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Abstract. Infrared (IR) and passive microwave (PMW) satel-
lite sea surface temperature (SST) retrievals are valuable to
assimilate into high-resolution regional ocean forecast mod-
els. Still, there are issues related to these SSTs that need to be
addressed to achieve improved ocean forecasts. Firstly, satel-
lite SST products tend to be biased. Assimilating SSTs from
different providers can thus cause the ocean model to re-
ceive inconsistent information. Secondly, while PMW SSTs
are valuable for constraining models during cloudy condi-
tions, the spatial resolution of these retrievals is rather coarse.
Assimilating PMW SSTs into high-resolution ocean mod-
els will spatially smooth the modeled SST and consequently
remove finer SST structures. In this study, we implement a
bias correction scheme that corrects satellite SSTs before as-
similation. We also introduce a special observation opera-
tor, called the supermod operator, into the Regional Ocean
Modeling System (ROMS) four-dimensional variational data
assimilation algorithm. This supermod operator handles the
resolution mismatch between the coarse observations and the
finer model. We test the bias correction scheme and the su-
permod operator using a setup of ROMS covering the shelf
seas and shelf break off Norway. The results show that the
validation statistics in the modeled SST improve if we ap-
ply the bias correction scheme. We also find improvements
in the validation statistics when we assimilate PMW SSTs in
conjunction with the IR SSTs. However, our supermod oper-
ator must be activated to avoid smoothing the modeled SST
structures on spatial scales smaller than twice the PMW SST
footprint. Both the bias correction scheme and the supermod
operator are easy to apply, and the supermod operator can
easily be adapted for other observation variables.

1 Introduction

Satellite-based sea surface temperature (SST) retrievals ac-
count for the majority of observations assimilated into most
ocean forecast models and can be retrieved by measuring
both the infrared (IR) and passive microwave (PMW) radi-
ation emitted by the ocean surface. Cloud coverage reduces
the number of SST retrievals by IR sensors. Consequently,
SSTs from PMW radiometers serve as a complementary data
set as PMW radiation penetrates clouds. While the spatial
resolution of IR SSTs is typically ∼ 1 km, which is similar
to or finer than those of regional ocean forecast models (∼ 1–
10 km), a disadvantage with PMW SSTs is their relatively
coarse resolution. For the instrument AMSR-2 (Advanced
Microwave Scanning Radiometer 2) on board GCOM-W1
(Global Change Observation Mission-Water 1), the elliptic
PMW SST footprint is ∼ 35× 62 km (Imaoka et al., 2010).

Indeed, mesoscale ocean models can resolve circulation
features at smaller spatial scales than PMW SSTs can pro-
vide. Such differences in resolved scales are commonly re-
ferred to as representation errors within the field of data as-
similation (Janjić et al., 2018). Previous studies have con-
sidered the differences in resolved scales while assimilating
coarse observations such as those of sea ice concentration,
satellite sea surface salinity, and scatterometer ocean surface
winds (Buehner et al., 2013; Martin et al., 2019; Mile et al.,
2021). In these studies, the observation operator was mod-
ified such that the coarse observations could be compared
with the average of the model values located within an area
similar to the spatial resolution of the observations. Simi-
lar ideas for the observation operator have also been applied
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while producing global SST analyses where IR and PMW
SSTs are merged using statistical methods (Donlon et al.,
2012; Brasnett and Colan, 2016). However, as far as the au-
thors are aware, such an observation operator has not been
described and implemented for the assimilation of PMW
SSTs into a high-resolution regional ocean forecast model.

To tackle the mismatch in spatial resolution, we imple-
ment an observation operator, called the supermod operator,
into the Regional Ocean Modeling System (ROMS; Haidvo-
gel et al., 2008; Shchepetkin and McWilliams, 2009) four-
dimensional variational (4D-Var) data assimilation system
(Moore et al., 2011; Gürol et al., 2014). This operator con-
siders the resolution mismatch between the PMW SSTs and
the model by comparing each PMW SST observation with
the model mean over an area similar to the observation foot-
print. The implementation of the operator follows a similar
methodology as described in Mile et al. (2021). We show
that, compared to a traditional observation operator, the su-
permod operator prevents PMW SSTs from constraining the
spatial scales of the model that the PMW SSTs do not resolve
properly. Thus, the supermod operator enables us to assimi-
late PMW SSTs without smoothing the modeled SST struc-
tures. We test the operator using a configuration of ROMS
that covers the shelf seas and shelf break off Norway. This
region is subject to high cloud coverage, meaning that there
is a need for assimilating PMW SSTs to better constrain the
model. Also, the Rossby radius of deformation, which af-
fects the horizontal scales of mesoscale processes, decreases
with increasing latitude. Consequently, SST structures aris-
ing from mesoscale processes are typically smaller at high
latitudes, which leads to a greater risk of smoothing the mod-
eled SST in these regions when assimilating coarse PMW
SSTs.

To further improve the modeled SST, we take into account
that satellite SSTs from different providers tend to be biased
due to differences and limitations in the SST retrieval pro-
cesses and algorithms (Chan and Gao, 2005; Høyer et al.,
2012; Wang et al., 2016). Specifically, we implement a bias
correction scheme which is inspired by Høyer et al. (2014)
and use this scheme to correct the assimilated satellite SSTs
for biases. The scheme ensures consistency between SST
observations from different providers, thus preventing the
model from receiving inconsistent information during the as-
similation of different products. By reducing inconsistencies,
the probability of artificial noise in the modeled SST is re-
duced.

2 Data and methods

2.1 Model configuration and data assimilation setup

ROMS is a free-surface, hydrostatic, primitive-equation
ocean model using stretched, terrain-following vertical co-
ordinates, which is beneficial for modeling shallow, coastal

Figure 1. Bathymetry of the model region covering the shelf seas
and shelf break off Norway.

waters. The model domain used in this study covers the shelf
seas and shelf break off Norway (Fig. 1). We present only a
brief summary of the model configuration, since a thorough
description can be found in Röhrs et al. (2018).

The model domain has a horizontal resolution of 2.4 km,
and there are 42 layers in the vertical direction, which are dis-
tributed so that the uppermost layer has a thickness of∼ 0.2–
1.2 m. Vertical mixing is parameterized using a second-order
scheme for turbulent kinetic energy and a generic length
scale based on a setup recommended by Umlauf and Bur-
chard (2005) and Warner et al. (2005). The configuration dif-
fers slightly from that of Röhrs et al. (2018), with different
choices for the Kmin and Pmin parameters, which in our case
are set to 1.0× 10−8.

