Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-517-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global water level variability observed after the Hunga Tonga-Hunga Ha'apai volcanic tsunami of 2022
Adam T. Devlin
School of Geography and Environment, Jiangxi Normal University,
Nanchang, Jiangxi, China
Cooperative Institute for Marine and Atmospheric Research, School of
Ocean and Earth Science and Technology, University of Hawai'i at Mānoa,
Honolulu, HI, United States of America
Department of Oceanography, University of Hawai'i at Mānoa,
Honolulu, HI, United States of America
Institute of Space and Earth Information Science, Chinese University
of Hong Kong, Shatin, Hong Kong, China
David A. Jay
Department of Civil and Environmental Engineering, Portland State
University, Portland, OR, United States of America
Stefan A. Talke
Department of Civil and Environmental Engineering, California
Polytechnic State University, San Luis Obispo, CA, United States of America
Jiayi Pan
CORRESPONDING AUTHOR
School of Geography and Environment, Jiangxi Normal University,
Nanchang, Jiangxi, China
Institute of Space and Earth Information Science, Chinese University
of Hong Kong, Shatin, Hong Kong, China
Key Laboratory of Poyang Lake Wetland and Watershed Research of
Ministry of Education, Nanchang, China
Related authors
Adam T. Devlin, Jiayi Pan, and Hui Lin
Ocean Sci., 15, 853–864, https://doi.org/10.5194/os-15-853-2019, https://doi.org/10.5194/os-15-853-2019, 2019
Short summary
Short summary
Ocean tides and mean sea level (MSL) can show correlations of
short-term variability in addition to the long-term trends, which may combine to increase total water levels at multiple timescales. Such changes may have implications for short-term high-water events such as nuisance flooding. This work analyses the variability in tides in the Hong Kong region to find that small changes in MSL may amplify tidal changes in Hong Kong, suggesting a strong sensitivity of water levels in the region.
Stefan A. Talke, David A. Jay, and Heida L. Diefenderfer
Hydrol. Earth Syst. Sci., 27, 2807–2826, https://doi.org/10.5194/hess-27-2807-2023, https://doi.org/10.5194/hess-27-2807-2023, 2023
Short summary
Short summary
Archival measurements and a statistical model show that average water temperature in a major US West Coast river has increased by 1.8 °C since 1850, at a rate of 1.1 °C per century. The largest factor driving modeled changes are warming air temperatures (nearly 75 %). The remainder is primarily caused by depth increases and other modifications to the river system. Near-freezing conditions, common historically, no longer occur, and the number of warm water days has significantly increased.
Ramin Familkhalili, Stefan A. Talke, and David A. Jay
Ocean Sci., 18, 1203–1220, https://doi.org/10.5194/os-18-1203-2022, https://doi.org/10.5194/os-18-1203-2022, 2022
Short summary
Short summary
Storm surges, tides, and high river flows often combine to cause flooding in estuaries, a problem known as compound flooding. In this study, we investigate these factors and how changes to estuary and river geometry influence peak water levels. This study offers an analytical framework for reducing estuary flood risk via a better understanding of how bathymetry, surge timescale, and river discharge affect surge and tidal amplitudes and flood heights and inundation in these systems.
Philip M. Orton, Eric W. Sanderson, Stefan A. Talke, Mario Giampieri, and Kytt MacManus
Nat. Hazards Earth Syst. Sci., 20, 2415–2432, https://doi.org/10.5194/nhess-20-2415-2020, https://doi.org/10.5194/nhess-20-2415-2020, 2020
Short summary
Short summary
The geometry of estuaries is often altered through dredging to make room for ships and with extensive landfill over wetlands to enable development. Here, we use historical maps to help create computational models of seawater flow around and into a lagoonal bay of New York City for the 1880s and 2010s. Our results show that these past man-made changes cause higher coastal storm tides and that they result specifically from deeper depths, expanded inlet width, and landfill.
