Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-745-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-745-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mixing and air–sea buoyancy fluxes set the time-mean overturning circulation in the subpolar North Atlantic and Nordic Seas
National Oceanography Centre, Southampton, UK
N. Penny Holliday
National Oceanography Centre, Southampton, UK
Sheldon Bacon
National Oceanography Centre, Southampton, UK
Isabela Le Bras
Woods Hole Oceanographic Institute, Woods Hole, Massachusetts, USA
Related authors
Marilena Oltmanns, N. Penny Holliday, James Screen, Ben I. Moat, Simon A. Josey, D. Gwyn Evans, and Sheldon Bacon
Weather Clim. Dynam., 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024, https://doi.org/10.5194/wcd-5-109-2024, 2024
Short summary
Short summary
The melting of land ice and sea ice leads to freshwater input into the ocean. Based on observations, we show that stronger freshwater anomalies in the subpolar North Atlantic in winter are followed by warmer and drier weather over Europe in summer. The identified link indicates an enhanced predictability of European summer weather at least a winter in advance. It further suggests that warmer and drier summers over Europe can become more frequent under increased freshwater fluxes in the future.
Oliver John Tooth, Helen Louise Johnson, Chris Wilson, and Dafydd Gwyn Evans
Ocean Sci., 19, 769–791, https://doi.org/10.5194/os-19-769-2023, https://doi.org/10.5194/os-19-769-2023, 2023
Short summary
Short summary
This study uses the trajectories of water parcels traced within an ocean model simulation to identify the pathways responsible for the seasonal cycle of dense water formation (overturning) in the eastern subpolar North Atlantic. We show that overturning seasonality is due to the fastest water parcels circulating within the eastern basins in less than 8.5 months. Slower pathways set the average strength of overturning in this region since water parcels cannot escape intense wintertime cooling.
Marilena Oltmanns, N. Penny Holliday, James Screen, D. Gwyn Evans, Simon A. Josey, Sheldon Bacon, and Ben I. Moat
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-79, https://doi.org/10.5194/wcd-2021-79, 2021
Revised manuscript not accepted
Short summary
Short summary
The Arctic is currently warming twice as fast as the global average. This results in enhanced melting and thus freshwater releases into the North Atlantic. Using a combination of observations and models, we show that atmosphere-ocean feedbacks initiated by freshwater releases into the North Atlantic lead to warmer and drier weather over Europe in subsequent summers. The existence of this dynamical link suggests that European summer weather can potentially be predicted months to years in advance.
Marilena Oltmanns, N. Penny Holliday, James Screen, Ben I. Moat, Simon A. Josey, D. Gwyn Evans, and Sheldon Bacon
Weather Clim. Dynam., 5, 109–132, https://doi.org/10.5194/wcd-5-109-2024, https://doi.org/10.5194/wcd-5-109-2024, 2024
Short summary
Short summary
The melting of land ice and sea ice leads to freshwater input into the ocean. Based on observations, we show that stronger freshwater anomalies in the subpolar North Atlantic in winter are followed by warmer and drier weather over Europe in summer. The identified link indicates an enhanced predictability of European summer weather at least a winter in advance. It further suggests that warmer and drier summers over Europe can become more frequent under increased freshwater fluxes in the future.
Oliver John Tooth, Helen Louise Johnson, Chris Wilson, and Dafydd Gwyn Evans
Ocean Sci., 19, 769–791, https://doi.org/10.5194/os-19-769-2023, https://doi.org/10.5194/os-19-769-2023, 2023
Short summary
Short summary
This study uses the trajectories of water parcels traced within an ocean model simulation to identify the pathways responsible for the seasonal cycle of dense water formation (overturning) in the eastern subpolar North Atlantic. We show that overturning seasonality is due to the fastest water parcels circulating within the eastern basins in less than 8.5 months. Slower pathways set the average strength of overturning in this region since water parcels cannot escape intense wintertime cooling.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Marilena Oltmanns, N. Penny Holliday, James Screen, D. Gwyn Evans, Simon A. Josey, Sheldon Bacon, and Ben I. Moat
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2021-79, https://doi.org/10.5194/wcd-2021-79, 2021
Revised manuscript not accepted
Short summary
Short summary
The Arctic is currently warming twice as fast as the global average. This results in enhanced melting and thus freshwater releases into the North Atlantic. Using a combination of observations and models, we show that atmosphere-ocean feedbacks initiated by freshwater releases into the North Atlantic lead to warmer and drier weather over Europe in subsequent summers. The existence of this dynamical link suggests that European summer weather can potentially be predicted months to years in advance.