We force the model with 3-hourly operational forecast data
from the Integrated Forecast System of the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF, 2016).
Air–sea fluxes for momentum and heat are calculated via
the COARE3.0 bulk flux algorithms (Fairall et al., 2003)
within ROMS. Open boundary conditions consist of daily
averages of all state variables from the TOPAZ4 reanaly-
sis (Xie et al., 2017). As TOPAZ4 does not include the in-
verse barometer effect, the sea surface elevation and currents
are adjusted to include the effect of local atmospheric pres-
sure. Harmonic tidal forcing, consisting of eight tidal con-
stituents from the TPXO9 global inverse barotropic model
(Egbert and Erofeeva, 2002), is also imposed along the open
boundaries. Riverine runoff is based on modeled river dis-
charges from the Norwegian Water Resources and Energy
Directorate (Beldring et al., 2003).
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The model is initialized from the TOPAZ4 reanalysis on
1 January 2017 and run with 4D-Var assimilation of satel-
lite SST and in situ temperature and salinity observations, as
described in Röhrs et al. (2018). This reanalysis is used to
initialize a set of different experiments (see Sect. 4.1), all of
which assimilate only satellite SST observations and are run
for the period 21 April 2018–22 June 2018.

The assimilation algorithm used for the experiments is the
dual formulation of the ROMS 4D-Var system (RBL4DVAR;
Moore et al., 2011; Gürol et al., 2014). Generally, in 4D-Var
data assimilation, the analysis is found by minimizing a cost
function in the following form:

J (x)=
1
2
(x− xb)TB−1(x− xb)

+
1
2
(y−H(x))TR−1(y−H(x)), (1)

where the control vector, x, holds the control variables,
which include the prognostic variables (temperature, salinity,
horizontal velocity, and sea surface height) at the model grid
points. The background control vector is denoted xb, while
the vector y contains the observations. The observation oper-
ator, H, returns the model equivalents of the observations by
interpolating the model values to the observation locations.
In case the observed quantity is not part of the control vector,
H may also transform the model values to correspond to the
observed quantity. In 4D-Var, the nonlinear model is a part
of H and facilitates temporal mapping. B is the background
error covariance matrix, while R is the observation error co-
variance matrix. R is assumed to be diagonal in most oper-
ational data assimilation systems, including the implementa-
tion in ROMS used in this study (Gürol et al., 2014). This
assumption means that the observation errors are assumed to
be uncorrelated in both time and space. The observation er-
rors used to construct R include both the measurement error,
which is the error associated with the accuracy of the mea-
suring instrument, and the representation errors (Janjić et al.,
2018). Following Janjić et al. (2018), the latter is connected
to errors arising from the pre-processing and quality control
of the observations, the observation operator, and the mis-
match between the resolutions of the observations and the
model grid.

In ROMS, the construction of the background error co-
variance matrix B follows the approach described in Weaver
and Courtier (2001), where B is separated into a univari-
ate correlation matrix, a multivariate balance operator, and
background error standard deviations. The background error
standard deviations are, in this study, calculated from a multi-
year simulation with the same model configuration. To avoid
unrealistically high values of the standard deviations due to
large seasonal variations, background standard deviations are
calculated separately for each day of the year, using all of the
time records in the multi-year run that fall within ±14 d of
the day in question. Consequently, the B used in this study
changes slightly from one assimilation cycle to the next. We

Table 1. IR and PMW satellite SST observations used in this study
and their approximate spatial resolution at nadir.

Satellite Sensor Data creator Method Res. (km)

Metop-B AVHRR OSI SAF IR 1.1
N20 VIIRS NOAA IR 0.75
GCOM-W1 AMSR-2 RSS PMW 35× 62
SNPP VIIRS NOAA IR 0.75
Sentinel-3A SLSTR EUMETSAT IR 1

do not apply any explicit balance relations between the con-
trol variables. However, the linearized physics in the tangent-
linear and adjoint models implicitly account for correlations
between the control variables.

The standard deviation of the error attributed to an obser-
vation (σo) is estimated as a function of the background error
standard deviation at the observation location (σb), a factor
based on the reported quality level of the satellite products
(Q), and a parameter α as follows:

σ 2
o = α ·Q · σ

2
b . (2)

The reported quality level reflects the uncertainty of the ob-
servation and is assigned to each SST measurement by the
data creator (Donlon et al., 2007). Only quality level 4 (QL4
– acceptable quality) and 5 (QL5 – best quality) are used.
To ensure that more weight is given to the observations with
the best quality during assimilation, observations with QL4
and QL5 are assigned a Q of 1.1 and 0.9, respectively. The
parameter α is set to α = 2 for all of the satellite products
to ensure that the different experiments are comparable, and
it is chosen by validating a set of experiments with different
choices of α against independent data sets.

2.2 Observations

We use satellite SST observations from IR and PMW ra-
diometers, and a summary of the products is found in Table 1.
All observations are level-2 preprocessed (L2P) products
downloaded from the Physical Oceanography Distributed
Active Archive Center (PO.DAAC), the Satellite Application
Facility on Ocean and Sea Ice (OSI SAF) FTP server, and
the European Organisation for the Exploitation of Meteoro-
logical Satellites (EUMETSAT) data center online ordering
client.

The IR SSTs have a spatial resolution ranging from 0.75–
1.1 km at nadir and are thus capable of resolving SST struc-
tures of similar scales as the structures captured by the
model. When several of these observations fall within the
same model grid cell during the same time interval, the
mean of the observations is calculated to create a super-
observation. In our setup, each individual observation time is
rounded to the nearest quarter hour before super-observations
are calculated.
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PMW radiometers can, unlike IR radiometers, retrieve
SSTs during cloudy conditions. Challenges related to PMW
SST retrievals that require affected pixels to be discarded in-
clude rain, radio frequency inference, sun glint, and emis-
sion from sea ice surfaces and land (Minnett et al., 2019).
The latter contamination affects PMW retrievals from re-
gions within ∼ 100 km from land. The spatial resolution of
PMW SSTs depends on the frequency used to derive the
SSTs along with the antenna size and is significantly coarser
than those of the IR SSTs. For AMSR-2 GCOM-W1, the pri-
mary band for PMW SST retrieval at 6.9 GHz corresponds to
an elliptic footprint, elongated in the along-track direction of
the satellite, with sizes of approximately 35× 62 km (Imaoka
et al., 2010).

