Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-811-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-811-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Validating the spatial variability in the semidiurnal internal tide in a realistic global ocean simulation with Argo and mooring data
Gaspard Geoffroy
CORRESPONDING AUTHOR
Dept. of Meteorology, Stockholm University, Stockholm, Sweden
Jonas Nycander
Dept. of Meteorology, Stockholm University, Stockholm, Sweden
Maarten C. Buijsman
School of Ocean Science and Engineering, University of Southern Mississippi, Stennis Space Center, MS, USA
Jay F. Shriver
Ocean Dynamics and Prediction Branch, U.S.
Naval Research Laboratory, Stennis Space Center, MS, USA
Brian K. Arbic
Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
Related authors
No articles found.
Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver
Ocean Sci., 20, 1187–1208, https://doi.org/10.5194/os-20-1187-2024, https://doi.org/10.5194/os-20-1187-2024, 2024
Short summary
Short summary
This study examines the seasonal variability in internal tide sea surface height in a global model simulation. We also compare this with altimetry and the seasonal variability in the internal tide energy terms. Georges Bank and the Arabian Sea show the strongest seasonal variability. This study also reveals that sea surface height may not be the most accurate indicator of the true seasonal variability in the internal tides because it is modulated by the seasonal variability in stratification.
Michel Tchilibou, Loren Carrere, Florent Lyard, Clément Ubelmann, Gérald Dibarboure, Edward D. Zaron, and Brian K. Arbic
EGUsphere, https://doi.org/10.5194/egusphere-2024-1857, https://doi.org/10.5194/egusphere-2024-1857, 2024
Short summary
Short summary
This study is based on sea level observations along the swaths of the new SWOT altimetry mission during its Calibration / Validation period. Internal tides are characterised off the Amazon shelf in the tropical Atlantic. SWOT observes internal tides over a wide range of spatial scales and highlights structures between 50–2 km, which are very intense and difficult to predict. Compared to the reference used to correct the altimetry data, the internal tide derived from SWOT performs very well.
Romain Caneill, Fabien Roquet, and Jonas Nycander
Ocean Sci., 20, 601–619, https://doi.org/10.5194/os-20-601-2024, https://doi.org/10.5194/os-20-601-2024, 2024
Short summary
Short summary
In winter, heat loss increases density at the surface of the Southern Ocean. This increase in density creates a mixed layer deeper than 250 m only in a narrow deep mixing band (DMB) located around 50° S. North of the DMB, the stratification is too strong to be eroded, so mixed layers are shallower. The density of cold water is almost not impacted by temperature changes. Thus, heat loss does not significantly increase the density south of the DMB, so no deep mixed layers are produced.
Nairita Pal, Kristin N. Barton, Mark R. Petersen, Steven R. Brus, Darren Engwirda, Brian K. Arbic, Andrew F. Roberts, Joannes J. Westerink, and Damrongsak Wirasaet
Geosci. Model Dev., 16, 1297–1314, https://doi.org/10.5194/gmd-16-1297-2023, https://doi.org/10.5194/gmd-16-1297-2023, 2023
Short summary
Short summary
Understanding tides is essential to accurately predict ocean currents. Over the next several decades coastal processes such as flooding and erosion will be severely impacted due to climate change. Tides affect currents along the coastal regions the most. In this paper we show the results of implementing tides in a global ocean model known as MPAS–Ocean. We also show how Antarctic ice shelf cavities affect global tides. Our work points towards future research with tide–ice interactions.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, https://doi.org/10.5194/os-17-147-2021, 2021
Short summary
Short summary
Internal tides can have a signature of several centimeters at the ocean surface and need to be corrected from altimeter measurements. We present a detailed validation of several internal-tide models using existing satellite altimeter databases. The analysis focuses on the main diurnal and semidiurnal tidal constituents. Results show the interest of the methodology proposed, the quality of the internal-tide models tested and their positive contribution for estimating an accurate sea level.
Malin Ödalen, Jonas Nycander, Andy Ridgwell, Kevin I. C. Oliver, Carlye D. Peterson, and Johan Nilsson
Biogeosciences, 17, 2219–2244, https://doi.org/10.5194/bg-17-2219-2020, https://doi.org/10.5194/bg-17-2219-2020, 2020
Short summary
Short summary
In glacial periods, ocean uptake of carbon is likely a key player for achieving low atmospheric CO2. In climate models, ocean biological uptake of carbon (C) and phosphorus (P) are often assumed to occur in fixed proportions.
