or uncharacterised
data, to identify and characterise structures within those data.

Unsupervised classification of oceanographic variables

Unsupervised learning attempts to reveal relationships
among inputs, often referred to as “features” in machine
learning terminology. Using these algorithms, researchers
can identify sub-populations in data distributions and find
hidden covariance structures, filtering out random, unstruc-
tured noise and gaining insight into potential connections be-
tween variables. As a result, it has become a valuable tool
in a variety of fields, including oceanography (Sonnewald
et al., 2021). For example, Sonnewald et al. (2019) identi-
fied coherent dynamical regimes in the global ocean by using
the terms of the barotropic vorticity budget as the “features”
or “dimensions” of the unsupervised classification analysis.
Jones and Ito (2019) applied a similar method to the sur-
face carbon budget in a numerical model, and Sonnewald
et al. (2020) used a multi-layered unsupervised classifica-
tion approach to identify ecological regimes. Couchman et al.
(2021) applied unsupervised learning to cluster fluid patches
according to their background buoyancy frequency and tur-
bulent dissipation rates. Because the “decisions” made by
many of these unsupervised classification approaches are
somewhat transparent and can be thoroughly analysed, at
least when the complexity of the model is kept at a manage-
able level, unsupervised classification results are often inter-
pretable by oceanographic experts, highlighting their poten-
tial for uncovering novel or underappreciated structures in
complex, multi-dimensional oceanographic data (Sonnewald
and Lguensat, 2021). Generally speaking, unsupervised clas-
sification can be thought of as a “hypothesis generation tool”
(Kaiser et al., 2022). For a review of recent machine learning
advances in oceanography, including unsupervised classifi-
cation, see Sonnewald et al. (2021).

In many oceanographic unsupervised classification appli-
cations, the dataset consists of a collection of profiles, where
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Figure 1. Schematic of the circulation of the Weddell Gyre region. The broad circulation features include the Antarctic Circumpolar Current
(ACC), Circumpolar Deep Water (CDW), Weddell Sea Deep Water (WSDW), Warm Deep Water (WDW), Weddell Sea Bottom Water
(WSBW), High-Salinity Shelf Water (HSSW), and the Antarctic Slope Front (ASF). Selected geographic features are named, and the colour
scale shows the bathymetry. Adapted from Vernet et al. (2019).

a “profile” refers to a set of measurements taken at var-
ious pressures at a single location. The measured quanti-
ties may consist of temperature, salinity, and biogeochemi-
cal variables such as oxygen. Often the applications revolve
around identifying different “profile types”, which may also
be called classes or groups. There are a variety of unsu-
pervised classification approaches for working with profile
data. For example, Thomas and Müller (2022) used a self-
organising map approach to group temperature profiles in the
European Arctic, in part to facilitate numerical model valida-
tion.

One particular unsupervised classification method is the
profile classification model (PCM) approach, which is an
ocean-specific application of Gaussian mixture modelling
(GMM), for identifying the profile types (Maze et al., 2017).
In PCM, one attempts to statistically model the profiles,
typically as represented in an abstract principal component
space, as a collection of multi-dimensional Gaussian func-
tions. The result is a set of profile types that feature similar
vertical structures across one or more measured quantities
(e.g. with temperature and salinity data both contributing to
the identification of the profile types).

PCM has been used in a number of applications in re-
cent years. Jones et al. (2019) applied the PCM approach
to Southern Ocean temperature profile data, identifying spa-
tially coherent regimes that roughly align with modern un-
derstanding of Southern Ocean fronts and subtropical struc-
ture. PCM was able to identify these regions despite the fact
that it was not given any location information about the pro-
files. Rosso et al. (2020) expanded this analysis to include
salinity in the Indian sector of the Southern Ocean, identify-
ing frontal zones and the variability of water masses present
in each zone. Houghton and Wilson (2020) applied PCM to
Pacific Ocean temperature data, connecting the temporal evo-
lution of the tropical classes to the El Niño–Southern Oscilla-
tion (ENSO), thereby deriving a novel ENSO proxy. Sambe
and Suga (2022) applied PCM to the northwestern Pacific

Ocean, allowing them to link the variability of the Kuroshio
extension to the regional vertical structure. Recently, Xia
et al. (2022) used PCM to identify three different types of
Antarctic Intermediate Water (AAIW) and their formation
regions. PCM may also be useful for finding circulation path-
ways; Boehme and Rosso (2021) used PCM to identify sep-
arate warm and cold modes of transport on the Amundsen
Sea shelf. Desbruyères et al. (2021) used an approach called
ocean profile clustering to separate subpolar waters from sub-
tropical waters in the North Atlantic, enabling a data-driven
analysis of the cooling-to-warming transition of the subpolar
North Atlantic. PCM has also been applied to temperature
profile quality control, extending its usefulness into a new
area (Zhang et al., 2022).

Chapman et al. (2020) challenged oceanographic re-
searchers to rethink our treatment of boundaries and fronts,
arguing that a more locally tailored, application-specific, and
perhaps even probabilistic approach may be more suitable
than attempting to identify a single global set of boundaries
between oceanic thermohaline and biogeochemical struc-
tures. Because PCM identifies profile types in a probabilistic
way, returning a set of probabilities across the profile types, it
can be used to reframe how we describe boundaries between
oceanographic structures. To this end, Thomas et al. (2021)
introduced a method for defining boundaries in a probabilis-
tic fashion using PCM. This quantity, called the inter-class
comparison metric (I -metric), uses the difference between
the class with the highest probability and the runner-up to
quantify the likelihood that a given profile is on the bound-
ary between two classes. Given the ambiguity of the precise
extent of the Weddell Gyre, the I -metric approach is a suit-
able framework for rethinking the boundaries between com-
ponents of the gyre and its surroundings. We will apply I -
metric analysis to the Weddell Gyre profile dataset in this
paper.
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Thanks to the EU-funded SO-CHIC project, the Southern
Ocean research community now has a unified profile dataset
that covers the Weddell Gyre and adjacent regions, assem-
bled from various sources (Jones and Zhou, 2022). This
dataset has been curated and quality-controlled, and it is of
sufficient size to allow unsupervised classification to be use-
ful. In this study, we apply the PCM technique to this newly
curated dataset to identify coherent regimes in temperature
and salinity structure in the Weddell Gyre region, with the
aim of refining our understanding of the area and generat-
ing new hypotheses for further investigation. PCM is suit-
able because it robustly and automatically groups profiles to-
gether into classes, allowing for the identification of coherent
regimes in thermohaline structure in a probabilistic fashion.

The structure of this paper is as follows. In Sect. 2, we
describe the profile dataset and the unsupervised classifica-
tion method used to identify coherent structures in the data.
In Sect. 3, we examine the distribution properties across the
four-class PCM, including how those properties vary season-
ally. Finally, in Sect. 4, we discuss these results in the context
of the literature on the Weddell Gyre and its environs.

2 Data and methods

2.1 Description of the Weddell Gyre profile dataset

For this study, we used a set of temperature and salinity pro-
files from the Atlantic and Indian sectors of the Southern
Ocean. The dataset consists of profiles taken by Argo floats
and ship-based conductivity–temperature–depth (CTD) casts
as recorded in the World Ocean Database within a box de-
fined by 85–30◦ S, 65◦W–80◦ E. We only consider profiles
with good position and time flags, as well as good temper-
ature, salinity, and pressure measurements with good flags.
Duplicated profiles are identified when multiple profiles are
found within 24 h over the same 2 km× 2 km grid cell, fol-
lowing Schmidtko et al. (2014), and only one profile within
the spatio-temporal window is used. We then used the MIT-
prof toolbox to pre-process the selected profiles, re-gridding
them onto standard pressure levels (Forget et al., 2015).
This step is necessary because one requirement of PCM and
GMM is that the data have a consistent number of “features”,
also referred to as “dimensions” in machine learning termi-
nology, throughout the entire dataset. Here, we select a stan-
dard pressure grid with 72 vertical levels, with fine enough
vertical resolution to preserve temperature and salinity struc-
ture while avoiding data gaps at depth at each grid point. The
vertical interval varies from 20 dbar at the surface to 100 dbar
in the deep ocean. In total, we used 188 885 Argo profiles
and 34 915 ship-based CTD profiles covering 20–1000 dbar
for the initial classification step, i.e. the identification of near-
Antarctic waters.

We first used PCM to sort the entire profile dataset into
five classes based on their combined temperature and salinity
structure. Broadly speaking, these classes may be described
as (1) a subtropical Atlantic sector class, (2) a subtropical In-
dian sector class, (3) a more northern circumpolar class, (4) a
more southern circumpolar class, and (5) a near-Antarctic
class that sits roughly south of the Polar Front (PF, Appendix
B). One could obtain a similar sub-Antarctic class by simply
selecting all profiles located south of the PF. Because we are
primarily interested in the Weddell Gyre and its surround-
ings, we chose to focus on the near-Antarctic class. Effec-
tively, the rest of this paper describes a “sub-classification” of
the near-Antarctic class into even smaller groups. This sub-
classification might be thought of as a two-level hierarchy in
that we are looking for classes within a class. As an extra
benefit, focusing our clustering efforts on the near-Antarctic
region means that the global data imbalance (i.e. the relative
abundance of observations north of the PF) is less likely to
bias our results.