All satellite SST observations are corrected by applying
the single-sensor error statistics (SSES) bias, in line with
the recommendations in Donlon et al. (2007). As previously
mentioned, we use QL4 and QL5 for the assimilated IR SST
products. For the PMW SSTs, we use only QL5 observations
and discard the QL4 observations due to unwanted artifacts
in the SST field. These artifacts are likely caused by radio
frequency interference from oil rigs (Alerskans et al., 2020).
Evaluation of the QL5 PMW SSTs revealed that observations
of dubious quality are still present in the data set, both at the
edges of areas from which low-quality observations were re-
moved and in areas corresponding to locations of oil rigs.
Thus, an additional quality control of the PMW SSTs was
implemented, flagging observations as bad if they are within
a radius of 75 km of an oil rig.

The SLSTR (Sea and Land Surface Temperature Ra-
diometer) instrument on board Sentinel-3A uses a dual-view
technique where the swath is scanned twice through two
different atmospheric path lengths. This capability allows
for more accurate SST measurements (Luo et al., 2020).
We use QL5 SSTs measured by this sensor to correct the
other satellite products for biases (see Sect. 2.3) and for val-
idation purposes. Other SSTs used for validation are bias-
corrected SSTs from VIIRS (Visible Infrared Imaging Ra-
diometer Suite) SNPP (Suomi National Polar-orbiting Part-
nership) and SSTs measured by drifting buoys from the
CORA data set (Cabanes et al., 2013). The spatial coverage
of the drifting buoys is shown in Fig. 2.

While SLSTR Sentinel-3A provides the skin temperature,
the other satellite products used in this study provide the
sub-skin temperature. IR sensors intrinsically measure the
skin temperature. However, these skin temperatures are con-
verted to sub-skin temperatures during the data creation pro-
cess if in situ data are used to tune parameters included in
the SST retrieval algorithms. To ensure that all of the SSTs
used throughout this study represent the sub-skin tempera-
ture, an offset of 0.17 ◦C is added to the SLSTR Sentinel-3A
SSTs (Donlon et al., 2002; Høyer et al., 2014). This constant
offset is generally valid for wind speeds above 6 m s−1 but
may be greater for lower wind speeds. Our results indicate,
however, that using this constant offset to convert the SLSTR

Figure 2. Spatial coverage of CORA drifting buoys during the pe-
riod 27 April 2018–22 June 2018, which is the period used for val-
idation. There are in total ∼ 10 600 observations of this kind. The
solid black box shows the extent of the model domain, while the
dashed black box shows the domain selected for SST power spec-
trum calculations (see Sect. 4.3).

Sentinel-3A SSTs to sub-skin temperatures does not degrade
the modeled SST resulting from assimilating bias-corrected
SSTs (see Sect. 4.2).

Figure 3 shows time series of the number of observations
inside the model domain during the chosen assimilation pe-
riod in 2018. For the satellite observations, we count only ob-
servations that meet the set minimum quality level. Cloudi-
ness causes the number of IR SST observations to vary. The
largest number of observations occurs at the beginning of
May, and there is a drop in the number of available obser-
vations while approaching June. The number of PMW SST
observations is stable during the whole period, which we ex-
pect, since PMW SSTs can be measured in cloudy condi-
tions. Moreover, the number of available PMW SSTs is, on
average, smaller than the number of available IR SSTs, since
the PMW SSTs are provided on a coarser grid.
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Figure 3. Time series of the number of observations per day available inside the model domain for each sensor and satellite pair and for the
CORA drifting buoys.

2.3 SST bias correction algorithm

High northern latitudes are recognized as challenging regions
for satellite SST retrieval (Donlon et al., 2010; Wang et al.,
2016; Jia and Minnett, 2020). In situ data are used to de-
rive the satellite SST retrieval algorithms and to correct and
thus improve the quality of the retrieved SST. However, the
number of available in situ SST measurements at high north-
ern latitudes is low compared to equatorial and mid-latitude
regions, and this data scarcity can lower the quality of high-
latitude IR and PMW SST retrievals (O’Carroll et al., 2019).

SST retrievals in the IR are subject to additional chal-
lenges. First, the process of cloud screening, where cloudy
and clear-sky conditions are separated, is critical (O’Carroll
et al., 2019). Any undetected clouds will result in erro-
neous SST retrievals. Additionally, the brightness tempera-
tures derived from the measured IR radiances are modified
by aerosols and gases, such as water vapor, in the atmo-
sphere. Atmospheric correction algorithms are thus required
to retrieve accurate SSTs. At high latitudes, these corrections
tend to be problematic, thereby degrading the accuracy of the
measured SSTs (Kumar et al., 2003; Merchant et al., 2006;
Vincent, 2018; Jia and Minnett, 2020).

For the PMW part of the spectrum, challenges that must
be corrected for (in addition to those mentioned in Sect. 2.2,
which cause the measurements to be discarded) include sea
surface roughness generated from strong winds and atmo-
spheric effects such as those associated with modification of
the PMW radiation by water vapor and liquid water (Wentz
et al., 2000; Minnett, 2014).

SST products from various satellites and sensors are sub-
ject to regional and temporal biases due to the difficul-
ties concerning the SST retrieval process and the differ-
ences in applied retrieval algorithms (Chan and Gao, 2005;
Høyer et al., 2012; Wang et al., 2016). To this end, Høyer
et al. (2014) developed and employed a bias correction
scheme that they used to correct SST products from different
providers. Their goal was to merge these products, and the

correction was performed to prevent any biases from affect-
ing the final product. Bias correction schemes have also been
implemented in other studies in order to correct the satel-
lite SSTs being assimilated into ocean models. For example,
Waters et al. (2015) employed a scheme where SSTs were
corrected using a set of chosen reference observations. This
bias correction was performed prior to the assimilation of the
observations. While and Martin (2019), on the other hand,
implemented a variational bias correction scheme where the
SSTs were corrected within the data assimilation algorithm.
In such variational schemes, bias correction is achieved by
incorporating additional terms into the cost function. One
key advantage of variational schemes is that they do not rely
on having full coverage of reference observations at all times.

We implement a similar bias correction scheme as in
Høyer et al. (2014), with some modifications, to ensure con-
sistency between the different satellite SST products being
assimilated into our model. The bias correction is an individ-
ual step during the preparation of observations for assimila-
tion and is not part of the data assimilation process itself. Bi-
ases are calculated independently for all satellite products us-
ing SLSTR Sentinel-3A SST as reference. Figure 4 illustrates
such a bias field for AVHRR (Advanced Very High Resolu-
tion Radiometer) Metop-B, and the method is described be-
low.