Adam T. Devlin, Jiayi Pan, and Hui Lin
Ocean Sci., 15, 853–864, https://doi.org/10.5194/os-15-853-2019, https://doi.org/10.5194/os-15-853-2019, 2019
Short summary
Short summary
Ocean tides and mean sea level (MSL) can show correlations of
short-term variability in addition to the long-term trends, which may combine to increase total water levels at multiple timescales. Such changes may have implications for short-term high-water events such as nuisance flooding. This work analyses the variability in tides in the Hong Kong region to find that small changes in MSL may amplify tidal changes in Hong Kong, suggesting a strong sensitivity of water levels in the region.
Cited articles
Adam, D.: Tonga volcano eruption created puzzling ripples in Earth's
atmosphere, Nature, 601, 497,
https://doi.org/10.1038/d41586-022-00127-1, 2022.
Amores, A., Monserrat, S., Marcos, M., Argüeso, D., Villalonga, J.,
Jordà, G., and Gomis, D.: Numerical Simulation of Atmospheric Lamb Waves
Generated by the 2022 Hunga-Tonga Volcanic Eruption, Geophys. Res.
Lett., 49, e2022GL098240, https://doi.org/10.1029/2022GL098240, 2022.
Carr, J. L., Horváth, Á., Wu, D. L., and Friberg, M. D.: Stereo
Plume Height and Motion Retrievals for the Record-Setting Hunga Tonga-Hunga
Ha'apai Eruption of 15 January 2022, Geophys. Res. Lett., 49,
e2022GL098131, https://doi.org/10.1029/2022GL098131, 2022.
Carvajal, M., Sepúlveda, I., Gubler, A., and Garreaud, R.: Worldwide
signature of the 2022 Tonga volcanic tsunami, Geophys. Res.
Lett., 49, e2022GL098153, https://doi.org/10.1029/2022GL098153, 2022.
Denamiel, C., Vasylkevych, S., Žagar, N., Zemunik, P., and Vilibić, I.: Destructive Potential of Planetary Meteotsunami Waves beyond the Hunga Tonga–Hunga Ha'apai Volcano Eruption, B. Am. Meteorol. Soc., 104, E178–E191, https://doi.org/10.1175/BAMS-D-22-0164.1, 2023.
Devlin, A. T., Jay, D. A., Talke, S. A., and Zaron, E.: Can tidal
perturbations associated with sea level variations in the western Pacific
Ocean be used to understand future effects of tidal evolution?, Ocean
Dynam., 64, 1093–1120, https://doi.org/10.1007/s10236-014-0741-6, 2014.
Devlin, A. T., Jay, D. A., Talke, S. A., Zaron, E. D., Pan, J., and Lin, H.:
Coupling of sea level and tidal range changes, with implications for future
water levels, Sci. Rep., 7, 1–12,
https://doi.org/10.1038/s41598-017-17056-z, 2017.
Devlin, A. T., Pan, J., and Lin, H.: Extended Water Level Trends at
Long-Record Tide Gauges Via Moving Window Averaging and Implications for
Future Coastal Flooding, J. Geophys. Res.-Oceans, 126,
e2021JC017730, https://doi.org/10.1029/2021JC017730, 2021.
Devlin, A. T., Jay, D. A., Talke, S. A., and Pan, J.: Data for “Global water level variability observed after the Hunga Tonga-Hunga Ha'apai volcanic tsunami of 2022”, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/F0G63H, 2022.
Duncombe, J.: The surprising reach of Tonga's giant atmospheric waves, EOS,
103, https://doi.org/10.1029/2022EO220050, 21 January 2022.
Fang, G., Kwok, Y. K., Yu, K., and Zhu, Y.: Numerical simulation of
principal tidal constituents in the South China Sea, Gulf of Tonkin and Gulf
of Thailand, Cont. Shelf Res., 19, 845–869,
https://doi.org/10.1016/S0278-4343(99)00002-3, 1999.