Amy Solomon, Céline Heuzé, Benjamin Rabe, Sheldon Bacon, Laurent Bertino, Patrick Heimbach, Jun Inoue, Doroteaciro Iovino, Ruth Mottram, Xiangdong Zhang, Yevgeny Aksenov, Ronan McAdam, An Nguyen, Roshin P. Raj, and Han Tang
Ocean Sci., 17, 1081–1102, https://doi.org/10.5194/os-17-1081-2021, https://doi.org/10.5194/os-17-1081-2021, 2021
Short summary
Short summary
Freshwater in the Arctic Ocean plays a critical role in the global climate system by impacting ocean circulations, stratification, mixing, and emergent regimes. In this review paper we assess how Arctic Ocean freshwater changed in the 2010s relative to the 2000s. Estimates from observations and reanalyses show a qualitative stabilization in the 2010s due to a compensation between a freshening of the Beaufort Gyre and a reduction in freshwater in the Amerasian and Eurasian basins.
Bogi Hansen, Karin Margretha Húsgarð Larsen, Hjálmar Hátún, Steingrímur Jónsson, Sólveig Rósa Ólafsdóttir, Andreas Macrander, William Johns, N. Penny Holliday, and Steffen Malskær Olsen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-14, https://doi.org/10.5194/os-2021-14, 2021
Preprint withdrawn
Short summary
Short summary
Compared to other freshwater sources, runoff from Iceland is small and usually flows into the Nordic Seas. Under certain wind conditions, it can, however, flow into the Iceland Basin and this occurred after 2014, when this region had already freshened from other causes. This explains why the surface freshening in this area became so extreme. The local and shallow character of this runoff allows it to have a disproportionate effect on vertical mixing, winter convection, and biological production.
Alexander Forryan, Sheldon Bacon, Takamasa Tsubouchi, Sinhué Torres-Valdés, and Alberto C. Naveira Garabato
The Cryosphere, 13, 2111–2131, https://doi.org/10.5194/tc-13-2111-2019, https://doi.org/10.5194/tc-13-2111-2019, 2019
Short summary
Short summary
We compare control volume and geochemical tracer-based methods of estimating the Arctic Ocean freshwater budget and find both methods in good agreement. Inconsistencies arise from the distinction between
Atlanticand
Pacificwaters in the geochemical calculations. The definition of Pacific waters is particularly problematic due to the non-conservative nature of the nutrients underpinning the definition and the low salinity characterizing waters entering the Arctic through Bering Strait.
Thomas W. K. Armitage, Sheldon Bacon, Andy L. Ridout, Alek A. Petty, Steven Wolbach, and Michel Tsamados
The Cryosphere, 11, 1767–1780, https://doi.org/10.5194/tc-11-1767-2017, https://doi.org/10.5194/tc-11-1767-2017, 2017
Short summary
Short summary
We present a new 12-year record of geostrophic currents at monthly resolution in the ice-covered and ice-free Arctic Ocean and characterise their seasonal to decadal variability. We also present seasonal climatologies of eddy kinetic energy, and examine the changing location of the Beaufort Gyre. Geostrophic current variability highlights the complex interplay between seasonally varying forcing and sea ice conditions, changing ice–ocean coupling and increasing ocean surface stress in the 2000s.