Daily SST fields on a grid with a resolution of ∼ 25 km
are produced for each satellite product, including the ref-
erence product, by first resampling the available L2P SST
products to this coarser grid and then calculating the mean of
the observations falling into each grid cell. To minimize the
possibility of using SST observations affected by greater di-
urnal warming events (Eastwood et al., 2011; Karagali et al.,
2012), we exclude observations located in regions where the
wind speed is less than 3 m s−1 during local summer daytime
(defined here as May–August at 10:00–14:00 UTC). This
wind speed threshold is less strict than that recommended in
Donlon et al. (2002) but was chosen to ensure sufficient spa-
tial coverage in the daily fields, as the recommended thresh-
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Figure 4. Bias for AVHRR Metop-B on 22 May 2018. The bias is
calculated using 11 daily difference fields from 17 to 27 May 2018.

old resulted in degraded bias estimates in cloudy regions. We
do, however, find that the low threshold value of 3 m s−1 per-
forms slightly worse on the few occasions when our region
is affected by diurnal warming. In the future, the wind speed
threshold should be reassessed and adjusted, possibly in con-
junction with a somewhat coarser analysis grid.

Daily difference fields are produced by subtracting the ref-
erence daily SST field from the daily SST fields of the other
satellite products. We remove all of the values where the dif-
ference exceeds ±2 ◦C. This data removal is performed to
exclude unrealistic values which we detected along the coast
and in regions affected by cloud contamination.

By aggregating 11 daily difference fields, we produce a
bias that is valid on the central day. The aggregation is per-
formed as a simple temporal averaging, as in Høyer et al.
(2014). The biases are finally resampled to the model grid
and, to avoid unwanted noise, are spatially smoothed by ap-
plying a uniform filter. This filter has the size of 40 grid
points (∼ 96 km) in both horizontal directions.

3 Supermod operator

As noted, observations with higher spatial resolution than
the model are combined into super-observations. This pro-
cedure reduces the representation errors, as information on
smaller spatial scales than what the model is able to repre-
sent is smoothed. For the case of PMW SSTs, however, each
observation represents an SST average over the area covered
by its footprint. For AMSR-2 GCOM-W1, this footprint is
roughly 375 times larger than the area of a grid cell in our
model domain. Thus, we expect the model to contain poten-

tially valuable information on finer spatial scales than what is
present in the observations. If observations of this type were
assimilated with a traditional observation operator that does
not account for the observation footprints, we would expect
large, spatially correlated representation errors (Liu and Ra-
bier, 2002). Such errors are particularly problematic in data
assimilation systems designed to handle uncorrelated obser-
vation errors.

An observation operator that ensures that each PMW SST
observation is compared with a model mean over an area
equivalent to the SST footprint is implemented in ROMS to
avoid corrections of finer scales. The implementation of the
operator follows a similar methodology as that described in
Mile et al. (2021). We will refer to this operator as the super-
mod operator.

Our implementation of the supermod operator builds on
the assumption that the observation footprints are squares
with sides of length (1+ 2L)dx, where (1+ 2L) is the num-
ber of grid cells and dx is the horizontal resolution of the
model. L can be set separately for each individual observa-
tion, which makes the operator easy to apply to new observa-
tion sources and different model configurations. As the center
of the observation footprint may be located between model
grid points, the supermod value is calculated as a weighted
mean of the values in grid cells that fall completely or par-
tially within the footprint area. The assigned interpolation
weights are based on the fractional area of the grid cells that
fall within the footprint. This is done to conserve the effec-
tive resolution of the supermod values and to ensure that the
model footprint is centered at the observation location. Other
factors that could affect the effective resolution of the super-
mod values are land points within the footprint or the ex-
tension of the footprint beyond the boundaries of the model
domain. The operator is designed to reject observations with
such footprint features. Figure 5 illustrates how the operator
works.

Idealized tests showed a sudden increase in the stan-
dard deviations of the innovations (observations minus back-
ground) when the footprints were increased and started to
overlap. Thus, a thinning procedure is performed on the
PMW observations prior to assimilating the observations. As
the supermod operator can only represent square footprints,
we have chosen L conservatively to ensure that the square
used to represent the footprint will not be smaller than the
largest size of the true, elliptic footprint of the satellite re-
trievals. With the grid resolution of our model being 2.4 km,
L= 13 gives us footprints with sides of 64.8 km. The PMW
observations are thus thinned during a pre-processing step to
ensure a distance of at least 64.8 km between the observation
points.

3.1 Idealized experiment

An idealized scenario for a domain with flat bathymetry, no
land, and no surface forcing is applied to test the behavior of
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Figure 5. Schematic figure showing the supermod operator with
L= 1 for (a) an observation that falls exactly in the center of a
model grid cell and (b) an observation that is shifted towards the
upper right corner of a grid cell. The orange crosses indicate the
observation locations, the mesh illustrates grid cells, and the orange
squares indicate the footprint area of the observations. The color
map indicates the weight (%) by which the grid cells contribute to
the supermod value.

the supermod operator in ROMS. A coarse grid with a hor-
izontal resolution of ∼ 30 km is chosen to reduce the com-
putational costs. The ocean is set to be initially at rest with
a uniform temperature and salinity of 12 ◦C and 34, respec-
tively. The standard deviations of the background errors are
also uniform for every prognostic variable, and it is set to
0.02 ◦C for temperature.

A single PMW SST observation, with a temperature of
12.5 ◦C and a standard deviation of the observation error set
to be equal to the standard deviation of the background, is as-
similated into the idealized setup for varying footprint sizes.
Figure 6a–d show the resulting SST increments. Increasing
the footprint size causes the increment to spread laterally,
such that the observation affects a greater area. The incre-
ment amplitude decreases simultaneously. Furthermore, for
each footprint size in Fig. 6a–d, we calculate the average in-
crement using all values greater than zero (see white text in
Fig. 6a–d). That the average increment remains relatively un-
changed as the footprint size increases demonstrates that the
inclusion of the supermod operator spreads the information
from the PMW SST observation as expected.

Figure 6e and f show the effects of increasing and de-
creasing the observation error by a factor of 1.5 and 0.5,
respectively, when the footprint parameter is set to L= 2.