Garrett, C. J. R.: A theory of the Krakatoa tide-gauge disturbances, Tellus,
22, 43–52, https://doi.org/10.1111/j.2153-3490.1970.tb01935.x, 1970.
Green, G.: On the Motion of Waves in a variable canal of small depth and width, in: Mathematical Papers of the Late George Green (Cambridge Library Collection – Mathematics, edited by: Ferrers, N., 223–230, Cambridge, Cambridge University Press, https://doi.org/10.1017/CBO9781107325074.007, 2014.
Gusman, A. R., Roger, J., Noble, C., Wang, X., Power, W., and Burbidge, D.:
The 2022 Hunga Tonga-Hunga Ha'apai Volcano Air-Wave Generated Tsunami, Pure
Appl. Geophys., 179, 3511–3525, https://doi.org/10.1007/s00024-022-03154-1, 2022.
Heidarzadeh, M., Šepić, J., Rabinovich, A., Allahyar, M.,
Soltanpour, A., and Tavakoli, F.: Meteorological tsunami of 19 March 2017 in
the Persian Gulf: observations and analyses, Pure Appl.
Geophys., 177, 1231–1259, https://doi.org/10.1007/s00024-019-02263-8, 2022a.
Heidarzadeh, M., Gusman, A. R., Ishibe, T., Sabeti, R., and Šepić,
J.: Estimating the eruption-induced water displacement source of the 15
January 2022 Tonga volcanic tsunami from tsunami spectra and numerical
modelling, Ocean Eng., 261, 112165, https://doi.org/10.1016/j.oceaneng.2022.112165, 2022b.
Holland, P. W. and Welsch, R. E.: Robust regression using iteratively
reweighted least-squares, Commun. Stat. Theory,
6, 813–827, https://doi.org/10.1080/03610927708827533, 1977.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen,
N. C., Tung, C. C., and Liu, H. H.: The empirical mode decomposition and the
Hilbert spectrum for nonlinear and non-stationary time series analysis, P.
Roy. Soc. Lond. A Mat., 454, 903–995,
https://doi.org/10.1098/rspa.1998.0193, 1998.
Jay, D. A.: Evolution of tidal amplitudes in the eastern Pacific Ocean,
Geophys. Res. Lett., 36, L04603, https://doi.org/10.1029/2008GL036185,
2009.
Kubo, H., Kubota, T., Suzuki, W., Aoi, S., Sandanbata, O., Chikasada, N.,
and Ueda, H.: Ocean-wave phenomenon around Japan due to the 2022
Tonga eruption observed by the wide and dense ocean-bottom pressure gauge
networks, Earth Planet. Space, 74, 104, https://doi.org/10.1186/s40623-022-01663-w, 2022.
Kubota, T., Saito, T., Chikasada, N. Y., and Sandanbata, O.: Meteotsunami
observed by the deep-ocean seafloor pressure gauge network off northeastern
Japan, Geophys. Res. Lett., 48, e2021GL094255, https://doi.org/10.1029/2021GL094255, 2021.
Kubota, T., Saito, T., and Nishida, K.: Global fast-traveling tsunamis
driven by atmospheric Lamb waves on the 2022 Tonga eruption, Science,
377, 91–94, https://doi.org/10.1126/science.abo4364, 2022.
Kulichkov, S. N.,
Chunchuzov, I. P.,
Popov, O. E.,
Gorchakov, G. I.,
Mishenin, A. A.,
Perepelkin, V. G.,
Bush, G. A.,
Skorokhod, A. I.,
Vinogradov, Yu. A.,
Semutnikova, E. G.,
Šepic, J.,
Medvedev, I. P.,
Gushchin, R. A.,
Kopeikin, V. M.,
Belikov, I. B.,
Gubanova, D. P.,
Karpov, A. V., and
Tikhonov, A. V.:
Acoustic-gravity Lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai
Volcano, its energy release and impact on aerosol concentrations and
tsunami, Pure Appl. Geophys., 179, 1533–1548, https://doi.org/10.1007/s00024-022-03046-4, 2022.
