Articles | Volume 19, issue 3
https://doi.org/10.5194/os-19-729-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-729-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Improving sea surface temperature in a regional ocean model through refined sea surface temperature assimilation
Silje Christine Iversen
CORRESPONDING AUTHOR
Department of Physics and Technology, UiT The Arctic University of Norway, Tromsø, Norway
Ann Kristin Sperrevik
Division for Ocean and Ice, Norwegian Meteorological Institute, Oslo, Norway
Olivier Goux
CERFACS/CECI CNRS UMR 5318, Toulouse, France
Related authors
Marina Durán Moro, Ann Kristin Sperrevik, Thomas Lavergne, Laurent Bertino, Yvonne Gusdal, Silje Christine Iversen, and Jozef Rusin
The Cryosphere, 18, 1597–1619, https://doi.org/10.5194/tc-18-1597-2024, https://doi.org/10.5194/tc-18-1597-2024, 2024
Short summary
Short summary
Individual satellite passes instead of daily means of sea ice concentration are used to correct the sea ice model forecast in the Barents Sea. The use of passes provides a significantly larger improvement of the forecasts even after a 7 d period due to the more precise information on temporal and spatial variability contained in the passes. One major advantage of the use of satellite passes is that there is no need to wait for the daily mean availability in order to update the forecast.
Marina Durán Moro, Ann Kristin Sperrevik, Thomas Lavergne, Laurent Bertino, Yvonne Gusdal, Silje Christine Iversen, and Jozef Rusin
The Cryosphere, 18, 1597–1619, https://doi.org/10.5194/tc-18-1597-2024, https://doi.org/10.5194/tc-18-1597-2024, 2024
Short summary
Short summary
Individual satellite passes instead of daily means of sea ice concentration are used to correct the sea ice model forecast in the Barents Sea. The use of passes provides a significantly larger improvement of the forecasts even after a 7 d period due to the more precise information on temporal and spatial variability contained in the passes. One major advantage of the use of satellite passes is that there is no need to wait for the daily mean availability in order to update the forecast.
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.
A. K. Sperrevik, K. H. Christensen, and J. Röhrs
Ocean Sci., 11, 237–249, https://doi.org/10.5194/os-11-237-2015, https://doi.org/10.5194/os-11-237-2015, 2015
Cited articles
Alerskans, E., Høyer, J. L., Gentemann, C. L., Pedersen, L. T.,
Nielsen-Englyst, P., and Donlon, C.: Construction of a climate data record of
sea surface temperature from passive microwave measurements, Remote Sens.
Environ., 236, 111485, https://doi.org/10.1016/j.rse.2019.111485, 2020. a
Beldring, S., Engeland, K., Roald, L. A., Sælthun, N. R., and Voksø, A.: Estimation of parameters in a distributed precipitation-runoff model for Norway, Hydrol. Earth Syst. Sci., 7, 304–316, https://doi.org/10.5194/hess-7-304-2003, 2003. a
Brasnett, B. and Colan, D. S.: Assimilating Retrievals of Sea Surface
Temperature from VIIRS and AMSR2, J. Atmos. Ocean Tech., 33, 361–375,
https://doi.org/10.1175/JTECH-D-15-0093.1, 2016. a, b
Buehner, M., Caya, A., Pogson, L., Carrieres, T., and Pestieau, P.: A New
Environment Canada Regional Ice Analysis System, Atmos. Ocean, 51, 18–34,
https://doi.org/10.1080/07055900.2012.747171, 2013. a
Cabanes, C., Grouazel, A., von Schuckmann, K., Hamon, M., Turpin, V., Coatanoan, C., Paris, F., Guinehut, S., Boone, C., Ferry, N., de Boyer Montégut, C., Carval, T., Reverdin, G., Pouliquen, S., and Le Traon, P.-Y.: The CORA dataset: validation and diagnostics of in-situ ocean temperature and salinity measurements, Ocean Sci., 9, 1–18, https://doi.org/10.5194/os-9-1-2013, 2013. a
Castro, S., Emery, W., Wick, G., and Tandy, W.: Submesoscale Sea Surface
Temperature Variability from UAV and Satellite Measurements, Remote Sens., 9,
1089, https://doi.org/10.3390/rs9111089, 2017. a
Chan, P.-K. and Gao, B.-C.: A Comparison of MODIS, NCEP, and TMI Sea Surface
Temperature Datasets, IEEE Geosci. Remote S., 2, 270–274,
https://doi.org/10.1109/LGRS.2005.846838, 2005. a, b
Denis, B., Côté, J., and Laprise, R.: Spectral Decomposition of
Two-Dimensional Atmospheric Fields on Limited-Area Domains Using the Discrete
Cosine Transform (DCT), Mon. Weather Rev., 130, 1812–1829,
https://doi.org/10.1175/1520-0493(2002)130<1812:SDOTDA>2.0.CO;2, 2002. a, b, c, d
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of observation,
background and analysis-error statistics in observation space, Q. J. Roy.