The distribution of the near-Antarctic profiles used in the
rest of this study features some spatial biases in coverage,
which we handle carefully at the training stage (Fig. 2a). The
earliest profiles are from CTD casts in the 1970s, although
the vast majority of the profiles are from the Argo float era,
i.e. from the mid-2000s onward (Fig. 2c). The near-Antarctic
profiles are broadly characterised by a near-surface tempera-
ture inversion (i.e. colder at the surface and warmer at depth),
which is stabilised by the salinity stratification (i.e. fresher at
the surface and saltier at depth). Such profiles are often de-
scribed as “salt-stratified”, indicating that their vertical sta-
bility depends on salinity and not temperature (Roquet et al.,
2022). The widespread presence of salt stratification in the
near-Antarctic class is consistent with the property contrast
usually seen across the PF, which acts as an approximate
dividing line between waters bearing the imprints of near-
Antarctic processes (e.g. ice shelf melting and iceberg calv-
ing leading to a layer of near-surface fresh water) and waters
bearing the imprints of more subtropical processes.

2.2 Profile classification modelling as applied to the
Weddell Gyre profile dataset

In this section, we use PCM to identify profile types within
the near-Antarctic collection of profiles. First, we pre-
process the near-Antarctic profiles by standardising the tem-
perature and salinity values on each pressure level. This en-
sures that, on each pressure level, the temperature and salin-
ity distributions have a mean of zero and a variance of 1.0.
The advantage of scaling each pressure level separately is
that it allows all variations in temperature and salinity struc-
ture to be specified relative to the observed variability on
that pressure level. Without such standardisation, variations
in the near-surface values, which tend to have a strong sea-
sonal imprint, would dominate the classification and obscure
the structural importance of smaller variations at depth.
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Figure 2. The distribution of profiles used in this study. (a) Number of profiles in the dataset shown in 1◦ latitude–longitude bins. Note that
profiles with a maximum depth of less than 1000 m have been excluded. (b) Distribution of the profiles by month. (c) Distribution of the
profiles in 5-year intervals. (d) Random selection of 10 % of the conservative temperature profiles by depth (thin grey lines), shown with the
25th percentile (thin dashed line, left), the median (solid black line), and the 75th percentile (thin dashed line, right). (e) Same as (d), but for
absolute salinity. The total number of profiles is N = 28 397.

After standardising the temperature and salinity values
on each pressure level, we reduce the dimensionality of the
dataset by carrying out principal component analysis (PCA).
This reduces the computational complexity of the classifica-
tion task and effectively filters out some of the small-scale
vertical variability in the profiles. PCA may also be used to
study ocean structures by itself (e.g. Pauthenet et al., 2017),
but here we mainly use it as a dimensionality reduction tech-
nique (Appendix A1). We employ a six-component PCA that
retains roughly 95 % of the vertical variability in the near-
Antarctic profile dataset (Appendix A). PCA reduces the
number of “features” in the classification problem from 42
(i.e. temperature and salinity values on 21 pressure levels)
to six. It is within this six-dimensional abstract PC space that
we wish to identify coherent sub-groups or classes. However,
this brings us to a complex issue in unsupervised classifica-
tion: into how many different classes should we attempt to
sort the profiles?

Because oceanographic data are highly correlated across a
variety of spatial and temporal scales, they cannot always be
cleanly separated into groups. As a result, there is not nec-
essarily an objective measure for the “success” of any par-

ticular unsupervised classification approach. Instead, tech-
niques such as the PCM should be considered tools for ex-
ploration and discovery within a dataset, allowing us to iden-
tify coherent regimes with similar vertical structures and the
boundaries between them in a probabilistic fashion. As with
many classification problems, there is a trade-off between the
complexity of the classification model and its interpretabil-
ity. Simple two-class models are usually straightforward to
interpret (e.g. colder waters versus warmer waters), but they
ignore more subtle structures in the data which may be of
interest. As we increase the number of classes into which
we attempt to sort the data, we often lose interpretability as
the classes often become increasingly difficult to distinguish
from one another. There are statistical tools that can help
guide our choice of the number of classes, aiding us in avoid-
ing the common pitfalls of underfitting and overfitting, but
these tools often only provide a range, within which we are
free to choose the level of complexity of the statistical model
(Appendix A). This is roughly analogous to the “hierarchy
of models” concept outlined by Held (2005), which suggests
that we can learn a great deal about a system by studying
what happens as we add or take away various sources of
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complexity. In the context of PCM, increasing the number
of classes effectively increases the level of complexity of our
representation of the system.

For this paper, we will focus on a four-class representation
of the near-Antarctic profile dataset. This four-class model is
simple enough to be readily interpretable, while being com-
plex enough to identify differences between circumpolar wa-
ters, the transition between circumpolar waters and the gyre,
the outer gyre, and the central gyre. Classification approaches
must strike a balance between interpretability and complex-
ity, and here we found the four-class model to be (1) within
the constraints suggested by statistical criteria and (2) suf-
ficiently complex as to allow for a rich description of the
system. Decreasing the number of classes to three loses the
distinction between the gyre edge and the gyre core. Increas-
ing the number of classes beyond four leads to an increasing
amount of overlap between the classes, making them more
difficult to interpret (Appendix A). In the next section, we
describe the four-class description of the near-Antarctic pro-
file dataset.

3 Results

3.1 Structure of the classes

The four-class PCM identifies (1) a circumpolar class, (2) a
transition class between the circumpolar waters and the Wed-
dell Gyre, (3) waters on the edge of the gyre, and (4) wa-
ters in the core of the gyre. We can identify some key dif-
ferences between the four classes by examining their verti-
cal structures in temperature, salinity, and the resulting den-
sity (Fig. 3). All descriptions here are intended to be rel-
ative between the four classes. The circumpolar class fea-
tures a mean temperature distribution that is relatively warm
and is characterised by a deep temperature minimum (me-
dian depth 120 m, Fig. 3, top row). The layering observed in
the top 1000 m consists of alternating warm and cold lay-
ers, stabilised throughout by a gently changing salt strati-
fication with fresher water near the surface and saltier wa-
ter at depth; the resulting density structure is well-stratified.
When compared with the circumpolar class, the transition
class, which sits between the more circumpolar waters and
the more gyre-based waters, is characterised by a shallower
temperature minimum (median depth 80 m) and weaker salt
stratification in the subsurface. The resulting density struc-
ture is slightly less stratified in the subsurface (Fig. 3, second
row). The two gyre classes both feature a shallow tempera-
ture minimum and two salt regimes: specifically a region of
increasing salinity with depth and a region of uniform salin-
ity. The resulting density structures reflect these salinity dif-
ferences. The gyre edge features a more gradual change be-
tween these two salt regimes with depth, whereas the gyre
core features a rapid change in salt stratification at around
200 m depth (Fig. 3, bottom two rows). The median depth

of the temperature minimum is 80 m for the gyre edge class
and 60 m for the gyre core class, which is broadly consistent
with the upwelling of CDW within the cyclonic gyre cen-
tre. The temperature minimum, which indicates the presence
of WW, deepens as we consider classes further away from
the gyre core (Fig. 3, from the bottom row to the top row).
Specifically, reporting the 25th, 50th, and 75th percentiles,
the Winter Water depths are in the range of (20, 60, 80 m)
in the gyre core, (20, 80, 100 m) in the gyre edge, (60, 80,
120 m) in the transition class, and (100, 120, 140 m) in the
circumpolar class.

We find that the four classes occupy fairly distinct regions,
with some expected overlap due to the highly correlated na-
ture of ocean data and the probabilistic nature of our classi-
fication method (Fig. 4). The mean dynamic height anomaly
of the 500 m surface, chosen to give some indication of the
“height” structure of the classes, is deepest in the circum-
polar class, with a median value of −3.0 m. As we consider
the classes from north to south, the broad deep-to-shallow
progression of the 500 mb dynamic height surface is consis-
tent with broad upwelling in the gyre and downward-sloping
surfaces further north (Fig. 4, top to bottom). The circumpo-
lar class is broadly located between the PF and the southern
boundary of the ACC (SBDY), although some circumpolar-
class profiles are found south of the SBDY between 20–
40◦ E, a fingerprint of the intrusion of CDW into the gyre
(Fig. 4a). The intrusion occurs over a broader region than
previously thought (Vernet et al., 2019).

The structure of the interval between the Scotia Sea wa-
ters, which are in the circumpolar class, and the Weddell
Gyre waters is more complex than had previously been ap-
preciated, consisting of a transition regime and a gyre edge
class. The transition class straddles the SBDY in the west-
ern part of the domain and is more clearly south of the
SBDY in the eastern part of the domain, especially east of
the Prime Meridian. As with the circumpolar class, this ex-
cursion south of the SBDY is another fingerprint of the con-
version of ACC-sourced CDW to WDW (Fig. 1). It features
shallower dynamic heights (median −2.3 m), although the
excursion south of the SBDY has a height gradient.