Lamb, H.: On atmospheric oscillations, P. Roy. Soc. A, 84, 551–572, https://doi.org/10.1098/rspa.1911.0008, 1911.
La Selle, S. M., Snyder, A. G., Nasr, B. M., Jaffe, B. E., Ritchie, A. C.,
Graehl, N., and Bott, J.: Observations of tsunami and runup heights in Santa
Cruz Harbor and surrounding beaches from the 2022 Hunga Tonga-Hunga Ha'apai
tsunami, U.S. Geological Survey data release [data set], https://doi.org/10.5066/P9ZVAB8D, 2022.
Levin, B. W. and Nosov, M.: Physics of tsunamis, 2nd Edn., Vol. 327, Springer,
Switzerland, https://doi.org/10.1007/978-3-319-24037-4, 2009.
Lilly, J. M.: Element analysis: a wavelet-based method for analysing
time-localized events in noisy time series, P. R. Soc.
A, 473, 20160776,
https://doi.org/10.1098/rspa.2016.0776, 2017.
Lin, J. T., Rajesh, P. K., Lin, C. C., Chou, M. Y., Liu, J. Y., Yue, J., Hsiao, T. Y., Tsai, H. F., Chao, H. M., and Kung, M. M.: Rapid Conjugate Appearance of the Giant Ionospheric Lamb
Wave Signatures in the Northern Hemisphere After Hunga-Tonga Volcano, 2022.
Eruptions, Geophys. Res. Lett., 49, e2022GL098222, https://doi.org/10.1029/2022GL098222, 2022.
Lynett, P., McCann, M., Zhou, Z., Renteria, W., Borrero, J., Greer, D., Fa'anunu, O., Bosserelle, C., Jaffe, B., La Selle, S., and Ritchie, A.: Diverse tsunamigenesis triggered by the Hunga Tonga-Hunga Ha'apai eruption, Nature, 609, 728–733, https://doi.org/10.1038/s41586-022-05170-6, 2022.
Matoza, R. S., Fee, D., Assink, J. D., et al.: Atmospheric waves and global seismoacoustic
observations of the January 2022 Hunga eruption, Tonga, Science, 377,
95–100, https://doi.org/10.1126/science.abo7063, 2022.
McCoy, E. J., Walden, A. T., and Percival, D. B.: Multitaper spectral
estimation of power law processes, IEEE T. Signal Proces.,
46, 655–668, https://doi.org/10.1109/78.661333, 1998.
Monserrat, S., Vilibić, I., and Rabinovich, A. B.: Meteotsunamis: atmospherically induced destructive ocean waves in the tsunami frequency band, Nat. Hazards Earth Syst. Sci., 6, 1035–1051, https://doi.org/10.5194/nhess-6-1035-2006, 2006.
Mori, N., Takahashi, T., Yasuda, T., and Yanagisawa, H.: Survey of 2011
Tohoku earthquake tsunami inundation and run-up, Geophys. Res.
Lett., 38, L00G14, https://doi.org/10.1029/2011GL049210, 2011.
Newhall, C. G. and Self, S.: The Volcanic Explosivity
Index (VEI): An Estimate of Explosive Magnitude for Historical Volcanism,
J. Geophys. Res., 87, 1231–1238, https://doi.org/10.1029/JC087iC02p01231, 1982.
Nishida, K., Kobayashi, N., and Fukao, Y.: Background Lamb waves in the
Earth's atmosphere, Geophys. J. Int., 196, 312–316,
https://doi.org/10.1093/gji/ggt413, 2022.
Okal, E. A. and Synolakis, C. E.: Sequencing of tsunami waves: why the
first wave is not always the largest, Geophys. J.
Int., 204, 719–735, https://doi.org/10.1093/gji/ggv457, 2016.