A. J. G. Nurser and S. Bacon
Ocean Sci., 10, 967–975, https://doi.org/10.5194/os-10-967-2014, https://doi.org/10.5194/os-10-967-2014, 2014
Short summary
Short summary
Knowledge of the size of the Rossby radius is important, because it is the horizontal scale of boundary currents, eddies and fronts in fluids on a rotating planet. We find that, in the deep basins of the Arctic Ocean, the Rossby radius is around 10km, but in the shallow shelf seas, it can be less than 1km. This presents a challenge to measurements and models alike.
Related subject area
Approach: In situ Observations | Properties and processes: Overturning circulation | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Challenges: Oceans and climate
Observation-based estimates of volume, heat, and freshwater exchanges between the subpolar North Atlantic interior, its boundary currents, and the atmosphere
A 30-year reconstruction of the Atlantic meridional overturning circulation shows no decline
Sam C. Jones, Neil J. Fraser, Stuart A. Cunningham, Alan D. Fox, and Mark E. Inall
Ocean Sci., 19, 169–192, https://doi.org/10.5194/os-19-169-2023, https://doi.org/10.5194/os-19-169-2023, 2023
Short summary
Short summary
Warm water is transported from the tropical Atlantic towards western Europe and the Arctic. It loses heat to the atmosphere on the way, which strongly influences the climate. We construct a dataset encircling the North Atlantic basin north of 47° N. We calculate how and where heat enters and leaves the basin and how much cooling must happen in the interior. We find that cooling in the north-eastern Atlantic is a crucial step in controlling the conversion of water to higher densities.
Emma L. Worthington, Ben I. Moat, David A. Smeed, Jennifer V. Mecking, Robert Marsh, and Gerard D. McCarthy
Ocean Sci., 17, 285–299, https://doi.org/10.5194/os-17-285-2021, https://doi.org/10.5194/os-17-285-2021, 2021
Short summary
Short summary
The RAPID array has observed the Atlantic meridional overturning circulation (AMOC) since 2004, but the AMOC was directly calculated only five times from 1957–2004. Here we create a statistical regression model from RAPID data, relating AMOC changes to density changes within the different water masses at 26° N, and apply it to historical hydrographic data. The resulting 1981–2016 record shows that the AMOC from 2008–2012 was its weakest since the mid-1980s, but it shows no overall decline.
Cited articles
Beaird, N., Fer, I., Rhines, P., and Eriksen, C.: Dissipation of Turbulent
Kinetic Energy Inferred from Seagliders: An Application to the Eastern Nordic
Seas Overflows, J. Phys. Oceanogr., 42, 2268–2282,
https://doi.org/10.1175/JPO-D-12-094.1, 2012. a, b
Bower, A., Lozier, S., Biastoch, A., Drouin, K., Foukal, N., Furey, H.,
Lankhorst, M., Rühs, S., and Zou, S.: Lagrangian Views of the Pathways
of the Atlantic Meridional Overturning Circulation, J. Geophys.
Res.-Oceans, 124, 5313–5335,
https://doi.org/10.1029/2019JC015014, 2019. a, b, c, d
Brakstad, A., Våge, K., Håvik, L., and Moore, G. W. K.: Water Mass
Transformation in the Greenland Sea during the Period 1986–2016, J.
Phys. Oceanogr., 49, 121–140, https://doi.org/10.1175/JPO-D-17-0273.1, 2019. a
Brambilla, E., Talley, L. D., and Robbins, P. E.: Subpolar Mode Water in the
northeastern Atlantic: 2. Origin and transformation, J. Geophys.
Res.-Oceans, 113, https://doi.org/10.1029/2006JC004063, 2008. a
Brüggemann, N. and Katsman, C. A.: Dynamics of Downwelling in an Eddying
Marginal Sea: Contrasting the Eulerian and the Isopycnal Perspective,
J. Phys. Oceanogr., 49, 3017–3035,
https://doi.org/10.1175/JPO-D-19-0090.1, 2019. a, b, c
CMEMS: Global Ocean Ensemble Physics Reanalysis, CMEMS [data set], https://doi.org/10.48670/moi-00024, 2021. a
Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino,
P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T., Thierry, V.,
and Gladyshev, S.: The northern North Atlantic Ocean mean circulation in the
early 21st century, Prog. Oceanogr., 146, 142–158,
https://doi.org/10.1016/j.pocean.2016.06.007, 2016. a, b
de Jong, M. F., Søiland, H., Bower, A. S., and Furey, H. H.: The subsurface
circulation of the Iceland Sea observed with RAFOS floats, Deep-Sea Res.