The gyre edge class features two distinct branches: (1) a
northern branch that sits just south of the SBDY and (2) a
southern branch consisting of profiles largely along f/h con-
tours near the Antarctic continent, where f = 2�cos(φ) is
the Coriolis parameter (� is Earth’s rotation rate and φ is
latitude), and h is the depth of the water column. The more
northern branch is indicative of the Weddell–Scotia Conflu-
ence (WSC) waters, which is a region of reduced mid-layer
stratification located near the South Scotia Ridge that sepa-
rates the Weddell Gyre waters from those of the Scotia Sea
(Patterson and Sievers, 1980). The WSC, as identified by
PCM, extends further eastward than previously thought (Ver-
net et al., 2019). When considered together, the two branches
may be thought of as largely aligning with the edge of the
gyre, where its isopycnals dome down into the subsurface. Its
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Figure 3. Distribution of the conservative temperature, absolute salinity, and potential density anomaly (σ0) of the four classes identified
by the GMM algorithm. Each panel features a random selection of 1000 profiles (thin grey lines), the 25th percentile (dashed line, left),
the median (solid line), the 75th percentile (dashed line, right), and the number of profiles N in each class. The dotted horizontal lines
on the leftmost column indicate, for each class, the median depths of the maximum temperature. Each class gets its own colour for easier
comparison with other figures.

median dynamic height anomaly is −2.0 m, although some
regions in its western branch are shallower than the median.

Finally, the gyre core class is characterised by a dynamic
height gradient from west to east, with an overall median
value of −1.6 m. Although this PCM does not separate the
western and eastern cells of the gyre circulation, the shape of
the gyre core class reflects the agglomeration of these two,
for example in the northeastern excursion between 0 and
20◦ E. The central gyre is more complex than just a single
cyclonic rotating feature, including an extension northwards
on the eastern side of the Scotia Island Arc (Vernet et al.,
2019). Notably, on its eastern extent, the gyre core class bi-
furcates and is strongly influenced by the underlying topog-
raphy around 10–20◦ E (Fig. 4d).

3.2 Signatures of mixing: fuzzy boundaries and the
I -metric

As discussed in Sect. 2.2, all GMM-based classification
methods, including the ocean-specific PCM approach, are
probabilistic. For each profile, the classification algorithm re-

turns probabilities across the classes. PCM assigns each pro-
file to the class with the highest probability, but there is po-
tentially useful information contained in the distribution of
probabilities across classes. In order to take advantage of this
distribution, we plot the I -metric, which uses the difference
between the class with the highest probability and the class
with the second-highest probability to quantify the probabil-
ity that a profile is located at a boundary between classes
(Thomas et al., 2021). We can express the I -metric for a sin-
gle profile as

I = 1−
[
P(c = ck)highest−P(c = cl)runner-up

]
, (1)

where P(c = ck)highest is the highest posterior probability
that GMM has assigned to the profile, such that the profile
has been classified into class ck , and P(c = cl)runner-up is the
second-highest posterior probability that GMM has assigned
to the profile. If I is small, it indicates that the difference be-
tween the probabilities is large; profiles with small I values
are not likely to be located near a boundary between classes.
If I is large, it indicates that the difference between the prob-
abilities is small; profiles with large I are more likely to
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Figure 4. Dynamic height of the 500 dbar pressure surface in each of the four classes, binned and averaged over 1◦ latitude–longitude bins.
Also shown are several fronts of the ACC from Kim and Orsi (2014), i.e. the Subantarctic Front (SAF), the Polar Front (PF), the southern
ACC front (SACCF), and the southern boundary (SBDY). Also shown are contours of constant f/h (thin grey lines), where f is the Coriolis
parameter and h is the depth of the water column.

be located near a boundary between classes. With oceano-
graphic profile data, the boundaries between classes repre-
sent regions of mixing and transformation between profile
types associated with changes in one or more water masses
that make up the profiles under consideration.

The circumpolar class is characterised by low I -metric
values across its entire distribution (median 0.0, third quar-
tile Q3 = 0.1), except at some locations along its southern
edge and in the excursion south of the SBDY between 20
and 40◦ E (Fig. 5a). Note that the low I -metric values along
the northern edge of the circumpolar class should be inter-
preted in the context of the near-Antarctic dataset: there are
no profiles north of the circumpolar class in this dataset,
so the classification is unambiguous by default. Away from
the northern edge, the low I -metric values indicate that the

classification is unambiguous in the context of the classifi-
cation model; the associated profiles are very likely to be
in the circumpolar class and unlikely to belong to another
class. The transition class features an I -metric distribution
with the highest median and third quartile across the four
classes (median 0.1, Q3 = 0.4), consistent with its charac-
terisation as a transition class between the more circumpolar
waters and the more gyre-associated waters (Fig. 5b). The
highest spatially coherent values, indicating high probabil-
ity of being at or near a boundary, are found in the south-
ward excursion between 0 and 20◦ E. The gyre edge class
also features high I -metric values in some locations (median
0.0, Q3 = 0.3), particularly in the more western wing just
south of the SBDY (Fig. 5c). The profiles near the Antarctic
coast tend to have much lower I -metric values. Although it is
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difficult to state conclusively with profile data alone, the dif-
ference in I -metric values between the western wing south
of the SBDY and the eastern wing along the Antarctic shelf
is consistent with the gyre edge class including both inflow-
ing waters at the eastern edge of the gyre and waters in its
northern flank receiving input of shelf waters locally (Fig. 1).
Finally, the gyre core class is characterised by low I -metric
values (median 0.01, Q3 = 0.04), indicating an unambigu-
ous “core” profile type, with some mixing and transformation
along its edges (Fig. 5d). The slightly higher values between
0 and 20◦E, co-located with the southward excursion of the
transition waters, may indicate the signature of the transfor-
mation of CDW into WDW in the gyre core.

The mixed layer is a layer of roughly uniform density, also
described as “weak stratification”, in the upper ocean. It re-
flects the action of mixing processes that tend to homogenise
the near-surface layer of the ocean. Here we examine the dis-
tribution of the mixed layer depth, in comparison with the
I -metric, to look for potential signatures of regions where
mixing has left an imprint on the profile structure. We use the
integral depth-scale method described in Thomson and Fine
(2003), which estimates the mixed layer depth D as follows:

D =

∫ zr
0 zN

2
b (z)dz∫ zr

0 N
2
b (z)dz

, (2)

where zr = 1000 m is an arbitrary reference depth and

N2
b (z)=

(
−
g

ρ0

dρθ
dz

)1/2

(3)

is the buoyancy frequency, g is the acceleration due to grav-
ity, and ρ0 is a reference density. We calculate N2

b using the
Gibbs seawater toolbox (McDougall and Barker, 2011).

Broadly speaking, the mixed layer is deeper in the more
northern classes and shallower in the gyre core, with some
local exceptions (Fig. 6). The circumpolar class features the
deepest mixed layers (median 190 m), with especially deep
values between 20 and 40◦ E. The transition class, although
shallower overall than the circumpolar class (median 140 m),
features deep mixed layers along the SBDY, indicating that
the imprint of mixing is not uniform across the class. The
gyre edge class (median 130 m) also features regions of
deeper mixed layers and shallower mixed layers, with deeper
mixed layer depths (MLDs) found along the SBDY and the
eastern edge along the Antarctic continental shelf. Finally,
the gyre core class has the shallowest mixed layers (me-
dian 100 m), with some local exceptions along the Antarctic-
adjacent f/h contours.

3.3 Signatures of Winter Water

As discussed in Sect. 3.1, the subsurface temperature min-
imum seen across the profiles is associated with the WW
layer that is formed and renewed seasonally and transported
by the near-surface currents. In a broad sense, the depth of

the temperature minimum is shallowest at high latitudes and
deepest at lower latitudes, although there are localised differ-
ences (Fig. 7). In the circumpolar class, the minimum tem-
perature layer is deeper along the northern extent and shal-
lower along its southern extent, and there is a corresponding
gradient from warmer minimum values to colder minimum
values from north to south (domain-wide median 0.16 ◦C).
In the transition class, the temperature minimum is especially
deep along the SBDY in the western edge, roughly between
the gyre and the Scotia Sea. This is an expected character-
istic of the Weddell–Scotia Confluence waters and also of
enhanced deep winter convection associated with cold shelf
waters (Whitworth et al., 1994). The minimum temperature
values there are somewhat warmer than those in the rest of
the transition class, especially compared with the cold south-
ward excursion between 0 and 20◦ E. The domain-wide me-
dian value of the minimum temperature is colder than that
of the circumpolar class (median −0.9 ◦C). The gyre edge
and gyre core classes feature extremely cold minimum tem-
perature values (gyre edge median −1.7 ◦C, gyre core me-
dian −1.8 ◦C), and the gyre core distribution is colder over-
all (gyre edge Q3 =−1.3 ◦C, gyre core Q3 =−1.6 ◦C). Lo-
cally in the gyre edge class, as with the transition class, the
depth of the temperature minimum is especially deep along
the SBDY on the western edge of the domain, although the
temperatures are slightly warmer there. The gyre core class
features an exceptionally shallow and extremely cold near-
surface temperature minimum layer, with a slightly warmer
and deeper edge. The processes that establish, renew, and
transport the WW layer all leave their imprints on the spa-
tial distributions of the temperature minima and the depths at
which those minima are found.