Olabarrieta, M., Valle-Levinson, A., Martinez, C. J., Pattiaratchi, C., and
Shi, L.: Meteotsunamis in the northeastern Gulf of Mexico and their possible
link to El Niño Southern Oscillation, Nat. Hazards, 88, 1325–1346,
https://doi.org/10.1007/s11069-017-2922-3, 2017.
Otsuka, S.: Visualizing Lamb Waves From a Volcanic Eruption Using
Meteorological Satellite Himawari-8, Geophys. Res. Lett., 49,
e2022GL098324, https://doi.org/10.1029/2022GL098324, 2022.
Pattiaratchi, C. B. and Wijeratne, E. M. S.: Are meteotsunamis an underrated
hazard?, Philos. T. R. Soc. A, 373, 20140377,
https://doi.org/10.1098/rsta.2014.0377, 2015.
Pelinovsky, E., Talipova, T., Kurkin, A., and Kharif, C.: Nonlinear mechanism of tsunami wave generation by atmospheric disturbances, Nat. Hazards Earth Syst. Sci., 1, 243–250, https://doi.org/10.5194/nhess-1-243-2001, 2001.
Pekeris, C. L.: Atmospheric oscillations, P. R. Soc. A, 158, 650–671, 1937.
Pekeris, C. L.: Propagation of a pulse in the atmosphere, P. R. Soc. A, 171, 434–449, 1939.
Poli, P. and Shapiro, N. M.: Rapid characterization of large volcanic
eruptions: Measuring the impulse of the Hunga Tonga Ha'apai explosion from
teleseismic waves, Geophys. Res. Lett., 49, e2022GL098123,
https://doi.org/10.1029/2022GL098123, 2022.
Press, F.: Volcanoes, Ice and Destructive Waves, Eng. Sci.,
20, 26–29, 1956.
Rabinovich, A. B.: Spectral analysis of tsunami waves: Separation of source
and topography effects, J. Geophys. Res.-Oceans, 102,
12663–12676, https://doi.org/10.1029/97JC00479, 1997.
Rabinovich, A. B.: Twenty-seven years of progress in the science of
meteorological tsunamis following the 1992 Daytona Beach event, Pure
Appl. Geophys., 177, 1193–1230, https://doi.org/10.1007/s00024-019-02349-3, 2020.
Rabinovich, A. B., Candella, R. N., and Thomson, R. E.: The open ocean
energy decay of three recent trans-Pacific tsunamis, Geophys. Res.
Lett., 40, 3157–3162, https://doi.org/10.1002/grl.50625, 2013.
Ramírez-Herrera, M. T., Coca, O., and Vargas-Espinosa, V.: Tsunami
effects on the Coast of Mexico by the Hunga Tonga-Hunga Ha'apai volcano
eruption, Tonga, Pure Appl. Geophys., 179, 1117–1137, https://doi.org/10.1007/s00024-022-03017-9, 2022.
Rioul, O. and Vetterli, M.: Wavelets and signal processing, IEEE Signal
Proc. Mag., 8, 14–38, https://doi.org/10.1109/79.91217, 1991.
Ripepe, M., Barfucci, G., De Angelis, S., Delle Donne, D., Lacanna, G., and
Marchetti, E.: Modeling volcanic eruption parameters by near-source internal
gravity waves, Sci. Rep., 6, 36727, https://doi.org/10.1038/srep36727, 2016.
Saito, T., Kubota, T., Chikasada, N. Y., Tanaka, Y., and Sandanbata, O.:
Meteorological tsunami generation due to sea-surface pressure change:
Three-dimensional theory and synthetics of ocean-bottom pressure
change, J. Geophys. Res.-Oceans, 126, e2020JC017011,
https://doi.org/10.1029/2020JC017011, 2021.
Sekizawa, S. and Kohyama, T.: Meteotsunami observed in Japan following the
Hunga Tonga eruption in 2022 investigated using a one-dimensional
shallow-water model, SOLA, 18, 129–134, https://doi.org/10.2151/sola.2022-021, 2022.