Figure 6. SST increment for (a–d) varying sizes of L and with the
observation error (σ 2

o ) set to be equal to the background error (σ 2
b ),

(e) L= 2 and σ 2
o = 1.5σ 2

b , and (f) L= 2 and σ 2
o = 0.5σ 2

b .

Increasing (decreasing) the error decreases (increases) the
increment amplitude, which is what we would expect. Fur-
ther tests within this idealized framework revealed that the
amplitude reduction with increasing L is not as pronounced
when the observation error is set to be much smaller than
the background error. In cases where the observation error is
very small compared to the background error, the amplitude
of the increment starts to increase with increasing L.

4 Results

4.1 Experimental design

Different experiments are set up to (1) test the effect of cor-
recting satellite SSTs for biases before assimilation and (2)
determine the effect of assimilating PMW SST observations
with and without the application of the supermod operator.
Table 2 summarizes the experiments, all of which cover the
period 21 April 2018–22 June 2018.

To assess the bias correction scheme, IR SSTs are assimi-
lated with (IR2) and without (IR1) correcting for biases. Sim-
ilarly, to assess the supermod operator, we assimilate PMW
SSTs by first treating the SSTs as regular point observa-
tions (PMW1) and then by applying the supermod operator
(PMW2). Notice that PMW2 includes the process of obser-
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Table 2. Summary of experiments showing the sources (sensor and satellite) of the assimilated satellite SSTs, whether the observations
are corrected for biases through the bias correction scheme, whether the supermod operator is activated, and the approximate number of
observations assimilated (∼Nobs).

Experiment Assimilated SSTs Bias correction Supermod ∼Nobs

IR1 AVHRR Metop-B
VIIRS N20

No – 2.4× 107

IR2 AVHRR Metop-B
VIIRS N20

Yes – 2.4× 107

PMW1 AMSR-2 GCOM-W1 Yes No 1.6× 106

PMW1-thinned AMSR-2 GCOM-W1 Yes No 2.2× 104

PMW2 AMSR-2 GCOM-W1 Yes Yes 2.2× 104

COMB1 AVHRR Metop-B
VIIRS N20
AMSR-2 GCOM-W1

Yes No 2.5× 107

COMB2 AVHRR Metop-B
VIIRS N20
AMSR-2 GCOM-W1

Yes Yes 2.4× 107

vation thinning. As a consequence, PMW2 assimilates only
∼ 1.4 % of the observations assimilated in PMW1. In order to
separate the impact of the observation thinning from the im-
pact of the supermod operator itself, we run an experiment
where we assimilate a thinned set of the PMW SSTs with-
out applying the supermod operator (PMW1-thinned). This
experiment is essentially a thinned version of PMW1.

The argument for including PMW SSTs in the assimilated
data set is to supplement the IR SSTs during periods of high
cloud coverage. Hence, we run two additional experiments
to determine the effects of combining IR and PMW SSTs.
Experiment COMB1 assimilates IR and PMW SSTs with-
out employing the supermod operator; i.e., the experiment
is a combination of IR2 and PMW1. The final experiment,
COMB2, is a combination of IR2 and PMW2, thus assimilat-
ing IR and PMW SSTs with the supermod operator activated.

The assimilation window is set to 3 d in all experiments.
The assimilated observations update the background model
state produced for such a 3 d cycle to produce the analy-
sis. The ocean state at the end of the analysis is then used
as initial conditions to produce the background state of the
next assimilation cycle, and the process repeats. Thus, the
background can be considered a forecast, and we evaluate
the experiments using these background states in the follow-
ing. The evaluation period excludes the two first assimilation
cycles and covers 27 April 2018–22 June 2018. Note that the
bias correction scheme is applied in all experiments but IR1.

4.2 Error statistics

Table 3 shows validation statistics of SST for the back-
ground states. PMW SST measurements are unavailable in

the coastal zone, as emissions from land contaminate the
retrievals in this region. The experiments assimilating only
PMW SSTs thus perform quite poorly in these regions com-
pared to the experiments that include IR SSTs. To assess the
experiments, we have chosen to exclude observations within
these areas from the validation, and we focus instead on the
regions where an impact from including PMW SST can be
expected.

In comparing IR1 and IR2, we find that correcting the ob-
servations for biases reduces the RMSE and the bias of the
modeled SST. We expect improved statistics when validating
against satellite SSTs, since the validating data set contains
SLSTR Sentinel-3A SSTs, which are the SSTs used to bias
correct the observations assimilated in IR2. The SSTs from
VIIRS SNPP are also bias corrected with respect to SLSTR
Sentinel-3A SSTs in the same way as the assimilated ob-
servations. However, the in situ SSTs measured by drifting
buoys are completely independent of the assimilated obser-
vations. The improvements in the error statistics calculated
using this independent data set reveal a clear benefit of ap-
plying the bias correction scheme prior to assimilation.

The RMSE is higher in PMW1 than in IR2 when validat-
ing against SSTs from satellites and when validating against
SSTs from drifting buoys. However, the bias of PMW1 is
smaller than the bias of IR2 when validating against SSTs
from drifting buoys, indicating that PMW SSTs are valuable
to assimilate to reduce the model’s systematic error. When
validating against IR SSTs, PMW1 has a larger bias than IR2.
Upon inspection of the spatial distribution of the model mi-
nus observation differences that contribute to this elevated
bias value, it is clear that the elevated bias is mainly caused
by elevated errors in regions where the coastal current ex-
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Table 3. SST RMSE (◦C) and bias (◦C). Validation metrics are cal-
culated using SLSTR Sentinel-3A and bias-corrected VIIRS SNPP
SSTs as reference (left columns) and SSTs from drifting buoys as
reference (right columns).

Satellites Drifting buoys

Experiment RMSE Bias RMSE Bias

Free model run 0.786 −0.514 0.785 −0.630

IR1 0.534 −0.224 0.408 −0.181
IR2 0.470 −0.154 0.375 −0.143

PMW1 0.602 −0.187 0.410 −0.104
PMW1-thinned 0.712 −0.430 0.542 −0.368
PMW2 0.685 −0.392 0.505 −0.314

COMB1 0.464 −0.142 0.365 −0.116
COMB2 0.470 −0.154 0.367 −0.142

tends into the parts of the model domain that are considered
in the validation. Thus, this larger bias does not reflect the
ability of the PMW SST data to adjust the model. Rather, the
elevated bias values are caused by advection of cold coastal
water, which is unconstrained by PMW SSTs, into the region
used for calculating the validation statistics.