In this study, we allow the ratio of C : P to vary and simulate, to first approximation, the complex biological changes that occur in the ocean over long timescales. We show here that, for glacial–interglacial cycles, this complexity contributes to low atmospheric CO2.
Filippa Fransner, Agneta Fransson, Christoph Humborg, Erik Gustafsson, Letizia Tedesco, Robinson Hordoir, and Jonas Nycander
Biogeosciences, 16, 863–879, https://doi.org/10.5194/bg-16-863-2019, https://doi.org/10.5194/bg-16-863-2019, 2019
Short summary
Short summary
Although rivers carry large amounts of organic material to the oceans, little is known about what fate it meets when it reaches the sea. In this study we are investigating the fate of the carbon in this organic matter by the use of a numerical model in combination with ship measurements from the northern Baltic Sea. Our results suggests that there is substantial remineralization taking place, transforming the organic carbon into CO2, which is released to the atmosphere.
Malin Ödalen, Jonas Nycander, Kevin I. C. Oliver, Laurent Brodeau, and Andy Ridgwell
Biogeosciences, 15, 1367–1393, https://doi.org/10.5194/bg-15-1367-2018, https://doi.org/10.5194/bg-15-1367-2018, 2018
Short summary
Short summary
We conclude that different initial states for an ocean model result in different capacities for ocean carbon storage due to differences in the ocean circulation state and the origin of the carbon in the initial ocean carbon reservoir. This could explain why it is difficult to achieve comparable responses of the ocean carbon system in model inter-comparison studies in which the initial states vary between models. We show that this effect of the initial state is quantifiable.
J. M. Magalhaes, J. C. B. da Silva, M. C. Buijsman, and C. A. E. Garcia
Ocean Sci., 12, 243–255, https://doi.org/10.5194/os-12-243-2016, https://doi.org/10.5194/os-12-243-2016, 2016
Short summary
Short summary
Satellite imagery reveals intense internal solitary waves (ISWs) seen hundreds of kilometres from the Amazon shelf and extending for 500 km into the open ocean (propagating above 3 m/s, amongst the fastest ever recorded). Seasonality is discussed in light of the North Equatorial Counter Current, and a late disintegration of the internal tide (IT) is investigated based on climatological data. A late disintegration of the IT may explain other ISW observations in the world’s oceans.
Cited articles
Alford, M. H. and Zhao, Z.: Global patterns of low-mode internal-wave
propagation. Part I: Energy and energy flux, J. Phys.
Oceanogr., 37, 1829–1848, https://doi.org/10.1175/JPO3085.1, 2007. a
Ansong, J. K., Arbic, B. K., Alford, M. H., Buijsman, M. C., Shriver, J. F.,
Zhao, Z., Richman, J. G., Simmons, H. L., Timko, P. G., Wallcraft, A. J., and
Zamudio, L.: Semidiurnal internal tide energy fluxes and their variability in
a global ocean model and moored observations, J. Geophys.