Šepić, J. and Rabinovich, A. B.: Meteotsunami in the Great Lakes and
on the Atlantic coast of the United States generated by the “derecho” of
June 29–30, 2012 in: Meteorological Tsunamis: The US East Coast and Other
Coastal Regions, Springer, 75–107, https://doi.org/10.1007/978-3-319-12712-5_5, 2014.
Šepić, J., Vilibić, I., Rabinovich, A. B., and Monserrat, S.:
Widespread tsunami-like waves of 23–27 June in the Mediterranean and Black
Seas generated by high-altitude atmospheric forcing, Sci. Rep.,
5, 1–8, https://doi.org/10.1038/srep11682, 2015.
Schufeldt, R. W.: Comments regarding correspondent “S” in Science No. 63,
Science, 65, 531–532, 1885.
Symons, G. (Ed.): The eruption of Krakatoa and subsequent phenomena, Trubner
& Co., London, ISBN 978-0343922986, 1888.
Tang, L., Titov, V. V., Moore, C., and Wei, Y.: Real-time assessment of the
16 September 2015 Chile tsunami and implications for near-field
forecast, in: The Chile-2015 (Illapel) Earthquake and Tsunami, edited by: Braitenberg, C., and Rabinovich, A., Pageoph Topical Volumes, Birkhäuser, Cham, 267–285, https://doi.org/10.1007/978-3-319-57822-4_19, 2017.
Tanioka, Y.: Improvement of near-field tsunami forecasting method using
ocean-bottom pressure sensor network (S-net), Earth Planet.
Space, 72, 1–10, https://doi.org/10.1186/s40623-020-01268-1,
2020.
Tanioka, Y., Yamanaka, Y., and Nakagaki, T.: Characteristics of the deep sea
tsunami excited offshore Japan due to the air wave from the 2022 Tonga
eruption, Earth Planet. Space, 74, 1–7, https://doi.org/10.1186/s40623-022-01614-5, 2022.
Themens, D. R., Watson, C., Žagar, N., Vasylkevych, S., Elvidge, S., McCaffrey, A., Prikryl, P., Reid, B., Wood, A., and Jayachandran, P. T.: Global propagation of
ionospheric disturbances associated with the 2022 Tonga Volcanic
Eruption, Geophys. Res. Lett., 49, e2022GL098158, https://doi.org/10.1029/2022GL098158, 2022.
Titov, V., Rabinovich, A. B., Mofjeld, H. O., Thomson, R. E., and
González, F. I.: The global reach of the 26 December 2004 Sumatra
tsunami, Science, 309, 2045–2048,
https://doi.org/10.1126/science.1114576, 2005.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B.
Am. Meteorol. Soc., 79, 61–78, https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2, 1998.
Van Dorn, W. G.: Some tsunami characteristics deducible from tide records,
J. Phys. Oceanogr., 14, 353–363,
https://doi.org/10.1175/1520-0485(1984)014<0353:STCDFT>2.0.CO;2,
1984.
Van Dorn, W. G.: Tide gage response to tsunamis. Part II: Other oceans and
smaller seas, J. Phys. Oceanogr., 17, 1507–1516,
https://doi.org/10.1175/1520-0485(1987)017<1507:TGRTTP>2.0.CO;2,
1987.
Vilibić, I. and Šepić, J.: Destructive meteotsunamis along the
eastern Adriatic coast: Overview, Phys. Chem. Earth, 34, 904–917, https://doi.org/10.1016/j.pce.2009.08.004, 2009.
Vilibić, I., Šepić, J., Rabinovich, A. B., and Monserrat, S.:
Modern approaches in meteotsunami research and early warning, Front.
Mar. Sci., 3, 57, https://doi.org/10.3389/fmars.2016.00057, 2016.
Watanabe, S., Hamilton, K., Sakazaki, T., and Nakano, M.: First Detection of
the Pekeris Internal Global Atmospheric Resonance: Evidence from the 2022
Tonga Eruption and from Global Reanalysis Data, J. Am.