When applying the supermod operator to assimilate the
PMW SSTs, both RMSEs and biases are increased in com-
parison with PMW1. PMW2 does, however, validate bet-
ter than both the free model run and the PMW1-thinned
experiment. Compared with PMW1, we find that the in-
crements in PMW2 are relatively weak. The mean incre-
ment of PMW1 and PMW2 during the first assimilation win-
dow, where the experiments share the same initial condi-
tions, demonstrate this increment difference: the mean in-
crement in PMW1 is ∼ 0.39 ◦C (increment standard devia-
tion: ∼ 0.49 ◦C), whereas PMW2 has a mean increment of
∼ 0.04 ◦C (increment standard deviation: ∼ 0.06 ◦C). That
the increments are reduced in PMW2 is in accordance
with how the supermod operator works. As demonstrated
in Fig. 6, the amplitude of the increment decreases with in-
creasing footprint size when the observation error remains
unchanged.

The difference between the SST increment amplitudes in
PMW1 and PMW2 is, in addition, visually illustrated in
Fig. 7a and b. Even though the number of observations in
PMW2 is significantly reduced compared to PMW1 due to
thinning, the supermod operator is able to spread the im-
pact of the observations over the footprint area, yielding an
increment pattern that overall resembles the pattern seen in
PMW1. Both PMW1 and PMW2 are cooled in the North Sea
in the southern part of the domain, while the larger part of
the domain is heated. Also, a large positive whirl in the in-
crements can be seen just north of 69◦ N in both panels. The
most notable difference between the experiments is that the
increments are weaker and more smooth in PMW2, which is

what we would expect, as the supermod operator is designed
to adjust the average SST in an area corresponding to the
footprint of the observations. Note that the high level of de-
tail in the increments in PMW1 does not necessarily lead to a
more detailed SST field in the analysis state. In many cases,
detailed increments reflect that structures present in the back-
ground state have been strongly modified or even removed.
Other notable differences between the experiments are the ar-
eas of strong, positive increments in PMW1 (north of 72◦ N,
close to the western boundary at 66◦ N, and close to the coast
around 63◦ N), which are not subject to enhanced heating
in PMW2, as well as some cold patches in PMW1 that are
not seen in PMW2. Furthermore, to separate the effect of the
supermod operator and the observation thinning, we study
the results from PMW1-thinned, in which a thinned set of
PMW SSTs is assimilated without applying the supermod
operator. We find that only a thinning of the observations is
not sufficient to spread the increments over the observation
footprint (Fig. 7c). The thinning itself does not handle the
spatial resolution mismatch between the PMW SSTs and the
model, and the supermod operator is required to spread the
information from each observation over an area of similar
size to the observation footprint. Calculated error statistics
also show that PMW1-thinned validates worse than PMW1
and PMW2 when validating against SSTs from satellites and
when validating against SSTs from drifting buoys (Table 3).
This indicates that the information provided by the thinned
set of PMW SST observations is used more efficiently when
the observations are assimilated with the footprint operator
activated.

When validating against satellite SSTs, the performance
of COMB1 is found to be superior to that of IR2, while
COMB2 is found to produce results that are identical to those
of IR2. For the validation against SSTs from drifting buoys,
both COMB1 and COMB2 perform better than IR2. These
results imply that the PMW SST data set provides the model
with information not seen by the IR SSTs and that the su-
permod operator is able to pass along this information to
some extent. We also find that COMB1 validates better than
COMB2. This can partly be explained by the differences be-
tween the magnitudes of the increments resulting from as-
similating the PMW SST observations, as discussed when
comparing PMW1 and PMW2. To verify that the addition of
PMW SSTs to the assimilated data set indeed has a positive
impact with regards to the validation against SSTs from drift-
ing buoys, we tested for statistical significance as follows.
For each of the experiments IR2, COMB1, and COMB2,
every individual SST difference (model minus observation)
was randomly assigned to 1 of 22 subsets. RMSE and bias
were calculated for these unique subsets, and a Wilcoxon
signed-rank test was used to test these RMSEs and biases for
statistical significance. The tests showed that the differences
between the RMSEs in COMB1, COMB2, and IR2 are sta-
tistically significant at the 99 % confidence level. The same
applies to the better bias in COMB1 compared to the bias in

https://doi.org/10.5194/os-19-729-2023 Ocean Sci., 19, 729–744, 2023



738 S. C. Iversen et al.: Refined SST assimilation

Figure 7. SST increments at the last time step in the first assimilation window. Increments of experiments (a) PMW1, (b) PMW2, and (c)
PMW1-thinned.

IR2. There is, however, no significant difference between the
biases calculated from COMB2 and IR2.

To investigate whether the improved error statistics of
COMB1 and COMB2 can be explained by the extra infor-
mation PMW SSTs provide to the model when IR SSTs
are unavailable, error statistics are now calculated separately
for cloudy and clear-sky conditions. The validation of SST
during cloudy conditions is calculated using only reference
satellite SSTs within regions where IR SSTs were unavail-
able during the previous analysis cycle. Similarly, only ref-
erence satellite SSTs in regions where there were clear skies
in the same analyses are used for validation of clear-sky con-
ditions. As we use the background model states for valida-
tion purposes, regions that experienced heavy cloud cover
and thus poor coverage of IR SSTs during the previous as-
similation cycle are not necessarily poorly sampled by IR
SST during the period used for validation. The resulting error
statistics are shown in Table 4. We find that both COMB1 and
COMB2 perform better than IR2 during cloudy conditions,
both in terms of RMSE and bias. Using the same method as
before to calculate the statistical significance, we find that the
lower RMSE and bias in COMB1 and COMB2 compared to
IR2 are statistically significant. There is, however, no signifi-
cant improvement in COMB2 over IR2 during clear-sky con-
ditions. The improvement seen in COMB1 is also more pro-
nounced during cloudy conditions than during periods with
good IR SST coverage, which indicates that PMW SSTs in-
deed provide valuable extra information in the absence of IR
SSTs.

Figure 8 illustrates how PMW observations compensate
for IR SST data deficiency. SSTs assimilated in IR2 during
the assimilation cycle covering 8–10 June 2018 are shown
in Fig. 8a, while the SST increments at the last time step of
this cycle are shown in Fig. 8b. Figure 8e shows the incre-
ments inside the black box in Fig. 8b. The presence of clouds
limits the IR SST coverage, particularly in the southwestern
part of the domain. A cluster of IR SST observations around
the Shetland Islands causes a cooling of the model. How-

Table 4. SST RMSE (◦C) and bias (◦C) calculated using satellite
SSTs as reference. Validation performed during cloudy (left col-
umn) and clear-sky conditions (right column). The number of ref-
erence observations is∼ 1.7× 106 (cloudy) and∼ 3.5× 107 (clear-
sky).