3.4 Signatures of Circumpolar Deep Water

Most of the profiles in the near-Antarctic dataset feature a
subsurface temperature maximum. The temperature maxi-
mum represents the core of CDW; we can use this layer
to track the core of the CDW as it is transported from
the circumpolar region to the Weddell Gyre (Reeve et al.,
2016, 2019). In the circumpolar class, we see the core of the
CDW deepen and cool along the length of the ACC, with
especially deep and cold values in the southward excursion
south of the SBDY between 20 and 40◦ E (Fig. 8). In the
transition class, we see a gradient in the CDW-associated
temperature maximum, getting colder along the southward
excursion, where it meets up with the western edge of the
gyre core and the WDW. The gyre edge class features par-
ticularly deep and cold temperature maxima (median Tmax =

0.7 ◦C, median depth 500 m), with the deepest Tmax depths
of all the classes. By contrast, the gyre core class is char-
acterised by somewhat shallower temperature maxima (me-
dian Tmax = 0.7 ◦C, median depth 260 m). The fact that the
gyre edge class exhibits a much deeper temperature maxi-
mum than the gyre core class is a key difference between
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Figure 5. Inter-class comparison metric (i.e. the I -metric) binned and averaged over 1◦ latitude–longitude bins. The metric can be interpreted
as the probability that the profile is located at a boundary between classes within the Weddell Gyre dataset. Note the uneven spacing of the
colour map. The I -metric is defined in Thomas et al. (2021). The fronts and f/h contours are the same as in Fig. 4.

the two, possibly highlighting that the processes setting the
depth of Tmax may be different between them. The gyre edge
class may be more associated with the circulation of WSDW
around the edge of the gyre and the doming down of isopy-
cnals along its boundary (Fig. 1). Notably, there is a clear
difference in the depth of the temperature maximum along
the gyre core in the east–west direction, with a deeper layer
in the west and a shallower layer in the east (Fig. 8d). This
is consistent with CDW intrusion into the eastern edge of the
gyre class.

3.5 Signatures of mixing between Circumpolar Deep
Water and Winter Water

All four classes are characterised by a proportion of relatively
salty, dense, and warm water and a proportion of fresher,
colder, and lighter water (Fig. 9). The salty, dense, warm
waters have properties consistent with CDW and occupy the
right-hand side of the θ–S plots in Fig. 9. The fresh, cold,
light waters have properties consistent with a layer of tem-
perature minimum WW, sitting along the bottom of the θ–S
plots. The WW becomes increasingly salty as we consider
the classes in order of proximity to the gyre core: i.e. circum-
polar, transition, edge, core. Broadly speaking, there are two
possible causes for this: (1) the effect of brine rejection asso-
ciated with sea ice formation leads to saltier WW varieties,
and (2) the core of CDW, which is characterised by a subsur-
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Figure 6. Mixed layer depth binned and averaged over 1◦ latitude–longitude bins. The mixed layer is calculated using an integral approach
(Thomson and Fine, 2003). The fronts and f/h contours are the same as in Fig. 4.

face temperature maximum, is shallower in the gyre classes
due to upwelling. Both of these signatures lead to enhanced
vertical mixing between CDW and the overlying WW.

Although all four classes feature CDW, WW, and surface
water (SW), there is a key difference between the circumpo-
lar waters and those of the transition class: compared with
the circumpolar class, the transition class is more affected by
brine rejection from sea ice formation and the mixing associ-
ated with this brine rejection. In particular, there is a range
of θ–S space that is unoccupied in the circumpolar class
but more populated in the other classes, notably the transi-
tion class (Fig. 9, grey oval). We hypothesise that this region
in θ–S space is associated with mixing between CDW and
WW; the circumpolar class is less affected by this mixing,
whereas the transition class is more influenced by this mix-
ing. Furthermore, the two gyre classes feature strong mixing
between CDW and WW, enabled in part by upwelling in the

cyclonic gyre. The “mixing line” between CDW and WW is
especially compact and straight in the gyre core class, which
is consistent with CDW and WW being physically closest to
one another there.

Across all four classes, the seasonal cycle is characterised
by a weakening of the near-surface temperature stratifica-
tion in austral winter and spring (JJA and SON), followed
by restratification in the austral summer and autumn (DJF
and MAM) as the SW warms (Fig. 10). The layer of WW
remains trapped under the warmed, restratified near-surface
waters, decaying somewhat by mixing until it is ventilated
again during the following winter and spring. The warmer
waters of the CDW that sit below the WW remain steady
throughout the year, as they are more isolated from the pro-
cesses associated with the seasonal cycle. In terms of salinity,
all four classes feature year-long stability in terms of fresher
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Figure 7. Depth of the conservative temperature minimum (a–d) and the value of the conservative temperature minimum (e–h), binned and
averaged over 1◦ latitude–longitude bins. The fronts and f/h contours are the same as in Fig. 4.

waters overlying saltier waters, although there is a clear near-
surface seasonal cycle (not shown).

The circumpolar and transition classes are characterised
by the formation of WW in winter and spring, with its rapid
erosion in summer and autumn (Fig. 11, top two rows). The
circumpolar class features a strong seasonal cycle in SW,
warming and cooling largely by heat transfer with the at-
mosphere. The transition class also displays a stronger sea-
sonal cycle in SW. In contrast, in the gyre edge and gyre core
classes, the WW is present year-round, and mixing between
WW and CDW, as inferred by the density of profiles along
the “mixing line” between the two water masses, appears to
be weakest in winter and stronger throughout the rest of the
year.

We also examined the spatial structure of the seasonal
cycle, specifically in the mixed layer depth, the depth of
the temperature minimum, and the depth of the temperature
maximum. The seasonal cycle displays little spatial variation,
mostly highlighting property gradients that are already de-
tectable in the climatological average. For instance, the con-
servative temperature minimum in the transition class is es-
pecially deep in the western part of the domain during the
summer and autumn, particularly along the SBDY (Fig. 12),
as seen in the climatology (Fig. 7). The east–west contrast in
the depth of the temperature minimum becomes less appar-
ent in the winter and spring as surface cooling refreshes the

Winter Water layer. The region of CDW intrusion is less ap-
parent in the winter and spring due to spatial sampling biases
over these seasons.

3.6 Physical context: surface stress, upwelling, and
sea ice

Here we discuss two physical fields that are relevant to our
interpretation of the classes: surface-stress-driven (Ekman)
upwelling and freshwater flux from brine rejection. In the
Southern Ocean, surface stress is set by near-surface winds
and modulated by the presence of sea ice through both ice
coverage of the ocean surface and stress associated with sea
ice drift (Dotto et al., 2018). The Ekman upwelling velocity
at the base of the Ekman layer is

wek =
1
ρ0

[
∇ ×

(
τ

f

)]
, (4)

where ρ0 is the reference density, τ is the surface stress from
ERA-5 reanalysis following Dotto et al. (2018), and f is the
Coriolis parameter. We find climatological upwelling of var-
ious intensities along the SBDY, which is co-located with the
edge of the circumpolar class, the core of the transition class,
and the northern extent of the gyre edge class (Fig. 13a).
There is also weaker upwelling throughout the gyre core,
which is consistent with its cyclonic circulation and the asso-
ciated upwelling of CDW throughout. We find downwelling
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Figure 8. The depth of the maximum conservative temperature (a–d) and the value of the maximum conservative temperature (e–h), binned
and averaged over 1◦ latitude–longitude bins. The fronts and f/h contours are the same as in Fig. 4.

in the western edge of the domain near the Filchner–Ronne
Ice Shelf and patches of strong downwelling along the rest of
the Antarctic coast (Fig. 1). This near-coastal downwelling
seemingly affects the southern extent of the gyre edge class
as well as the edges of the gyre core class.

In order to further investigate our hypothesis that the tran-
sition class is more influenced by brine rejection from sea
ice formation compared with the circumpolar class, we ex-
amine an estimate of salt input associated with winter sea
ice formation from a regional state estimate (Mazloff et al.,
2010). We find that in the western part of the domain, the
strongest brine rejection largely coincides with the position
of the SBDY, which again is co-located with the core of the
transition class (Fig. 13b). This positioning is consistent with
the hypothesis that brine rejection is able to affect the tran-
sition class more than the circumpolar class, which is found
mostly north of the SBDY. In the eastern part of the domain,
the salt input associated with sea ice mostly aligns with the
SACCF, but this is somewhat downstream of our main anal-
ysis region near the Weddell Gyre. These results are compat-
ible with those of Haumann et al. (2016), who find both local
freezing and transport to be important for setting the fresh-
water input south of the region of maximum sea ice extent
(their Fig. 4).