Pt. I, 141, 1–10,
https://doi.org/10.1016/j.dsr.2018.07.008, 2018. a, b
Desbruyères, D. G., Mercier, H., Maze, G., and Daniault, N.: Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic, Ocean Sci., 15, 809–817, https://doi.org/10.5194/os-15-809-2019, 2019. a, b, c
Evans, D. G., Toole, J., Forget, G., Zika, J. D., Naveira Garabato, A. C.,
Nurser, A. J. G., and Yu, L.: Recent Wind-Driven Variability in Atlantic
Water Mass Distribution and Meridional Overturning Circulation, J.
Phys. Oceanogr., 47, 633–647, https://doi.org/10.1175/JPO-D-16-0089.1, 2017. a, b
Evans, D. G., Zika, J. D., Naveira Garabato, A. C., and Nurser, A. J. G.:
The cold transit of Southern Ocean upwelling, Geophys. Res. Lett., 45, 13386–13395,
https://doi.org/10.1029/2018GL079986, 2018. a
Fenty, I. and Wang, O.: ECCO Ocean Temperature and Salinity – Monthly Mean llc90 Grid (Version 4 release 4), NASA Physical Oceanography DAAC [data set], https://doi.org/10.5067/ECL5M-OTS44, 2020a. a, b
Fenty, I. and Wang, O.: ECCO Ocean Velocity – Monthly Mean llc90 Grid (Version 4 release 4), NASA Physical Oceanography DAAC [data set], https://doi.org/10.5067/ECL5M-OVE44, 2020b. a, b
Fenty, I. and Wang, O.: ECCO Gent-McWilliams Ocean Bolus Velocity – Monthly Mean llc90 Grid (Version 4 release 4), NASA Physical Oceanography DAAC [data set], https://doi.org/10.5067/ECL5M-BOL44, 2020c. a, b
Fenty, I. and Wang, O.: ECCO Ocean and Sea-Ice Surface Freshwater Fluxes – Monthly Mean llc90 Grid (Version 4 release 4), NASA Physical Oceanography DAAC [data set], https://doi.org/10.5067/ECL5M-FRE44, 2020d. a, b
Fenty, I. and Wang, O.: ECCO Ocean and Sea-Ice Surface Heat Fluxes - Monthly Mean llc90 Grid (Version 4 release 4), NASA Physical Oceanography DAAC [data set], https://doi.org/10.5067/ECL5M-HEA44, 2020e. a, b
Fer, I., Voet, G., Seim, K. S., Rudels, B., and Latarius, K.: Intense mixing of
the Faroe Bank Channel overflow, Geophys. Res. Lett., 37, L02604,
https://doi.org/10.1029/2009GL041924, 2010. a, b
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a
Foukal, N. P., Gelderloos, R., and Pickart, R. S.: A continuous pathway for
fresh water along the East Greenland shelf, Sci. Adv., 6, eabc4254,
https://doi.org/10.1126/sciadv.abc4254, 2020. a
Fröb, F., Olsen, A., Våge, K., Moore, G. W. K., Yashayaev, I.,
Jeansson, E., and Rajasakaren, B.: Irminger Sea deep convection injects
oxygen and anthropogenic carbon to the ocean interior, Nat.