Cloudy Clear-sky

Experiment RMSE Bias RMSE Bias

IR2 0.401 −0.081 0.530 −0.188

COMB1 0.346 −0.004 0.523 −0.169
COMB2 0.393 −0.075 0.529 −0.187

ever, the general lack of observations in this region leaves
behind a larger area with no adjustments to the SST field. For
COMB2, the assimilated observations and the increments are
shown in Fig. 8c and d, respectively. The increments inside
the black box in Fig. 8d are shown in Fig. 8f. Notice that the
regions without IR SST observations in Fig. 8a are now cov-
ered by PMW SSTs. The addition of this information to the
model causes the SST field to adjust, such that a larger area
is cooled.

4.3 SST power spectra

Spectral analysis is a technique that can be used to decom-
pose the information contained in an observed or modeled
field into different spatial scales. Specifically, spectra can be
computed for modeled or observed SST fields to evaluate the
spatial resolution of the SST structures contained within the
field (e.g., Reynolds and Chelton, 2010; Brasnett and Colan,
2016; Castro et al., 2017; Pearson et al., 2019; Schubert
et al., 2019; Janeković et al., 2022). The reason for this is
that a spectrum holds information about the SST variability
at different spatial scales. Hence, a reduction in the spectral
density at shorter wavelengths reflects that SST structures at
these scales have been dampened, i.e., that the field has be-
come more smooth.
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Figure 8. SST observations assimilated in (a) IR2 and (c) COMB2 during the assimilation cycle covering 8–10 June 2018, and SST incre-
ments in (b) IR2 and (d) COMB2 at the last time step of this assimilation cycle. A zoom-in of the increments inside the black box in (b) and
(d) is shown in (e) and (f), respectively. Note the change in the scale of the color bar.

SST data are often decomposed into spectral space using
the discrete Fourier transform (DFT), a transformation that
requires the data to be periodic. Periodicity can be retained
by spatially detrending the data or by windowing, i.e., mul-
tiplying the field by a function such that the interior of the
domain retains its structures while the boundaries drop off
and approach zero. As noted by Denis et al. (2002), a disad-
vantage of detrending and windowing is that these methods
modify the resulting spectrum by removing important infor-
mation in the original data. To avoid these problems, they
propose an alternative to the DFT, namely the discrete cosine
transform (DCT). We have chosen to use this method for the
spectral analysis performed in this study. When applying the
DCT, the input fields are made periodic in space by mirroring
the fields prior to the transformation. The reader is referred
to Denis et al. (2002) for a thorough description of the DCT.

For each time step of the background, we apply the DCT to
the two-dimensional SST field inside the dashed box shown

in Fig. 2. This transformation into spectral space, as well
as the subsequent calculation of the two-dimensional spec-
tral variance array, follows the methodology described in
Denis et al. (2002). The spectral variance array consists of
elements, σ 2(m,n), where m and n are the adimensional
wavenumber axes (i.e., the grid cell indexes in both horizon-
tal directions), and each of these variance elements is associ-
ated with a normalized radial wavenumber,

κ =

√√√√m2

N2
i

+
n2

N2
j

, (3)

where Ni and Nj are the domain’s total number of grid cells
in each horizontal direction. The radial wavenumbers are
adimensional, but they can be converted into wavelengths
through the following equation:

λ=
21
κ
, (4)
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where1 is the grid cell spacing. To create a one-dimensional
SST power spectrum, all individual spectral variance ele-
ments, σ 2(m,n), that fall within a given wavelength bin, λ,
are summed in order to find the total variance in this bin.
As described in Denis et al. (2002), the variance elements
that contribute to wavelength bin λ are those variances that
fall within the wavelength band bounded by λ and λ+1λ.
However, we have modified this approach according to Ri-
card et al. (2013), such that the variances within a wavelength
band are proportionally distributed between the two bound-
ing wavelength bins based on the variances’ proximity to the
bins. The one-dimensional SST power spectra calculated for
each time step are subsequently averaged in time to provide a
mean SST power spectrum. Notice that, while the mean SST
power spectra are functions of the adimensional wavenum-
ber, we will refer to the wavelength calculated from Eq. (4)
when we present the results.

Figure 9 shows the mean SST power spectra calculated
for each experiment (except IR1 and PMW1-thinned). For
wavelengths smaller than ∼ 120 km, we find that the spec-
trum from PMW1 has significantly lower power than both the
spectrum calculated from IR2 and that of the free model run
(not shown). Assimilating PMW SSTs without using the su-
permod operator thus has a smoothing effect on the modeled
SST, indicating that the average effect of the high level of de-
tail seen in the increments (Fig. 7) is a removal or smoothing
of structures present in the background state. This smooth-
ing effect is also present in the spectrum calculated from
COMB1, where IR SSTs are added to the assimilated data
set: the spectrum from COMB1 follows that of PMW1 at
most wavelengths and is more or less similar to PMW1’s
spectrum at wavelengths in the range of ∼ 35–120 km. This
result is within expectations, as PMW SSTs represent a mean
value over a large footprint of the actual SST field. With a tra-
ditional observation operator, this mean value is compared
to individual model grid points, and any small-scale devia-
tion from this mean value in the model is thus damped in the
analysis.

The spectrum from PMW2 has more power than that from
PMW1 at all scales smaller than ∼ 120 km, which means
that PMW2 resolves more SST structures at these scales.
The peak in the ratio between PMW2 and IR2, which is
found at ∼ 80 km, is also present in the ratio between the
free model run and IR2 (not shown). In fact, we find that the
spectrum of PMW2 follows the spectrum of the free model
run at most spatial scales but with less power at all spatial
scales. Furthermore, we see in Fig. 9 that the power spec-
trum from COMB2 is more or less identical to that of IR2
at all spatial scales. Even with lower observation errors for
the PMW SSTs (decreasing the α) and thus stronger incre-
ments, COMB2 stays similar to IR2, with ∼ 1 as the ratio
between COMB2’s and IR2’s spectrum at all spatial scales
(not shown). These findings suggest that using the supermod
operator prevents smoothing of small-scale structures present
in the field: as PMW SSTs are now compared to mean model

Figure 9. Upper panel shows SST power spectra with wavelengths
ranging from 278.4 km (length of the shortest edge of the domain
used to calculate spectra) to 4.8 km (double the grid spacing). Shad-
ing is applied to indicate the 95 % confidence interval on the mean
spectrum, and this is calculated using the jackknife method. No-
tice that the shading is hard to detect due to the narrowness of the
confidence interval. Inset zoom shows the spectra at wavelengths
ranging from 120 to 20 km. The lower panel shows the ratio of the
experiments’ spectra to the spectrum from IR2. A dashed gray line
is drawn at 60 km, which is approximately the size of the major axis
of the elliptic PMW SST footprint.

values, they do not penalize variations of the SST at spatial
scales they do not resolve.