4 Discussion

The Weddell Gyre region controls the properties of some of
the densest waters on the planet, with associated effects on
the overturning circulation and on the air–sea partitioning of
heat and carbon (Vernet et al., 2019). Because of these unique
properties, the structure and variability of the Weddell Gyre
are relevant to how it functions as part of the global ocean
and climate system. In this work, we applied a profile classi-
fication model (PCM), which is a type of unsupervised ma-
chine learning, to a temperature and salinity profile dataset
covering the Atlantic sector and part of the Indian sector of
the Southern Ocean. Our objective was to use the PCM as
a “discovery tool” to identify thermohaline structures in the
Weddell Gyre region and to examine their seasonal variabil-
ity. Our application of PCM identified four coherent “pro-
file types” that can be described as follows: (1) a circumpo-
lar class that largely sits north of the SBDY, (2) a transition
class between the circumpolar region and the gyre region,
(3) a gyre edge class with northern and southern regions, and
(4) a gyre core class. The four classes are reasonably inter-
pretable and geographically distinct from one another, with
some overlap as expected when using a probabilistic classifi-
cation scheme such as PCM on a highly correlated dataset.

PCM identifies some key features of the Weddell Gyre re-
gion and its circulation, refining our current understanding
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Figure 9. Temperature–salinity diagrams for the four classes. The shading indicates the mean I -metric value for each bin (0.1 ◦C,
0.025 g kg−1). Since each profile has a single I -metric value, the approach used here averages all profiles that pass through any given bin.
The result is a relative indication of the core class properties versus the more peripheral ones. The solid lines are potential density contours
(σ0). The grey oval indicates a potential signature of mixing between the Winter Water and deeper water. Also shown are the approximate
locations of the surface water (SW), Circumpolar Deep Water (CDW), and Winter Water (WW).

of this complex structure (Vernet et al., 2019). Some specific
refinements to our understanding include the following.

– The intermediate region between the ACC and the Wed-
dell Gyre is more complex than a single confluence re-
gion between them. There is a transition class and a dis-
tinct gyre edge class that bears some similarities to wa-
ters that are much closer to Antarctica (e.g. Fig. 4b, c).

– This intermediate region extends much further east than
previously thought for the Weddell–Scotia Confluence
(Patterson and Sievers, 1980; Vernet et al., 2019).

– The intrusion of CDW into the gyre occurs over quite a
broad region (20–40◦ E), as evidenced by circumpolar-
class waters intruding south of SBDY (e.g. Fig. 4b).

– The transition waters are meridionally much broader
east of the Greenwich Meridian than the west, suggest-
ing the role of topography (i.e. the South Scotia Ridge)

in constraining the interaction of water masses between
the ACC and the gyre, consistent with Patmore et al.
(2019) (e.g. Fig. 4b).

– The gyre edge class indicates some level of similarity
between waters at the northern and southern ends of the
gyre, where waters from Antarctic shelves can be in-
jected directly into mid-depths (i.e. WSC in the north
or the descent of dense shelf waters into CDW layers in
the south) (e.g. Fig. 4c).

– The gyre core bifurcates and is strongly influenced by
underlying topography around 10–20◦ E, which is a re-
finement of our understanding of this two-cell structure
(e.g. Fig. 4d).

– The gyre core seems to follow the continental slope very
closely in the south – there is a sharp transition here (e.g.
Fig. 4d).
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Figure 10. Distribution of the conservative temperature of the four classes, split by season. Each panel features a random selection of 400
profiles (thin grey lines), the 25th percentile (dashed line, left), the median (solid line), the 75th percentile (dashed line, right), and the number
of profiles N in each class and season.

In addition, PCM reveals aspects of the spatial distribu-
tion of mixing between WW and CDW. It also characterises
the seasonal cycle of the four classes, highlighting the for-
mation, extent, and destruction of WW throughout the gyre
and its surroundings via mixing with the underlying CDW
(Sect. 3.5). The spatial and temporal structure of when and
where WW and CDW most readily mix, with sea ice as a key
determinant, had not been identified before. We discuss this
further in the next subsection.

4.1 Influence of sea ice processes on class structures

Sea ice growth, brine rejection, and vertical mixing are
closely related in the polar regions (Gordon and Huber, 1990;
Martinson, 1990). A key result from this study is the marked
difference between waters where WW and CDW more read-
ily mix with each other (i.e. the transition and gyre classes)
and the more northern class wherein the WW and CDW
are more isolated from one another (i.e. the circumpolar
class); this is especially apparent when viewed in θ–S space

(Fig. 11). In particular, we hypothesise that the structure of
the transition class is affected by salt input from sea ice
processes (e.g. brine rejection) and the associated mixing,
whereas the circumpolar class is not especially affected by
this process. Local freezing and sea ice formation tend to
add salt to the regions occupied by the transition class in
a climatological sense, which would weaken the stratifica-
tion and thereby encourage mixing between WW and CDW
(Haumann et al., 2016). This process is most relevant in JJA
and SON, when sea ice reaches its maximum extent and is
most aligned with the SBDY in the western Weddell Gyre
(Fig. 13). Although this same region is also affected by fresh-
water flux due to melting and sea ice export, which would
have a stabilising effect on the water column during some
parts of the year, this would not necessarily eliminate the ef-
fect of wintertime salt flux from brine rejection and the rela-
tive increase in mixing.

As a further contributing factor, it may be that the weak
stratification of the transition class is related to the spillage
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Figure 11. θ–S diagrams grouped by class and season. The colour indicates the number of profiles passing through each θ–S bin (width
0.1 ◦C, 0.025 g kg−1), and the solid lines are potential density contours.

and subsequent eastward advection of relatively dense and
weakly stratified shelf waters from the tip of the Antarctic
Peninsula. Those waters have had their stratification reduced
by sea ice production and brine rejection on the continental
shelves of the western Weddell Sea. Quantifying the relative
effect of local brine rejection and advection on the transition
and circumpolar classes may be a fruitful avenue for future
observational and numerical studies.

4.2 Influences of bathymetric and shelf processes on
class structures

Using PCM, the boundaries between classes are probabilis-
tic and somewhat “fuzzy”. That being said, many of the ap-
proximate class boundaries roughly coincide with Southern

Ocean fronts, the positions of which are strongly linked to
bathymetry. As an example, the boundary of the circum-
polar class approximately aligns with the SBDY, which is
constrained by the South Scotia Ridge. This correspondence
is consistent with studies that have shown the importance
of bathymetry, including ridge geometry, in determining the
stratification, circulation, and extent of the Weddell Gyre
(Patmore et al., 2019; Wilson et al., 2022).

Processes on the continental shelves also affect the struc-
ture of the classes. For example, ventilation may affect the
structure of the southern wing of the gyre edge class, as it
is largely distributed along the Antarctic continental shelf.
The transition class may be affected by ventilation by low-
salinity shelf waters along the eastern Weddell Gyre. These
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Figure 12. Depth of the minimum conservative temperature of profiles that belong to the transition class, averaged over 1◦ latitude–longitude
bins and separated by season.

shelf waters are not dense enough to support AABW forma-
tion; instead, they cascade down along the continental slope
and ventilate the CDW (Thompson et al., 2018).

4.3 A novel characterisation of the Weddell–Scotia
Confluence waters

The northern and southern branches of the gyre edge class
show similarities in structure that justify their grouping to-
gether by the PCM (i.e. increasing the number of classes
does not separate out these branches). However, there are
discernible differences between the two branches (Fig. 14).
The northern branch is characterised by warmer and slightly
fresher surface waters and has weaker stratification below
300 m. Although we must be cautious in interpreting any
possible dynamical relationship between the branches, these
observations are consistent with the flow of surface waters

along the ASF, mixing with the fresh shelf waters and warm-
ing as they turn northwards to join the WSDW.

The location and weak stratification of the northern branch
align with the properties of the Weddell–Scotia Confluence
waters, which are characterised by weak mid-depth stratifica-
tion and are found close to the South Scotia Ridge (Patterson
and Sievers, 1980). Initially attributed to topographic mixing,
this reduced stratification is now understood to result from
the spillover of shelf water from the Antarctic Peninsula tip
and its eastward spread (Whitworth et al., 1994). While each
class or profile type in a PCM is shaped by multiple pro-
cesses, the spatial coincidence of the northern branch of the
gyre edge class with the Weddell–Scotia Confluence (Fig. 5)
is noteworthy. Along the SBDY, I -metric values of the gyre
edge class profiles tend to increase from west to east, indi-
cating some mixing between profile types. The PCM does
not distinguish causes or dynamical connections, but the co-
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Figure 13. (a) Estimated upwelling (10−4 m s−1) from surface stress, including the effects of wind stress, sea ice coverage, and sea ice
drift, following Dotto et al. (2018). The sea ice concentration is from the Climate Data Record v4, and sea ice drift is from Polar Pathfinder.
(b) Approximate position of the wintertime sea ice freezing line, as indicated by the salt input from brine rejection during sea ice formation
(negative freshwater input, shown in units of 10−4 kg m−2 s−1). Values below 10−5 kg m−2 s−1 have been masked out (i.e. set to zero). Data
from SOSE averaged over JAS during the period 2005–2010 (Mazloff et al., 2010). The fronts are the same as in Fig. 4 from Kim and Orsi
(2014).

herence of the northern branch along the length of most of
the SBDY suggests that WSC signatures may be detectable
further west than previously thought. This alternative charac-
terisation of the WSC is a key result of this study.