Commun., 7, 13244, https://doi.org/10.1038/ncomms13244, 2016. a
Fu, Y., Lozier, M. S., Biló, T. C., Bower, A. S., Cunningham, S. A., Cyr, F., de Jong, M. F., deYoung, B., Drysdale, L., Fraser, N., Fried, N., Furey, H. H., Han, G., Handmann, P., Holliday, N. P., Holte, J., Inall, M. E., Johns, W. E., Jones, S., Karstensen, J., Li, F., Pacini, A., Pickart, R. S., Rayner, D., Straneo, F., and Yashayaev, I.: Meridional Overturning Circulation Observed by the Overturning in the Subpolar North Atlantic Program (OSNAP) Array [data set], https://doi.org/10.35090/gatech/70342, 2020. a
Fukumori, I., Wang, O., Fenty, I., Forget, G., Heimbach, P., and Ponte, R. M.:
Synopsis of the ECCO Central Production Global Ocean and Sea-Ice Estimate
(Version4 Release 4), Zenodo, https://doi.org/10.5281/zenodo.4533349,
2021. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118,
6704–6716, https://doi.org/10.1002/2013JC009067, 2013. a
Good, S. A., Martin, M. J., and Rayner, N. A.:
EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates [data set], https://www.metoffice.gov.uk/hadobs/en4/download.html, last access: 24 October 2019. a
Grist, J. P., Josey, S. A., Marsh, R., Kwon, Y.-O., Bingham, R. J., and Blaker,
A. T.: The Surface-Forced Overturning of the North Atlantic: Estimates from
Modern Era Atmospheric Reanalysis Datasets, J. Climate, 27,
3596–3618, https://doi.org/10.1175/JCLI-D-13-00070.1,
2014. a
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.: High resolution 3-D temperature and salinity fields derived from in situ and satellite observations, Ocean Sci., 8, 845–857, https://doi.org/10.5194/os-8-845-2012, 2012. a
Guinehut, S., Dhomps, A.-L., Larnicol, G., and Le Traon, P.-Y.:
Multi Observation Global Ocean 3D Temperature Salinity Height Geostrophic Current and MLD [data set], https://doi.org/10.48670/moi-00052, 2021. a
Håvik, L., Pickart, R. S., Våge, K., Torres, D., Thurnherr, A. M.,
Beszczynska-Möller, A., Walczowski, W., and von Appen, W.-J.: Evolution of
the East Greenland Current from Fram Strait to Denmark Strait: Synoptic
measurements from summer 2012, J. Geophys. Res.-Oceans, 122,
1974–1994, https://doi.org/10.1002/2016JC012228, 2017. a
Hersbach, B., Berrisford, P., Biavati, G., Horanyi, A., Munoz Sabater, J.,
Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A.,
Soci, C., Dee, D., and Thepaut, J.-N.: ERA5 monthly averaged data on single
levels from 1979 to present,
Tech. rep., Copernicus Climate Change Service (C3S) Climate
Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2021. a, b
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2023.
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S.,
Florindo-López, C., Hátún, H., Johns, W., Josey, S. A.,
Larsen, K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry,
V., Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the
largest freshening event for 120 years in eastern subpolar North Atlantic,
Nat. Commun., 11, 585, https://doi.org/10.1038/s41467-020-14474-y, 2020. a
Huang, J., Pickart, R. S., Huang, R. X., Lin, P., Brakstad, A., and Xu, F.:
Sources and upstream pathways of the densest overflow water in the Nordic
Seas, Nat. Commun., 11, 5389, https://doi.org/10.1038/s41467-020-19050-y,
2020. a
IOC, SCOR, and IAPSO: The international thermodynamic equation of seawater –
2010: Calculation and use of thermodynamic properties, Intergovernmental
Oceanographic Commission, manuals an edn., https://unesdoc.unesco.org/ark:/48223/pf0000188170 (last access: 22 April 2019), 2010. a
Japan Meteorological Agency/Japan: JRA-55: Japanese 55-year Reanalysis, Monthly Means and Variances, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, https://doi.org/10.5065/D60G3H5B, 2013. a, b