Res.-Oceans, 122, 1882–1900,
https://doi.org/10.1002/2016JC012184, 2017. a, b
Arbic, B. K.: Incorporating tides and internal gravity waves within global
ocean general circulation models: A review, Prog. Oceanogr., 206,
102824, https://doi.org/10.1016/j.pocean.2022.102824, 2022. a
Arbic, B. K., Wallcraft, A. J., and Metzger, E. J.: Concurrent simulation of
the eddying general circulation and tides in a global ocean model, Ocean
Model., 32, 175–187, https://doi.org/10.1016/j.ocemod.2010.01.007, 2010. a
Arbic, B. K., Elipot, S., Brasch, J. M., Menemenlis, D., Ponte, A. L., Shriver,
J. F., Yu, X., Zaron, E. D., Alford, M. H., Buijsman, M. C., Abernathey, R.,
Garcia, D., Guan, L., Martin, P. E., and Nelson, A. D.: Frequency dependence
of near-surface oceanic kinetic energy from drifter observations and global
high-resolution models, arXiv [preprint], https://doi.org/10.48550/ARXIV.2202.08877, 22 July 2022. a
Argo: Argo float data and metadata from Global Data
Assembly Centre (Argo GDAC), SEANOE [data set], https://doi.org/10.17882/42182, 2000. a
Boyer, T. P., Garcia, H. E., Locarnini, Ricardo A., Zweng, M. M., Mishonov,
A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Seidov, D., and
Smolyar, I. V.: World Ocean Atlas 2018. Temperature, and salinity, NOAA National Centers for Environmental Information, [data set], https://accession.nodc.noaa.gov/NCEI-WOA18 (last access:
11 October 2021), 2018. a
Buijsman, M. C., Arbic, B. K., Richman, J. G., Shriver, J. F., Wallcraft,
A. J., and Zamudio, L.: Semidiurnal internal tide incoherence in the
equatorial Pacific, J. Geophys. Res.-Oceans, 122, 5286–5305,
https://doi.org/10.1002/2016JC012590, 2017. a
Buijsman, M. C., Stephenson, G. R., Ansong, J. K., Arbic, B. K., Green, J. M.,
Richman, J. G., Shriver, J. F., Vic, C., Wallcraft, A. J., and Zhao, Z.: On
the interplay between horizontal resolution and wave drag and their effect on
tidal baroclinic mode waves in realistic global ocean simulations, Ocean
Model., 152, 101656, https://doi.org/10.1016/j.ocemod.2020.101656,
2020. a, b, c, d, e, f
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R.,
Wallcraft, A. J., Metzger, E. J., Blanton, B. O., Lozano, C., Rao, D. B., and
Hogan, P. J.: Generalized vertical coordinates for eddy-resolving global and
coastal ocean forecasts, Oceanography, 19, 118–129, https://doi.org/10.5670/oceanog.2006.95, 2006. a
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.:
Geographical variability of the first baroclinic Rossby radius of
deformation, J. Phys. Oceanogr., 28, 433–460,
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a, b
Cherniawsky, J. Y., Foreman, M. G. G., Crawford, W. R., and Henry, R. F.: Ocean
tides from TOPEX/Poseidon sea level data, J. Atmos. Ocean.
Tech., 18, 649–664,
https://doi.org/10.1175/1520-0426(2001)018<0649:OTFTPS>2.0.CO;2, 2001. a
de Lavergne, C., Falahat, S., Madec, G., Roquet, F., Nycander, J., and Vic,
C.: Toward global maps of internal tide energy sinks, Ocean Model., 137,
52–75, https://doi.org/10.1016/j.ocemod.2019.03.010, 2019. a
de Lavergne, C., Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., Whalen,
C. B., Cuypers, Y., Bouruet-Aubertot, P., Ferron, B., and Hibiya, T.: A
parameterization of local and remote tidal mixing, J. Adv.
Model. Earth Sy., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065,
2020. a
Dorschel, B., Hehemann, L., Viquerat, S., Warnke, F., Dreutter, S., Tenberge,
Y. S., Accettella, D., An, L., Barrios, F., Bazhenova, E., et al.: The
International Bathymetric Chart of the Southern Ocean version 2, Scientific
Data, 9, 275, https://doi.org/10.1038/s41597-022-01366-7, 2022. a, b
Dushaw, B. D., Worcester, P. F., and Dzieciuch, M. A.: On the predictability of
mode-1 internal tides, Deep-Sea Res. Pt. I, 58, 677–698, https://doi.org/10.1016/j.dsr.2011.04.002, 2011. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Egbert, G. D. and Ray, R. D.: Tidal prediction, J. Mar. Res., 75,
189–237, https://doi.org/10.1357/002224017821836761, 2017. a, b
GEBCO: GEBCO 2019
Grid, BODC [data set], https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e, 2019. a
Geoffroy, G.: Scripts for mapping the total semidiurnal internal tide variance
at 1,000 dbar using Argo data, GitLab [code],