4.4 The case for regional, application-specific profile
classification models

As with many classification problems, there is a balance to
strike between the interpretability of the PCM and its accu-
racy, i.e. its ability to represent the full underlying covariance
as captured by the available data. The ideal balance depends
on the objective of the study; if interpretability is the main
objective, then one can opt for fewer classes, with less over-
lap between them. If accuracy is the main objective, then one
can opt for more classes, with more overlap between them.
Typically, as overlap increases, the ease of interpretation de-
creases. That being said, even in the simplest case with as few
as two classes, each “profile type” will bear the integrated
signatures of many different processes (e.g. mixing between
water masses, air–sea interactions), so they must be inter-
preted in a way that considers this integration. Some statis-
tical guidance is available for helping with our choice of the
number of classes, but this guidance often returns a range of
allowed numbers of classes as opposed to a single objective
value (Fig. A3). It is sometimes instructive to compare the
structures of PCMs with different numbers of classes, much
as one might compare different levels of complexity in a hier-
archy of numerical models (Held, 2005). One can learn about
the structure of the system by observing what changes as one
adds or removes sources of complexity, in this case by adding
or removing classes.

The structure of the PCM also depends on its temporal and
spatial domain. The goal of identifying a single global, uni-
fied PCM is likely an impractical one, as the “noise” in a
global PCM might well be a meaningful “signal” in a more
regional PCM. This is analogous to identifying fronts in the
Southern Ocean; the way we treat structures and the bound-
aries between them benefits from a more region-specific,
application-specific approach for similar reasons – one appli-
cation’s “signal” is another application’s “noise” (Chapman
et al., 2020; Thomas et al., 2021). As with many atmospheric
and oceanographic problems, filtering, signal processing, and
the context of the variability are all routinely used to high-
light certain features and aid understanding. The flexibility
of PCMs is one of their strengths; they can be focused on
specific regions, variables, and types of variability depend-
ing on the objective of the application at hand.

That said, the four-class model derived here could be com-
pared to the Southern Ocean temperature-only PCM pre-
sented in Jones et al. (2019). In that study, there are only
two classes south of the PF, i.e. a near-Antarctic class lo-
cated broadly in the gyres and along the slope current and
a more circumpolar class that runs just south of the PF. As
we found in the Weddell Gyre PCM, the profile types found
south of the PF are characterised by salt stratification. Al-
though one should be careful not to overinterpret, the circum-
polar class in the temperature-only Southern Ocean PCM is
roughly analogous to the circumpolar class found here in
the Weddell Gyre-specific PCM. The Weddell Gyre PCM is
able to distinguish additional structure because it (1) includes
salinity as a variable and (2) is focused on a regional set of
profiles.
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Figure 14. Comparison of the conservative temperature (a), absolute salinity (b), and potential density (c) of the northern (red lines) and
southern (blue lines) extents of the gyre edge class. The solid lines represent median values, and the dashed lines represent the 25th and 75th
percentiles of the distributions at each depth level.

4.5 Identifying the underlying covariance structure

The actual grouping or classification of the profile data hap-
pens in an abstract principal component (PC) space. In PC
space, the covariance structure of the dataset, in terms of
both its climatology and the seasonal cycle, is represented
by a “circumpolar wing” and a “gyre wing”, separated by
a transition bridge between the two. This is similar to what
one sees using t-distributed stochastic neighbour embedding
(t-SNE), which is a nonlinear mapping technique that can be
useful for visualising high-dimensional data (van der Maaten
and Hinton, 2008). This approach gives us an alternative
way to understand the underlying covariance structure in the
Weddell Gyre region, which is ultimately what we are try-
ing to estimate using PCM. The t-SNE method takes a set
of high-dimensional points and maps them onto two dimen-
sions, ideally “keeping close neighbours close and distant
neighbours distant” (Kobak and Berens, 2019). The domi-
nant free parameter of t-SNE is the perplexity, which, very
roughly speaking, indicates the level of “attraction” present
between nearby points during the fitting process. Low values
indicate weak attraction, whereas high values indicate strong
attraction. We fit t-SNE using four different perplexity values
using an optimised, automatic learning rate (Belkina et al.,
2019). Because t-SNE is stochastic in the sense that different
initialisations can produce somewhat different results, we ran
the fitting process multiple times for each value of perplexity,
finding that the large-scale structure in t-SNE space is robust,
with only smaller-scale variations.

The structure in t-SNE space consists of a circumpolar
wing, a transition bridge, and a gyre wing with (1) a gyre
edge region, which is connected to the transition bridge, and
(2) a gyre core region, which is somewhat more separated
from the transition bridge (Fig. 15). The separation between
the circumpolar profiles and the gyre core profiles is con-
sistent with their separation in physical and property space
as well. For example, it is unlikely that a circumpolar pro-
file could transform directly into a gyre core profile without
first passing through the transition class. Generally speak-
ing, PCA by definition does not capture nonlinear struc-
tures, whereas a method like t-SNE does. One example of

Figure 15. Visualisation of six-dimensional principal component
space, transformed into a 2D space using t-SNE (Maaten and Hin-
ton, 2008). The colours indicate the four classes into which the pro-
files have been sorted. Roughly speaking, the perplexity indicates
the level of mutual “attraction” between nearby points during the
fitting process. The axes are arbitrary dimensions and should not be
interpreted quantitatively; they are for visualisation purposes only.

such a nonlinear feature is how the transition class is split
into multiple components, for instance at the tip of the gyre
core class, wherein we find a small group of mixed transi-
tion and gyre edge points. Further investigation indicates that
this small group consists of points from the high-latitude, far
eastern portion of the domain, south of approximately 65◦ S
and between roughly 40 and 70◦ E. This represents an area
of overlap between the transition class and the southern ex-
tents of the gyre edge class (Fig. 15). In this case, t-SNE
highlights the difference between the lower-latitude transi-
tion bridge and the higher-latitude, far eastern transition–core
and transition–circumpolar overlaps, which is not apparent in
PC space (Fig. A4).
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In abstract t-SNE space, one might consider the probabil-
ity of a transition from the circumpolar wing to the gyre wing
via the transition class. This framework makes the most sense
in a more barotropic conceptual model of the Weddell Gyre,
which may be defensible in the upper O(1000 m) of the re-
gion, since the circulation in this layer is more likely to be
equivalent barotropic compared with the entire water column
(Killworth, 1992; Marshall, 1995; Krupitsky et al., 1996).
The presence of baroclinicity implies the presence of shear,
which likely only happens in specific locations (e.g. associ-
ated with bathymetric features). Another way to frame this
would be to ask the following: what transformations would
be necessary to convert a profile from the circumpolar wing
to the gyre wing via the transition bridge? Examining the
profile types, we can speculate that such a transformation
would involve cooling throughout the water column, a shoal-
ing and weak salinification of the WW layer, a deepening of
the core of the CDW, and an overall weakening of the sub-
surface stratification.

4.6 The limitations of spatial and temporal bias

The set of profiles used in this study are not distributed uni-
formly in space or season. Some locations are overrepre-
sented, for instance along repeat hydrographic sections (e.g.,
A12, A13.5). In order to minimise the effect of this spatial
bias on the PCM, we selected training datasets that are ap-
proximately uniform in terms of areal coverage. We also car-
ried out a sensitivity test wherein the training datasets were
generated randomly with no guarantee of uniformity, and
the results were broadly unchanged (not shown). In terms of
temporal coverage, the austral winter and spring months are
somewhat underrepresented relative to the rest of the year
(Fig. 2b), which may bias the PCM towards summer and
spring structures. However, since the total number of pro-
files in any given class and season is fairly small, we de-
cided to use all available data instead of further sub-selecting
for the training dataset. Although this does introduce what
we expect to be a small bias in the PCM, we weighed this
against the size of our dataset and decided to proceed with
more profiles rather than fewer. The profile dataset is also
non-uniform by year; this will also introduce some biases
into our PCM. Because we are basically using the PCM to
build up a climatological and seasonal mean picture of the
structure of the Weddell Gyre, we do not think that our re-
sults would change drastically using uniform sampling by
year. Nevertheless, this bias highlights the need for contin-
ued profile-based monitoring of the Weddell Gyre and the
surrounding areas so that we may develop a more complete
understanding of the seasonal cycle as well as interannual to
decadal variability.