Johnson, H. L., Cessi, P., Marshall, D. P., Schloesser, F., and Spall, M. A.:
Recent Contributions of Theory to Our Understanding of the Atlantic
Meridional Overturning Circulation, J. Geophys. Res.-Oceans,
124, 5376–5399, https://doi.org/10.1029/2019JC015330, 2019. a
Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C., Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F., and Sabine, C. L.: Global ocean storage of anthropogenic carbon, Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, 2013. a
Lauderdale, J. M., Bacon, S., Garabato, A. C. N., and Holliday, N. P.:
Intensified turbulent mixing in the boundary current system of southern
Greenland, Geophys. Res. Lett., 35, L04611,
https://doi.org/10.1029/2007GL032785, 2008. a
Le Bras, I. A.-A., Straneo, F., Holte, J., and Holliday, N. P.: Seasonality
of Freshwater in the East Greenland Current System From 2014 to 2016, J. Geophys. Res.-Oceans, 123, 8828–8848,
https://doi.org/10.1029/2018JC014511, 2018. a
Le Bras, I. A.-A., Straneo, F., Holte, J., de Jong, M. F., and Holliday,
N. P.: Rapid Export of Waters Formed by Convection Near the Irminger Sea's
Western Boundary, Geophys. Res. Lett., 47, e2019GL085989,
https://doi.org/10.1029/2019GL085989, 2020. a, b, c
Le Bras, I. A.-A., Straneo, F., Muilwijk, M., Smedsrud, L. H., Li, F.,
Lozier, M. S., and Holliday, N. P.: How Much Arctic Fresh Water Participates
in the Subpolar Overturning Circulation?, J. Phys. Oceanogr.,
51, 955–973, https://doi.org/10.1175/JPO-D-20-0240.1, 2021. a
Lee, M.-M., Marshall, D. P., and Williams, R. G.: On the eddy transfer of
tracers: Advective or diffusive?, J. Mar. Res., 55, 483–505,
1997. a
Li, F., Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong,
M. F., DeYoung, B., Fraser, N., Fried, N., Han, G., Holliday, N. P., Holte,
J., Houpert, L., Inall, M. E., Johns, W. E., Jones, S., Johnson, C.,
Karstensen, J., Le Bras, I. A., Lherminier, P., Lin, X., Mercier, H.,
Oltmanns, M., Pacini, A., Petit, T., Pickart, R. S., Rayner, D., Straneo, F.,
Thierry, V., Visbeck, M., Yashayaev, I., and Zhou, C.: Subpolar North
Atlantic western boundary density anomalies and the Meridional Overturning
Circulation, Nat. Commun., 12, 3002,
https://doi.org/10.1038/s41467-021-23350-2, 2021. a, b, c
Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong, M. F.,
de Steur, L., DeYoung, B., Fischer, J., Gary, S. F., Greenan, B. J. W.,
Heimbach, P., Holliday, N. P., Houpert, L., Inall, M. E., Johns, W. E.,
Johnson, H. L., Karstensen, J., Li, F., Lin, X., Mackay, N., Marshall, D. P.,
Mercier, H., Myers, P. G., Pickart, R. S., Pillar, H. R., Straneo, F.,
Thierry, V., Weller, R. A., Williams, R. G., Wilson, C., Yang, J., Zhao, J.,
and Zika, J. D.: Overturning in the Subpolar North Atlantic Program: A New
International Ocean Observing System, B. Am.
Meteorol. Soc., 98, 737–752, https://doi.org/10.1175/BAMS-D-16-0057.1, 2017. a
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A.,
de Jong, M. F., de Steur, L., DeYoung, B., Fischer, J., Gary, S. F., Greenan,
B. J. W., Holliday, N. P., Houk, A., Houpert, L., Inall, M. E., Johns, W. E.,
Johnson, H. L., Johnson, C., Karstensen, J., Koman, G., Le Bras, I. A.,
Lin, X., Mackay, N., Marshall, D. P., Mercier, H., Oltmanns, M., Pickart,
R. S., Ramsey, A. L., Rayner, D., Straneo, F., Thierry, V., Torres, D. J.,
Williams, R. G., Wilson, C., Yang, J., Yashayaev, I., and Zhao, J.: A sea
change in our view of overturning in the subpolar North Atlantic, Science,
363, 516–521, https://doi.org/10.1126/science.aau6592, 2019. a
MacGilchrist, G. A., Johnson, H. L., Lique, C., and Marshall, D. P.: Demons in
the North Atlantic: Variability of Deep Ocean Ventilation, Geophys.