Meteorol. Soc., 79, 3027–3043, https://doi.org/10.1175/JAS-D-22-0078.1, 2022.
Wang, Y., Wang, P., Kong, H., and Wong, C. S.: Tsunamis in Lingding Bay,
China, caused by the 2022 Tonga volcanic eruption, Geophys. J.
Int., 232, 2175–2185, 2023.
Wharton, N. J. L.: On the seismic sea waves caused by the eruption of
Krakatoa, August 26th and 27th, ich 1883, in: The eruption of Krakatoa and
subsequent phenomena, edited by: Symons, G., Trubner & Co., London,
89–151, ISBN 978-0343922986, 1888.
Williams, D. A., Horsburgh, K. J., Schultz, D. M., and Hughes, C. W.:
Proudman resonance with tides, bathymetry and variable atmospheric forcings,
Nat. Hazards 106, 1169–1194,
https://doi.org/10.1007/s11069-020-03896-y, 2021.
Witze, A.: Why the Tonga eruption will go down in the history of
volcanology, Nature, 602, 376–378, 2022.
Wright, C. J.,
Hindley, N. P.,
Alexander, M. J.,
Barlow, M.,
Hoffmann, L.,
Mitchell, C. N.,
Prata, F.,
Bouillon, M.,
Carstens, J.,
Clerbaux, C.,
Osprey, S. M.,
Powell, N.,
Randall, C. E., and
Yue, J.: Surface-to-space atmospheric waves from
Hunga Tonga–Hunga Ha'apai eruption, Nature, 609, 741–746, https://doi.org/10.1038/s41586-022-05012-5, 2022.
Yamada, M., Ho, T. C., Mori, J., Nishikawa, Y., and Yamamoto, M. Y.: Tsunami
triggered by the lamb wave from the 2022 tonga volcanic eruption and
transition in the offshore japan region, Geophys. Res.
Lett., 49, e2022GL098752, https://doi.org/10.1029/2022GL098752, 2022.
Yeh, H. H., Liu, P. L., and Synolakis, C. (Eds.): Advanced numerical models
for simulating tsunami waves and runup, Vol. 10, World Scientific, ISBN 9789814477130, 2008.
Yuen, D. A., Scruggs, M. A., Spera, F. J., Zheng, Y., Hu, H., McNutt, S. R., Thompson, G., Mandli, K., Keller, B. R., Wei, S. S., Peng, Z., Zhou, Z., Mulargia, F., and Tanioka, Y.: Under the surface: Pressure-induced planetary-scale
waves, volcanic lightning, and gaseous clouds caused by the submarine
eruption of Hunga Tonga-Hunga Ha'apai volcano, Earthquake Research Advances, 2,
100134, https://doi.org/10.1016/j.eqrea.2022.100134, 2022.
Zaron, E. D. and Jay, D. A.: An analysis of secular change in tides at
open-ocean sites in the Pacific, J. Phys. Oceanogr., 44,
1704–1726, https://doi.org/10.1175/JPO-D-13-0266.1, 2014.
Zaytsev, A. I., Pelinovsky, E. N., Dolgikh, G. I., and Dolgikh, S. G.:
Records of disturbances in the Sea of Japan caused by the eruption of
Hong-Tonga-Hung-Ha'apai Volcano on January 15, 2022, in the Tonga
Archipelago, Dokl. Earth Sci., 506, 818–823, https://doi.org/10.1134/S1028334X22700222, 2022.
Short summary
Volcanic meteotsunamis (VMTs) are global with impacts dependent on local topography. The impacts of a volcanic meteotsunami may occur where the oceanic tsunami is not present. Tsunami warning systems do not consider VMTs which can arrive first and may be several meters for a large volcanic eruption at locations with ideal topographical or bathymetric conditions. Here, we analyzed this event using high-frequency tide gauge data along with deep-water buoys and air pressure gauges worldwide.
Volcanic meteotsunamis (VMTs) are global with impacts dependent on local topography. The impacts...