5 Conclusions

Through the processes of dense water formation and up-
welling that occur in and around the Weddell Gyre, this
unique region connects the atmosphere, surface ocean, and
the deep ocean. Its structure and variability are relevant to
how it functions as part of the global ocean and climate
system. In this work, we used a profile classification model
(PCM), a type of unsupervised classification built on Gaus-
sian mixture modelling (GMM), as a tool for characterising
temperature and salinity profile data in the Weddell Gyre re-
gion. The PCM highlights both expected and underappreci-
ated structures, helping to generate new hypotheses for fur-
ther investigation. Specifically, the Weddell Gyre PCM iden-
tified four different “profile types”, namely (1) a circumpolar
class, (2) a transition class between the circumpolar profiles
and the gyre profiles, (3) a class of profile on the edge of the
gyre, and (4) a class of profiles in the core of the gyre. The
vertical structure and geographic distribution of the classes
feature signatures of CDW inflow across the eastern bound-
ary of the Weddell Gyre, the presence of the Weddell–Scotia
Confluence, and the spatial distribution of mixing between
the WW and CDW. The seasonal cycle of the class structure
highlights the formation, extent, and mixing of WW through-
out the gyre and its surroundings. We put forward the hy-
pothesis that the transition class is more affected by mixing
encouraged by brine rejection from sea ice formation com-
pared with the circumpolar class, as suggested by the spatial
overlap between the northern edge of winter sea ice produc-
tion and the transition class. Unsupervised classification ap-
proaches such as PCM can complement existing expertise-
driven analysis, which has been and will remain useful well
into the future. Future studies that examine alternative clas-
sification strategies (e.g. agglomerative clustering) would be
a welcome addition to the literature.
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Appendix A: Details of principal component analysis
(PCA) and profile classification modelling (PCM)

In this Appendix, we describe some details of the PCA and
PCM approaches used in this work. In Sect. A1, we dis-
cuss dimension reduction using the principal component ap-
proach. In Sect. A2, we describe the procedure used to select
the number of classes. Finally, in Sect. A3, we provide some
mathematical details for GMM, which is the underlying un-
supervised classification approach used in our PCM.

A1 Dimension reduction using principal component
analysis

Principal component analysis (PCA) attempts to identify a
set of eigenfunctions that can efficiently represent a dataset,
specifically by representing its variability as a linear combi-
nation of these eigenfunctions. In this analysis, we use PCA
to represent the vertical variability in the dataset by identify-
ing a set of eigenvectors (i.e. principal components or PCs)
that are functions of depth. We find that a six-component rep-
resentation of the variability in both conservative temperature
and absolute salinity retains 95 % of the variability within
the dataset, which is acceptable for our application. It is of
course possible to increase the number of PCs to retain more
of the variability, but this comes at the expense of increased
computational complexity. By limiting the number of PCs
to six, we strike a balance between computational efficiency
and the accuracy of the PC representation of the dataset in
terms of its ability to represent the covariance of the data.
Because the six-component PC representation only neglects
5 % of the variability, increasing the number of PCs does not
appreciably change our results (not shown).

We fit both the PC representation of the profiles and the
PCM using a training dataset that is approximately unbi-
ased in terms of spatial coverage. First, we divide the do-
main into 10◦ by 10◦ bins and select f =Nmax · cos(θ − θ0)

profiles from each bin, where Nmax = 500, θ is latitude, and
θ0 = 45◦ S is a reference latitude. The cosine factor helps en-
sure that the reduced area at higher latitudes is taken into ac-
count. The training dataset consists of 13 872 profiles, which
is roughly 50 % of the full profile dataset. By using this ap-
proximately area-uniform training dataset, we offset the ef-
fect of the spatial bias in coverage for both the PC model
and the PCM (Fig. 2). That being said, the spatial bias only
had a small effect on the PCM; using the full set of profiles,
without removing the spatial bias, we arrived at very similar
classes and a very similar spatial distribution of classes. The
only noticeable differences were around the Prime Merid-
ian, where the presence of repeat hydrographic sections in-
creases the profile density (GO-SHIP reference sections A12
and A13.5). We also tried using larger training datasets with
up to 100 % of the profiles; this made no appreciable dif-
ference in the final results, suggesting that the 50 % training
dataset is sufficiently large to robustly capture the variability.

As an alternative approach, we also tried a kernel-based PCA
method, but the results were nearly identical.

The six-component PC representation of the system fea-
tures functions of both conservative temperature and abso-
lute salinity (Fig. A1). Many of the temperature functions
feature near-surface temperature inversions; they all feature
a rapidly changing near-surface transitioning into a more
slowly changing subsurface, as one might expect in ocean
profile data in the top 1000 m. Some of the salinity functions
also feature such variation, although they are better charac-
terised by more gradual changes between the near-surface
and the subsurface. Using this PC representation, we reduce
the dimensionality of the data to six PC coefficients. The dis-
tribution of those PC coefficients in six-dimensional space
shows that a multi-dimensional Gaussian representation is an
appropriate way to statistically model this dataset (Fig. A2).
It is within this abstract, six-dimensional PC space that we
use GMM to find patterns of coherent variability.

A2 Selecting the number of classes

Since oceanographic profile data are highly correlated in
space and time, it is unlikely that any classification approach
would be able to cleanly and unambiguously identify groups
or structures within the dataset that do not have at least some
overlap. As such, we approach this classification task with
the knowledge that any distinction between ocean profiles
will retain some ambiguity. That being said, there are statis-
tical tools that can be used to offer some guidance for making
this decision. Two commonly used criteria are the Bayesian
information criterion (BIC) (Eq. A1) and Akaike information
criterion (AIC) (Eq. A2). Broadly speaking, they both con-
tain a term that measures the agreement of the model with
the data, and they both have a penalty term that discourages
overfitting. Ideally, one would find a clear minimum in both
BIC and AIC at the ideal value of the number of classes, K .
In practice, it is rare to find an unambiguous minimum due to
the highly correlated nature of the data (e.g. Sonnewald et al.,
2019; Jones and Ito, 2019). BIC and AIC can be expressed
as

BIC(K)=−2L(K)+ ηf (K) log(n),

with ηf (K)=K − 1+KD+
KD(D− 1)

2
, (A1)

AIC(K)= 2K − 2L, (A2)

where the log-likelihood is expressed as

L= log[P(X)]

=

N−1∑
n=0

log

(
K∑
k=1

λk N
(
xn ; λk , µk , 6k

))
. (A3)
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Figure A1. The six principal components (PCs) in both temperature and salinity that are used for dimensionality reduction in this study.
Each θ–S profile is represented as a linear combination of these six principal components (columns), with a conservative temperature (top
row) and absolute salinity (bottom row). The percent variance that is statistically explained by each principal component is shown in each
panel title.

Above, L is a measure of likelihood, ηf is the number of
independent parameters to be estimated, andN is the number
of profiles used in the BIC and AIC training.

In addition to BIC and AIC, we also consider the silhou-
ette coefficient, which is a measure of intra-cluster distance
(a) and the mean nearest-cluster distance (b) for each pro-
file (Rousseeuw, 1987). The silhouette coefficient is then
(b− a)/max(a,b). The coefficient has values in the range
[−1, 1], where values near−1 indicate that a profile has been
assigned “incorrectly” (i.e. it is more similar to a different
profile), values near 0 indicate that there is overlap between
the clusters, and values near 1 indicate unambiguous clas-
sification within the context of the model being used. When
working with ocean profile data, which tend to be highly cor-
related, we do not necessarily expect values close to 1; the
silhouette score that is considered “acceptable” varies with
dataset and application.

We applied BIC, AIC, and the silhouette score to PCMs
of the near-Antarctic data using values of K between 2 and
19. For each value of K , we fit 20 different GMMs using
randomly drawn 1000-profile subsets of the training dataset.
We used 20 subsets because this empirically gave us stable
statistics; i.e. doubling this to 40 made no appreciable dif-
ference for the distributions of BIC, AIC, and the silhouette
score. When applied to the PC representation of the near-
Antarctic data, the combination of BIC, AIC, and silhouette
score together indicates that the number of classes lies be-
tween K = 3 and K = 8 (Fig. A3). We find a clear decrease
in slope at K = 3 across all three metrics, which may be
referred to as an “elbow”. As such, the simplest statistical
representation of our model consists of three classes, which

are physically representative of (1) the Weddell Gyre, (2) the
circumpolar regime, and (3) a transition class between the
two. By increasing the number of classes to K = 4, we see
the distinction between the core of the Weddell Gyre and
a class along its edge. This increase from K = 3 to K = 4
is favourable in terms of BIC and AIC, which slightly de-
crease (indicating greater likelihood), but at the expense of
a decrease in silhouette score (indicating more overlap be-
tween the classes). Although further increasing K to values
greater than 4 improves AIC slightly, it does not improve
BIC by much, and it comes at the expense of a decreased
silhouette score (worsening overlap). Broadly speaking, the
interpretability of our PCM worsens as the silhouette score
decreases, as it becomes increasingly difficult to interpret the
profile types as being somewhat distinct from one another.
For values larger thanK = 8, BIC begins to increase, indicat-
ing that we are in danger of overfitting the data in this regime.
As a result of this analysis, we select K = 4 as the number
of classes in our PCM, striking a balance between the com-
plexity of our representation (i.e. the ability to distinguish
the gyre core from the gyre edge) and its interpretability. For
completeness, we include Jupyter notebooks for the K = 3
and K = 8 applications in the archived repository (Jones,
2023).