Res. Lett., 48, e2020GL092340,
https://doi.org/10.1029/2020GL092340, 2021. a
Mackay, N., Wilson, C., Zika, J., and Holliday, N. P.: A Regional Thermohaline
Inverse Method for Estimating Circulation and Mixing in the Arctic and
Subpolar North Atlantic, J. Atmos. Ocean. Tech., 35,
2383–2403, https://doi.org/10.1175/JTECH-D-17-0198.1, 2018. a
Mackay, N., Wilson, C., Holliday, N. P., and Zika, J. D.: The
Observation-Based Application of a Regional Thermohaline Inverse Method to
Diagnose the Formation and Transformation of Water Masses North of the OSNAP
Array from 2013 to 2015, J. Phys. Oceanogr., 50, 1533–1555,
https://doi.org/10.1175/JPO-D-19-0188.1, 2020. a, b
Marsh, R.: Recent Variability of the North Atlantic Thermohaline Circulation
Inferred from Surface Heat and Freshwater Fluxes, J. Climate, 13,
3239–3260, https://doi.org/10.1175/1520-0442(2000)013<3239:RVOTNA>2.0.CO;2, 2000. a
Marshall, J. and Speer, K.: Closure of the meridional overturning circulation
through Southern Ocean upwelling, Nat. Geosci., 5, 171–180,
https://doi.org/10.1038/ngeo1391, 2012. a
Mastropole, D., Pickart, R. S., Valdimarsson, H., Våge, K., Jochumsen, K., and
Girton, J.: On the hydrography of Denmark Strait, J. Geophys.
Res.-Oceans, 122, 306–321, https://doi.org/10.1002/2016JC012007,
2017. a
Mauritzen, C.: Production of dense overflow waters feeding the North Atlantic
across the Greenland-Scotland Ridge. Part 1: Evidence for a revised
circulation scheme, Deep-Sea Res. Pt. I,
43, 769–806, https://doi.org/10.1016/0967-0637(96)00037-4, 1996. a, b, c
North, R. P., Jochumsen, K., and Moritz, M.: Entrainment and Energy Transfer
Variability Along the Descending Path of the Denmark Strait Overflow Plume,
J. Geophys. Res.-Oceans, 123, 2795–2807,
https://doi.org/10.1002/2018JC013821, 2018. a
Pennelly, C., Hu, X., and Myers, P. G.: Cross-Isobath Freshwater Exchange
Within the North Atlantic Subpolar Gyre, J. Geophys. Res.-Oceans, 124, 6831–6853, https://doi.org/10.1029/2019JC015144, 2019. a
Pérez, F. F., Vázquez-Rodríguez, M., Mercier, H., Velo, A., Lherminier, P., and Ríos, A. F.: Trends of anthropogenic CO2 storage in North Atlantic water masses, Biogeosciences, 7, 1789–1807, https://doi.org/10.5194/bg-7-1789-2010, 2010. a
Petit, T., Lozier, M. S., Josey, S. A., and Cunningham, S. A.: Role of air–sea fluxes and ocean surface density in the production of deep waters in the eastern subpolar gyre of the North Atlantic, Ocean Sci., 17, 1353–1365, https://doi.org/10.5194/os-17-1353-2021, 2021. a
Purkey, S. G. and Johnson, G. C.: Warming of Global Abyssal and Deep Southern
Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and
Sea Level Rise Budgets*, J. Climate, 23, 6336–6351,
https://doi.org/10.1175/2010JCLI3682.1, 2010. a
Rhein, M., Kieke, D., and Steinfeldt, R.: Advection of North Atlantic Deep
Water from the Labrador Sea to the southern hemisphere, J.