https://doi.org/10.57669/geoffroy-2022-argoit-1.0.0,
2022a. a
Geoffroy, G.: Global map of the total semidiurnal internal tide variance at
1,000 dbar from Argo data, Bolin Centre Database [data set],
https://doi.org/10.17043/geoffroy-2022-argoit-1,
2022b. a
Geoffroy, G. and Nycander, J.: Global mapping of the nonstationary semidiurnal
internal tide using Argo data, J. Geophys. Res.-Oceans, 127,
e2021JC018283, https://doi.org/10.1029/2021JC018283, 2022. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z, aa, ab, ac, ad, ae, af, ag
Gill, A. E.: Atmosphere-ocean dynamics, Elsevier, Academic Press, ISBN 0-12-283520-4, 1982. a
Hennon, T. D., Riser, S. C., and Alford, M. H.: Observations of internal
gravity waves by Argo floats, J. Phys. Oceanogr., 44,
2370–2386, https://doi.org/10.1175/JPO-D-13-0222.1, 2014. a, b, c
Kay, S. and Marple, S.: Spectrum analysis—A modern perspective, P. IEEE, 69, 1380–1419, https://doi.org/10.1109/PROC.1981.12184, 1981. a
Luecke, C. A., Arbic, B. K., Richman, J. G., Shriver, J. F., Alford, M. H.,
Ansong, J. K., Bassette, S. L., Buijsman, M. C., Menemenlis, D., Scott,
R. B., Timko, P. G., Voet, G., Wallcraft, A. J., and Zamudio, L.: Statistical
comparisons of temperature variance and kinetic energy in global ocean models
and observations: Results from mesoscale to internal wave frequencies,
J. Geophys. Res.-Oceans, 125, e2019JC015306,
https://doi.org/10.1029/2019JC015306, 2020. a, b, c
MacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S.,
Sun, O. M., Laurent, L. C. S., Simmons, H. L., Polzin, K., Pinkel, R.,
Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M.,
Melet, A. V., Mater, B., Legg, S., Large, W. G., Kunze, E., Klymak, J. M.,
Jochum, M., Jayne, S. R., Hallberg, R. W., Griffies, S. M., Diggs, S.,
Danabasoglu, G., Chassignet, E. P., Buijsman, M. C., Bryan, F. O., Briegleb,
B. P., Barna, A., Arbic, B. K., Ansong, J. K., and Alford, M. H.: Climate
Process Team on internal wave–driven ocean mixing, B. Am.
Meteorol. Soc., 98, 2429–2454, https://doi.org/10.1175/BAMS-D-16-0030.1,
2017. a
Melet, A., Legg, S., and Hallberg, R.: Climatic impacts of parameterized local
and remote tidal mixing, J. Climate, 29, 3473–3500,
https://doi.org/10.1175/JCLI-D-15-0153.1, 2016. a
Melet, A., Hallberg, R., and Marshall, D. P.: Chapter 2 – The role of ocean
mixing in the climate system, in: Ocean Mixing, edited by: Meredith, M. and
Naveira Garabato, A., 5–34, Elsevier,
https://doi.org/10.1016/B978-0-12-821512-8.00009-8, 2022. a
Nelson, A. D., Arbic, B. K., Zaron, E. D., Savage, A. C., Richman, J. G.,
Buijsman, M. C., and Shriver, J. F.: Toward realistic nonstationarity of
semidiurnal baroclinic tides in a hydrodynamic model, J. Geophys.
Res.-Oceans, 124, 6632–6642, https://doi.org/10.1029/2018JC014737, 2019. a, b
Ngodock, H. E., Souopgui, I., Wallcraft, A. J., Richman, J. G., Shriver, J. F.,
and Arbic, B. K.: On improving the accuracy of the M2 barotropic tides
embedded in a high-resolution global ocean circulation model, Ocean
Model., 97, 16–26, https://doi.org/10.1016/j.ocemod.2015.10.011,
2016. a
Rainville, L. and Pinkel, R.: Propagation of low-mode internal waves through
the ocean, J. Phys. Oceanogr., 36, 1220–1236,
https://doi.org/10.1175/JPO2889.1, 2006. a
Ray, R. D. and Zaron, E. D.: M2 internal tides and their observed wavenumber
spectra from satellite altimetry, J. Phys. Oceanogr., 46, 3–22, https://doi.org/10.1175/JPO-D-15-0065.1, 2016. a
Riser, S. C. and Swift, D.:
University of Washington Argo profiling drifters, http://runt.ocean.washington.edu/argo/heterographs/rollcall.html,
last access: 11 January 2023. a
Schlichthärle, D.: Digital filters: basics and design, Springer Berlin,
Heidelberg, https://doi.org/10.1007/978-3-662-04170-3, 2000. a
Scott, R. B., Goff, J. A., Naveira Garabato, A. C., and Nurser, A. J. G.:
Global rate and spectral characteristics of internal gravity wave generation
by geostrophic flow over topography, J. Geophys. Res.-Oceans,
116, C09029, https://doi.org/10.1029/2011JC007005, 2011. a
Shriver, J. F., Arbic, B. K., Richman, J. G., Ray, R. D., Metzger, E. J.,
Wallcraft, A. J., and Timko, P. G.: An evaluation of the barotropic and
internal tides in a high-resolution global ocean circulation model, J.