Meteor. Soc., 131, 3385–3396, https://doi.org/10.1256/qj.05.108, 2005. a
Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton,
I. J., Ward, B., and Murray, M. J.: Toward Improved Validation of Satellite
Sea Surface Skin Temperature Measurements for Climate Research, J. Climate,
15, 353–369, https://doi.org/10.1175/1520-0442(2002)015<0353:TIVOSS>2.0.CO;2, 2002. a, b
Donlon, C. J., Robinson, I., Casey, K. S., Vazquez-Cuervo, J., Armstrong, E.,
Arino, O., Gentemann, C., May, D., LeBorgne, P., Piollé, J., Barton, I.,
Beggs, H., Poulter, D. J. S., Merchant, C. J., Bingham, A., Heinz, S.,
Harris, A., Wick, G., Emery, B., Minnett, P., Evans, R., Llewellyn-Jones, D.,
Mutlow, C., Reynolds, R. W., Kawamura, H., and Rayner, N.: The Global Ocean
Data Assimilation Experiment High-resolution Sea Surface Temperature Pilot
Project, B. Am. Meteorol. Soc., 88, 1197–1214, https://doi.org/10.1175/BAMS-88-8-1197,
2007. a, b
Donlon, C. J., Casey, K., Gentemann, C., LeBorgne, P., Robinson, I.,
Reynolds, R. W., Merchant, C., Llewellyn-Jones, D., Minnett, P. J., Piolle,
J. F., Cornillon, P., Rayner, N., Brandon, T., Vazquez, J., Armstrong, E.,
Beggs, H., Barton, I., Wick, G., Castro, S., Høyer, J., May, D., Arino, O.,
Poulter, D. J., Evans, R., Mutlow, C. T., Bingham, A. W., and Harris, A.:
Successes and Challenges for the Modern Sea Surface Temperature Observing
System, in: Proceedings of OceanObs'09: Sustained Ocean Observations and
Information for Society, vol. 2, pp. 249–258, ESA Publication WPP-306,
Venice, Italy, https://doi.org/10.5270/OceanObs09.cwp.24, 2010. a
Donlon, C. J., Martin, M.and Stark, J., Roberts-Jones, J., Fiedler, E., and
Wimmer, W.: The Operational Sea Surface Temperature and Sea Ice Analysis
(OSTIA) system, Remote Sens. Environ., 116, 140–158,
https://doi.org/10.1016/j.rse.2010.10.017, 2012. a
Eastwood, S., Le Borgne, P., Péré, S., and Poulter, D.: Diurnal variability
in sea surface temperature in the Arctic, Remote Sens. Environ., 115,
2594–2602, https://doi.org/10.1016/j.rse.2011.05.015, 2011. a
ECMWF: ECMWF IFS CY41r2 High-Resolution Operational Forecasts, Research Data
Archive at the National Center for Atmospheric Research, Computational and
Information Systems Laboratory [data set], https://doi.org/10.5065/D68050ZV, 2016. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.:
Bulk parameterization of air–sea fluxes: Updates and verification for the
COARE algorithm, J. Climate, 16, 571–591,
https://doi.org/10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2, 2003. a
Gürol, S., Weaver, A. T., Moore, A. M., Piacentini, A., Arango, H. G., and
Gratton, S.: B-preconditioned minimization algorithms for variational data
assimilation with the dual formulation, Q. J. Roy. Meteor. Soc., 140,
539–556, https://doi.org/10.1002/qj.2150, 2014. a, b, c