Geophys. Res.-Oceans, 120, 2471–2487,
https://doi.org/10.1002/2014JC010605, 2015. a
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: NCEP Climate Forecast System Version 2 (CFSv2) Monthly Products, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [data set], https://doi.org/10.5065/D69021ZF, 2012. a, b
Semper, S., Våge, K., Pickart, R. S., Valdimarsson, H., Torres, D. J., and
Jónsson, S.: The Emergence of the North Icelandic Jet and Its Evolution from
Northeast Iceland to Denmark Strait, J. Phys. Oceanogr., 49,
2499–2521, https://doi.org/10.1175/JPO-D-19-0088.1, 2019. a
Spall, M. A.: On the thermohaline circulation in flat bottom marginal seas,
J. Mar. Res., 61, 1–25, 2003. a
Spall, M. A.: Boundary Currents and Watermass Transformation in Marginal Seas,
J. Phys. Oceanogr., 34, 1197–1213,
https://doi.org/10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2, 2004. a
Spall, M. A. and Pickart, R. S.: Where Does Dense Water Sink? A Subpolar Gyre
Example, J. Phys. Oceanogr., 31, 810–826,
https://doi.org/10.1175/1520-0485(2001)031<0810:WDDWSA>2.0.CO;2, 2001. a
Straneo, F.: On the Connection between Dense Water Formation, Overturning, and
Poleward Heat Transport in a Convective Basin, J. Phys.
Oceanogr., 36, 1822–1840, https://doi.org/10.1175/JPO2932.1, 2006. a
Thomas, L. N., Taylor, J. R., Ferrari, R., and Joyce, T. M.: Symmetric
instability in the Gulf Stream, Deep-Sea Res. Pt. II, 91, 96–110, https://doi.org/10.1016/j.dsr2.2013.02.025, 2013. a
Tsubouchi, T., Våge, K., Hansen, B., Larsen, K. M. H., Østerhus, S., Johnson,
C., Jónsson, S., and Valdimarsson, H.: Increased ocean heat transport into
the Nordic Seas and Arctic Ocean over the period 1993–2016, Nat. Clim.
Change, 11, 21–26, https://doi.org/10.1038/s41558-020-00941-3, 2021. a
Våge, K., Pickart, R. S., Spall, M. A., Moore, G. W. K., Valdimarsson, H.,
Torres, D. J., Erofeeva, S. Y., and Nilsen, J. E. Ø.: Revised circulation
scheme north of the Denmark Strait, Deep-Sea Res. Pt. I, 79, 20–39, https://doi.org/10.1016/j.dsr.2013.05.007,
2013.
a
Voet, G., Quadfasel, D., Mork, K. A., and Søiland, H.: The mid-depth
circulation of the Nordic Seas derived from profiling float observations,
Tellus A, 62, 516–529,
https://doi.org/10.1111/j.1600-0870.2010.00444.x, 2010. a
Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A., and While, J.:
Implementing a variational data assimilation system in an operational 1/4
degree global ocean model, Q. J. Roy. Meteor.
Soc., 141, 333–349, https://doi.org/10.1002/qj.2388, 2015. a
Xu, X., Rhines, P. B., and Chassignet, E. P.: On Mapping the Diapycnal Water
Mass Transformation of the Upper North Atlantic Ocean, J. Phys.
Oceanogr., 48, 2233–2258, https://doi.org/10.1175/JPO-D-17-0223.1, 2018. a
Yeager, S., Castruccio, F., Chang, P., Danabasoglu, G., Maroon, E., Small, J.,
Wang, H., Wu, L., and Zhang, S.: An outsized role for the Labrador Sea in the
multidecadal variability of the Atlantic overturning circulation, Sci.
Adv., 7, eabh3592, https://doi.org/10.1126/sciadv.abh3592, 2021. a
Zou, S., Lozier, M. S., Li, F., Abernathey, R., and Jackson, L.:
Density-compensated overturning in the Labrador Sea, Nat. Geosci., 13,
121–126, https://doi.org/10.1038/s41561-019-0517-1, 2020. a
Short summary
This study investigates the processes that form dense water in the high latitudes of the North Atlantic to determine how they affect the overturning circulation in the Atlantic. We show for the first time that turbulent mixing is an important driver in the formation of dense water, along with the loss of heat from the ocean to the atmosphere. We point out that the simulation of turbulent mixing in ocean–climate models must improve to better predict the ocean's response to climate change.
This study investigates the processes that form dense water in the high latitudes of the North...