SST power spectra are also calculated for each experi-
ment using the last day of the analyses from each analysis
cycle. These spectra were compared with the corresponding
background spectra to examine if the assimilation changes
the spatial scales of the background SST structures within
each experiment. Figure 10 shows the ratio of the analysis
spectrum to the background spectrum for each experiment.
We find that the analyses in PMW1 experience a loss of
SST structures with spatial scales of ∼ 20–80 km and that
the analyses in COMB1 have fewer SST structures at scales
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Figure 10. Ratio of the analysis spectrum to the background spec-
trum for each experiment. Gray shading is applied at wavelengths
where there is no overlap of the 95 % confidence intervals of
the mean analysis spectrum and the mean background spectrum.
Dashed gray line drawn at 60 km.

of ∼ 40–60 km. The other experiments’ analyses do not ex-
perience a significant loss due to the assimilation of the ob-
servations.

5 Discussion

Our results suggest that it is beneficial to assimilate the PMW
SSTs in conjunction with the IR SSTs in order to reduce the
errors in modeled SST. This is verified by comparing the er-
ror statistics of COMB1 and COMB2 to IR2. The compari-
son of error statistics during clear-sky and cloudy conditions
suggests that the reduced errors in COMB1 and COMB2
largely originate from the additional information given to the
model during cloudy conditions when there is a shortage of
IR SSTs. Figure 8, which shows the SST increments in such
cloudy regions, demonstrates the supermod operator’s abil-
ity to pass along the relevant information seen by the PMW
SSTs. Here, the assimilated PMW SST observations cool the
model SST in a region of sparse IR SST coverage. The few
available IR SSTs in that region confirm this cooling. How-
ever, these IR SSTs are not sufficient to correct the SST of
the whole region when assimilated on their own.

While error statistics show that COMB1 validates bet-
ter than COMB2, we find that COMB1 yields smoother
SST fields than what is found in IR2. This indicates that
neglecting to account for the mismatch in spatial scales
when assimilating PMW SSTs may be disadvantageous. The
smoothing of COMB1 is demonstrated by the calculated SST
power spectra. We find that both PMW1 and COMB1 return
smoother SST fields than IR2 at spatial scales smaller than
∼ 120 km. This upper limit is approximately twice the size
of the major axis of the elliptic PMW SST footprint. Thus,
the limit corresponds to the expected effective resolution of
the SST structures resolved by the PMW SST observations.
It is striking that the affected spatial scales in PMW1 and
COMB1 correspond to scales smaller than or similar to this
effective resolution. Furthermore, the fact that additional in-
formation from the IR SSTs in COMB1 does not prevent
smoothing indicates that the PMW SSTs have a substantial
impact on the final product. However, assimilating the PMW
SSTs through the supermod operator, which was performed
in COMB2, does not result in a smoothing of the SST struc-
tures. This demonstrates that the operator is a good alterna-
tive approach to assimilating observations of coarser spatial
resolution than the model.

As demonstrated in Sect. 3.1, the amplitude of the incre-
ments decreases with increasing footprint size when the su-
permod operator is applied if the observation errors are kept
unchanged. A suitable choice for the observation error co-
variance is important for the overall performance of all as-
similation algorithms. To assess the observation errors pre-
scribed to the different products assimilated in this study,
we have applied the diagnosis proposed by Desroziers et al.
(2005). The results indicate that the chosen observation er-
rors are too high for all assimilated products. For PMW
SSTs, we see the same tendency of overestimation both
with and without the supermod operator activated. By set-
ting α = 0.8 to reduce the observation errors, we obtain im-
proved error statistics for PMW2 without any indication of
overfitting to the observations, whereas the results for PMW1
barely change (not shown). However, for PMW1, this lower
error introduces artifacts in the modeled SST fields. These
artifacts are similar to those that can be seen in the PMW ob-
servations, which may be caused by the large footprint size
and by the regridding and interpolation during the process-
ing. Due to this degradation of PMW1, and to be able to
fairly assess all experiments, the observational error was con-
structed using the higher α = 2 for all experiments shown in
this study. Moreover, the assimilation of PMW SSTs using
the supermod operator could potentially be improved by op-
timization of the prescribed footprint size. If a smaller foot-
print could be applied without smoothing the modeled SST,
this could both yield larger increments and increase the num-
ber of observations available for assimilation. Furthermore,
the effect of a less strict thinning of observations could be
explored.
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Finally, all of the experiments were during local spring,
which is a period when the modeled SST undergoes great
changes. Such changes make it challenging to sustain highly
skilled forecasts, and we chose this period due to these chal-
lenges. However, the chosen period is not heavily affected
by clouds. The impact of assimilating PMW SSTs is possi-
bly greater during winter when the oceanic regions along the
Norwegian coastline experience high cloud coverage.

6 Conclusions

Correcting satellite SSTs for biases through the implemented
bias correction scheme improves the modeled SST. The bias
correction scheme is easy to implement and apply, since it is
separate from the data assimilation process.

While assimilating IR SSTs reduces the modeled SST er-
rors, an additional reduction is achieved if PMW SSTs are as-
similated in conjunction with the IR SSTs. This error reduc-
tion is mainly caused by the information the PMW SSTs pro-
vide in cloudy regions. However, if we assimilate the PMW
SSTs without considering their large footprint sizes, we end
up smoothing the modeled SST structures of spatial scales
smaller than twice the PMW SST footprint. By introducing
the supermod operator, we have shown that the PMW SST
observations can be assimilated into the ocean model with-
out causing any spatial smoothing of the modeled SST. Our
supermod operator is easy to implement and can be used to
assimilate other observation variables that have a coarser spa-
tial resolution than the resolution of the model.

Code and data availability. The supermod operator code is avail-
able at https://doi.org/10.5281/zenodo.7816872 (Iversen, 2023).
The model output from each data assimilation experiment can be
provided upon request.
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