Haidvogel, D. B., Arango, H., Budgell, W. P., Cornuelle, B. D., Curchitser, E.,
Di Lorenzo, E., Fennel, K., Geyer, W. R., Hermann, A. J., Lanerolle, L.,
Levin, J., McWilliams, J. C., Miller, A. J., Moore, A. M., Powell, T. M.,
Shchepetkin, A. F., Sherwood, C. R., Signell, R. P., Warner, J. C., and
Wilkin, J.: Ocean forecasting in terrain-following coordinates: Formulation
and skill assessment of the Regional Ocean Modeling System, J. Comput. Phys.,
227, 3595–3624, https://doi.org/10.1016/j.jcp.2007.06.016, 2008. a
Høyer, J. L., Karagali, I., Dybkjær, G., and Tonboe, R.: Multi sensor
validation and error characteristics of Arctic satellite sea surface
temperature observations, Remote Sens. Environ., 121, 335–346,
https://doi.org/10.1016/j.rse.2012.01.013, 2012. a, b
Iversen, S.: siljeci/ROMS_supermod: v1.1 (v1.1), Zenodo [code], https://doi.org/10.5281/zenodo.7816872, 2023. a
Janeković, I., Rayson, M., Jones, N., Watson, P., and Pattiaratchi, C.: 4D-Var
data assimilation using satellite sea surface temperature to improve the
tidally-driven interior ocean dynamics estimates in the Indo-Australian
Basin, Ocean Model., 171, 101969, https://doi.org/10.1016/j.ocemod.2022.101969, 2022. a
Janjić, T., Bormann, N., Bocquet, M., Carton, J. A., Cohn, S. E., Dance,
S. L., Losa, S. N., Nichols, N. K., Potthast, R., Waller, J. A., and Weston,
P.: On the representation error in data assimilation, Q. J. Roy. Meteor.
Soc., 144, 1257–1278, https://doi.org/10.1002/qj.3130, 2018. a, b, c
Jia, C. and Minnett, P. J.: High latitude sea surface temperatures derived from
MODIS infrared measurements, Remote Sens. Environ., 251, 112094,
https://doi.org/10.1016/j.rse.2020.112094, 2020. a, b
Karagali, I., Høyer, J., and Hasager, C.: SST diurnal variability in the North
Sea and the Baltic Sea, Remote Sens. Environ., 121, 159–170,
https://doi.org/10.1016/j.rse.2012.01.016, 2012. a
Kumar, A., Minnett, P. J., Podestá, G., and Evans, R. H.: Error
Characteristics of the Atmospheric Correction Algorithms Used in Retrieval of
Sea Surface Temperatures from Infrared Satellite Measurements: Global and
Regional Aspects, J. Atmos. Sci., 60, 575–585,
https://doi.org/10.1175/1520-0469(2003)060<0575:ECOTAC>2.0.CO;2, 2003. a
Liu, Z.-Q. and Rabier, F.: The interaction between model resolution,
observation resolution and observation density in data assimilation: A
one-dimensional study, Q. J. Roy. Meteor. Soc., 128, 1367–1386,
https://doi.org/10.1256/003590002320373337, 2002. a
Luo, B., Minnett, P. J., Szczodrak, M., Kilpatrick, K., and Izaguirre, M.:
Validation of Sentinel-3A SLSTR derived Sea-Surface Skin Temperatures with
those of the shipborne M-AERI, Remote Sens. Environ., 244, 111826,
https://doi.org/10.1016/j.rse.2020.111826, 2020. a
Martin, M. J., King, R. R., While, J., and Aguiar, A. B.: Assimilating