Geophys. Res.-Oceans, 117, C10024,
https://doi.org/10.1029/2012JC008170, 2012.
a
Shriver, J. F., Richman, J. G., and Arbic, B. K.: How stationary are the
internal tides in a high-resolution global ocean circulation model?, J. Geophys. Res.-Oceans, 119, 2769–2787, https://doi.org/10.1002/2013JC009423,
2014. a
Smith, W. H. F. and Sandwell, D. T.: Bathymetric prediction from dense
satellite altimetry and sparse shipboard bathymetry, J. Geophys.
Res.-Sol. Ea., 99, 21803–21824,
https://doi.org/10.1029/94JB00988, 1994. a
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère,
L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y.,
Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine,
F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L.,
Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., and Yi, Y.:
Accuracy assessment of global barotropic ocean tide models, Rev.
Geophys., 52, 243–282, https://doi.org/10.1002/2014RG000450, 2014. a
Tozer, B., Sandwell, D. T., Smith, W. H. F., Olson, C., Beale, J. R., and
Wessel, P.: Global bathymetry and topography at 15 arc sec: SRTM15+, Earth
Space Sci., 6, 1847–1864, https://doi.org/10.1029/2019EA000658,
2019. a
Van Sebille, E., Kehl, C., Lange, M., Delandmeter, P., and contributors:
Parcels, Zenodo, https://doi.org/10.5281/zenodo.7035503, 2021. a
Zaron, E. D.: Mapping the nonstationary internal tide with satellite altimetry,
J. Geophys. Res.-Oceans, 122, 539–554,
https://doi.org/10.1002/2016JC012487, 2017. a, b, c
Zaron, E. D.: Baroclinic tidal sea level from exact-repeat mission altimetry,
J. Phys. Oceanogr., 49, 193–210,
https://doi.org/10.1175/JPO-D-18-0127.1, 2019. a, b
Zaron, E. D.: Baroclinic tidal cusps from satellite altimetry, J.
Phys. Oceanogr., 52, 3123–3137, https://doi.org/10.1175/JPO-D-21-0155.1, 2022. a, b, c
Zaron, E. D. and Egbert, G. D.: Time-variable refraction of the internal tide
at the Hawaiian Ridge, J. Phys. Oceanogr., 44, 538–557,
https://doi.org/10.1175/JPO-D-12-0238.1, 2014. a
Zaron, E. D. and Elipot, S.: An assessment of global ocean barotropic tide
models using geodetic mission altimetry and surface drifters, J.
Phys. Oceanogr., 51, 63–82, https://doi.org/10.1175/JPO-D-20-0089.1, 2021. a, b, c
Zhao, Z.: Mapping internal tides from satellite altimetry without blind
directions, J. Geophys. Res.-Oceans, 124, 8605–8625,
https://doi.org/10.1029/2019JC015507, 2019. a
Zhao, Z., Alford, M. H., Girton, J. B., Rainville, L., and Simmons, H. L.:
Global observations of open-ocean mode-1 M2 internal tides, J.
Phys. Oceanogr., 46, 1657–1684, https://doi.org/10.1175/JPO-D-15-0105.1, 2016. a
Short summary
The ocean state is sensitive to the mixing originating from internal tides (ITs). To date, our knowledge of the magnitude and spatial distribution of this mixing mostly relies on uncertain modeling. Here, we use novel observations from autonomous floats to validate the spatial variability in the semidiurnal IT in a realistic ocean simulation. The numerical simulation is found to correctly reproduce the main spatial patterns of the observed tidal energy but to be biased low at the global scale.
The ocean state is sensitive to the mixing originating from internal tides (ITs). To date, our...