A3 Profile classification models

Unsupervised classification refers to a broad set of tech-
niques that attempt to sort, group, and/or label a dataset that
has not already been sorted, grouped, and/or labelled in some
way. As a specific instance of unsupervised classification,
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Figure A2. The distribution of profiles in PC space. Each row and column represents one of the PCs. The diagonal terms are distributions
for each principal component. Diagrams such as this one can be useful for determining which statistical model should be used to describe
the data.

Gaussian mixture modelling (GMM) attempts to statistically
model the dataset under consideration using a set of mul-
tidimensional Gaussian functions (McLachlan and Basford,
1988). When GMM is used to sort ocean profiles, it is some-
times referred to as profile classification model (PCM), for
example as seen in Maze et al. (2017). A PCM is “trained”
or “fit” by iteratively adjusting the means and covariances of

the Gaussian functions, typically using an expectation max-
imisation approach. We offer a bit more mathematical detail
below, adapted from the Appendices of Thomas et al. (2021).

The GMM method attempts to represent the underlying
data distribution using a set of K Gaussian functions in D
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Figure A3. Statistical criteria used to guide the selection of the number of components in the GMM algorithm. Shown are the (a) Bayesian
information criterion (BIC), (b) the Akaike information criterion (AIC), and (c) the silhouette score. For each K value, these quantities
are estimated using 20 random samples from the training dataset. The solid line represents the mean value, and the dashed lines indicate
1 standard deviation on either side. The light green shading indicates the range of classes that we suggest could be supported by these criteria
when considered jointly.

Figure A4. Distribution of profiles in 2D slices of the six-dimensional principal component (PC) space through combinations of the first
three PCs. Each point in six-dimensional PC space represents a combined temperature and salinity profile. The colour scale indicates the
class into which each profile has been sorted by the GMM algorithm, including the circumpolar, transition, gyre edge, and gyre core classes.

dimensions (in our case D = 3):

N
(
x;µk,6k

)
=

exp
[
−

1
2

(
x−µk

)T (
6k
−1)(x−µk)]√

(2π)D ‖6k‖
, (A4)

where x ∈ RD×1 is a vector in the PC space, µ ∈ RD×1 is the
centre of the Gaussian distribution expressed in vector form,
6k ∈ RD×D is the covariance matrix, and |6k| is its deter-
minant. The covariance matrix determines the orientation of
the Gaussian ellipsoids in PC space. We statistically repre-

sent the dataset using the following probability distribution:

P(x)≈
K∑
k=1

λk N
(
x ; µk , 6k

)
, (A5)

where λk is the weight associated with the kth Gaussian. The
GMM process iteratively adjusts λk , µk , and 6k to decrease
the model–data misfit, which is called expectation maximi-
sation and is described in more detail in the next paragraph.

The first K clusters are created randomly. Next, the set of
Gaussians is iteratively adjusted (Eqs. A6, A7, and A8) until

Ocean Sci., 19, 857–885, 2023 https://doi.org/10.5194/os-19-857-2023



D. C. Jones et al.: Weddell Gyre classes 881

it reaches a local minimum in the cost function. The expec-
tation of the model given the data is increased by updating
the weights λk , means µk , and covariance matrices 6k in the
following way:

λk
(t+1)
=

1
N

N∑
n=1

P
(
cn = k | xn ;

{
λk , µk , 6k

}(t))
, (A6)

µk
(t+1)
=

N∑
n=1

P
(
cn = k | xn ;

{
λk , µk , 6k

}(t))
xn

N∑
n=1

P
(
cn = k | xn ;

{
λk , µk , 6k

}(t)) , (A7)

6k
(t+1)
=

∑N
n=1P

(
cn = k | xn;

{
λk, µk, 6k

}(t))
·
(
xn−µk

(t+1))(xn−µ(t+1)
k

)T


N∑
n=1

P
(
cn = k | xn;

{
λk, µk, 6k

}(t)) , (A8)

where cn is the classification of the nth cluster, which could
be any one of the K clusters. The GMM algorithm repeats
this process until the parameters have converged.

As discussed in Sect. A1, we use a spatially unbiased
training dataset to estimate the hyper-parameters of our
GMM, ensuring that the resulting PCM is generally applica-
ble across the entire spatial domain, rather than being specif-
ically tuned to areas where there happen to be a large number
of profiles (e.g. along ship-track repeat sections).

Each profile is assigned a posterior probability distribution
across the K clusters (Eq. A9). This uncertainty information
is one of the useful features of GMM. The probability takes
the form

P
(
cn = k | xn ; λk , µk , 6k

)
=

λk N
(
xn ; µk ,

∑
k

)
K∑
k=1

λk N
(
xn ; µk ,6k

) . (A9)

To label a dataset, each profile is assigned a label from the
cluster that it would be most likely to be generated by in a
statistical sense (Eq. A10):

C = argmax
k

(
P
(
cn = k | xn ; λk , µk , 6k

)
, 1 : k

)
. (A10)

A4 PCM applied in PC space

The four-class PCM identifies (1) a circumpolar class, (2) a
transition class between the circumpolar waters and the Wed-
dell Gyre, (3) waters on the edge of the gyre, and (4) waters
in the core of the gyre. These clusters are identified in a six-
dimensional PC space, in which the dimensions are the prin-
cipal component coefficients and each profile is represented
by a single point. In a 3D projection of the six-dimensional
PC space, which statistically explains about 85 % of the vari-
ability, we see a covariance structure that may be described

as “two wings and a bridge between them”. The four-class
model highlights these two “wings”, namely a circumpolar
wing and a gyre wing, separated by a transition “bridge”
between the two wings (Fig. A4). If we imagine a stack of
water masses transforming from more circumpolar-type to
more gyre-type waters, this transformation would be repre-
sented by crossing the “bridge” from the circumpolar wing
to the gyre wing. Much of the variability is contained in the
first principal component (roughly 60 %), which represents
aspects of large-scale salt stratification.

Appendix B: Five-class PCM of entire South Atlantic
Ocean and Indian Ocean dataset

The initial set of profiles used in this study covers the South
Atlantic and part of the Indian Ocean (Sect. 2.1). As a first
classification step, we applied the PCM technique to this
dataset in order to identify a coherent set of near-Antarctic
profiles. We chose to use this data-driven approach for con-
sistency with the rest of our analysis, although in practice
selecting all profiles south of the PF would not substantially
change our results, especially not those closer to the Weddell
Gyre. Starting with the cleaned and prepared South Atlantic
and Indian Ocean data, we followed the PCM procedure de-
scribed in Sect. 2. First, we reduced the dimensionality of the
data using a six-component PCA, retaining 95 % of the vari-
ability. We used the elbow method with both BIC (Eq. A1)
and AIC (Eq. A2) to estimate the optimal number of classes
K , which in this case wasK = 5; atK = 5, the slope of both
the mean BIC and AIC curves changes considerably, and BIC
does not change much for K > 5.

The five-component PCM consists of these profile types:
(1) subtropical Atlantic, (2) subtropical Indian, (3) circum-
polar (more northern), (4) circumpolar (more southern), and
(5) near-Antarctic (Fig. B1). There are some excursions
of the circumpolar (southern) class south of the PF, espe-
cially in the easternmost part of the domain, but the near-
Antarctic class mostly consists of those profiles that are lo-
cated south of the PF. The main analysis in this paper is a
sub-classification of the “near-Antarctic” profiles.
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Figure B1. A five-class PCM of the initial dataset. The quantity
shown is the I -metric, which is the probability that a profile is near
a boundary between classes, as described in Sect. 3.2. Also shown
are fronts of the ACC, as described in Fig. 5. The rest of this study
is essentially a “sub-classification” of the near-Antarctic class.

Code and data availability. The dataset used in this study consists
of profiles taken by Argo floats (https://doi.org/10.17882/42182,
Argo, 2020) and ship-based CTDs as recorded in the
World Ocean Database (https://www.ncei.noaa.gov/sites/
default/files/2020-04/wod_intro_0.pdf, last access: 14
June 2023, Boyer, 2018). SOSE iteration-100 data are
available from the Scripps Institution of Oceanography
(http://sose.ucsd.edu/sose_stateestimation_data_05to10.html,
last access: 4 June 2023, Mazloff, 2023). CDRv4 is available
via NSIDC (https://doi.org/10.7265/efmz-2t65, Meier et al.,

2021), and Polar Pathfinder sea ice drift data are also avail-
able via NSIDC (https://doi.org/10.5067/INAWUWO7QH7B,
Tschudi et al., 2019). The code used to perform this anal-
ysis and produce the figures used in the paper is available
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