satellite sea‐surface salinity data from SMOS, Aquarius and SMAP into a
global ocean forecasting system, Q. J. Roy. Meteor. Soc., 145, 705–726,
https://doi.org/10.1002/qj.3461, 2019. a
Merchant, C. J., Embury, O., Le Borgne, P., and Bellec, B.: Saharan dust in
nighttime thermal imagery: Detection and reduction of related biases in
retrieved sea surface temperature, Remote Sens. Environ., 104, 15–30,
https://doi.org/10.1016/j.rse.2006.03.007, 2006. a
Mile, M., Randriamampianina, R., Marseille, G., and Stoffelen, A.: Supermodding
– A special footprint operator for mesoscale data assimilation using
scatterometer winds, Q. J. Roy. Meteor. Soc., 147, 1382–1402,
https://doi.org/10.1002/qj.3979, 2021. a, b, c
Minnett, P. J.: Sea Surface Temperature, in: Encyclopedia of Remote Sensing,
edited by: Njoku, E. G., pp. 754–759, Springer New York,
https://doi.org/10.1007/978-0-387-36699-9_166, 2014. a
Minnett, P. J., Alvera-Azcárate, A., Chin, T. M., Corlett, G. K., Gentemann,
C. L., Karagali, I., Li, X., Marsouin, A., Marullo, S., Maturi, E.,
Santoleri, R., Saux Picart, S., Steele, M., and Vazquez-Cuervo, J.: Half a
century of satellite remote sensing of sea-surface temperature, Remote Sens.
Environ., 233, 111366, https://doi.org/10.1016/j.rse.2019.111366, 2019. a
Moore, A. M., Arango, H. G., Broquet, G., Powell, B. S., Weaver, A. T., and
Zavala-Garay, J.: The Regional Ocean Modeling System (ROMS) 4-dimensional
variational data assimilation systems. Part I – System overview and
formulation, Prog. Oceanogr., 91, 34–49, https://doi.org/10.1016/j.pocean.2011.05.004,
2011. a, b
O’Carroll, A. G., Armstrong, E. M., Beggs, H. M., Bouali, M., Casey, K. S.,
Corlett, G. K., Dash, P., Donlon, C. J., Gentemann, C. L., Høyer, J. L.,
Ignatov, A., Kabobah, K., Kachi, M., Kurihara, Y., Karagali, I., Maturi, E.,
Merchant, C. J., Marullo, S., Minnett, P. J., Pennybacker, M., Ramakrishnan,
B., Ramsankaran, R., Santoleri, R., Sunder, S., Saux Picart, S.,
Vázquez-Cuervo, J., and Wimmer, W.: Observational Needs of Sea Surface
Temperature, Front. Mar. Sci., 6, 420, https://doi.org/10.3389/fmars.2019.00420, 2019. a, b
Pearson, K., Good, S., Merchant, C. J., Prigent, C., Embury, O., and Donlon,
C.: Sea Surface Temperature in Global Analyses: Gains from the Copernicus
Imaging Microwave Radiometer, Remote Sens., 11, 2362,
https://doi.org/10.3390/rs11202362, 2019. a
Reynolds, R. W. and Chelton, D. B.: Comparisons of Daily Sea Surface
Temperature Analyses for 2007–08, J. Climate, 23, 3545–3562,
https://doi.org/10.1175/2010JCLI3294.1, 2010. a
Ricard, D., Lac, C., Riette, S., Legrand, R., and Mary, A.: Kinetic energy
spectra characteristics of two convection-permitting limited-area models
AROME and Meso-NH: KE Spectra Characteristics of Two Convection-Permitting
Models, Q. J. Roy. Meteor. Soc., 139, 1327–1341, https://doi.org/10.1002/qj.2025,
2013.
a
Röhrs, J., Sperrevik, A. K., and Christensen, K. H.: NorShelf: An ocean
reanalysis and data-assimilative forecast model for the Norwegian Shelf Sea,
Tech. Rep., ISSN 2387-4201 04/2018, Norwegian Meteorological Institute, Oslo,
Norway, https://www.met.no/publikasjoner/met-report (last access: 21 September 2022), 2018. a, b, c
Schubert, R., Schwarzkopf, F. U., Baschek, B., and Biastoch, A.: Submesoscale
Impacts on Mesoscale Agulhas Dynamics, J. Adv. Model. Earth Sy., 11,
2745–2767, https://doi.org/10.1029/2019MS001724, 2019. a
Shchepetkin, A. F. and McWilliams, J. C.: Correction and commentary for “Ocean
forecasting in terrain-following coordinates: Formulation and skill
assessment of the regional ocean modeling system” by Haidvogel et al., J.
Comp. Phys. 227, pp. 3595–3624, J. Comput. Phys., 228, 8985–9000,
https://doi.org/10.1016/j.jcp.2009.09.002, 2009. a
Umlauf, L. and Burchard, H.: Second-order turbulence closure models for
geophysical boundary layers. A review of recent work, Cont. Shelf Res., 25,
795–827, https://doi.org/10.1016/j.csr.2004.08.004, 2005. a
Vincent, R. F.: The Effect of Arctic Dust on the Retrieval of Satellite Derived
Sea and Ice Surface Temperatures, Sci. Rep., 8, 9727,
https://doi.org/10.1038/s41598-018-28024-6, 2018. a
Wang, H., Guan, L., and Chen, G.: Evaluation of Sea Surface Temperature From
FY-3C VIRR Data in the Arctic, IEEE Geosci. Remote S., 13, 292–296,
https://doi.org/10.1109/LGRS.2015.2511184, 2016. a, b, c
Warner, J. C., Sherwood, C. R., Arango, H. G., and Signell, R. P.: Performance
of four turbulence closure models implemented using a generic length scale
method, Ocean Model., 8, 81–113, https://doi.org/10.1016/j.ocemod.2003.12.003, 2005. a
Waters, J., Lea, D. J., Martin, M. J., Mirouze, I., Weaver, A., and While, J.:
Implementing a variational data assimilation system in an operational 1/4
degree global ocean model, Q. J. Roy. Meteor. Soc., 141, 333–349,
https://doi.org/10.1002/qj.2388, 2015. a
Weaver, A. and Courtier, P.: Correlation modelling on the sphere using a
generalized diffusion equation, Q. J. Roy. Meteor. Soc., 127, 1815–1846,
https://doi.org/10.1002/qj.49712757518, 2001. a
Wentz, F. J., Gentemann, C., Smith, D., and Chelton, D.: Satellite Measurements
of Sea Surface Temperature Through Clouds, Science, 288, 847–850,
https://doi.org/10.1126/science.288.5467.847, 2000. a
While, J. and Martin, M. J.: Variational bias correction of satellite
sea‐surface temperature data incorporating observations of the bias, Q. J.
Roy. Meteor. Soc., 145, 2733–2754, https://doi.org/10.1002/qj.3590, 2019. a
Xie, J., Bertino, L., Counillon, F., Lisæter, K. A., and Sakov, P.: Quality assessment of the TOPAZ4 reanalysis in the Arctic over the period 1991–2013, Ocean Sci., 13, 123–144, https://doi.org/10.5194/os-13-123-2017, 2017. a
Short summary
We present two methods to refine the assimilation of satellite sea surface temperatures (SSTs) into a regional ocean model. First, we correct the SSTs for biases and show that this correction reduces the model SST errors. Then, we implement a special observation operator that handles the spatial resolution mismatch between coarse passive microwave SSTs and the high-resolution model. We find that excluding this operator spatially smooths the modeled SST, whereas its inclusion prevents this.
We present two methods to refine the assimilation of satellite sea surface temperatures (SSTs)...