Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-499-2023
https://doi.org/10.5194/os-19-499-2023
Research article
 | 
21 Apr 2023
Research article |  | 21 Apr 2023

Improving statistical projections of ocean dynamic sea-level change using pattern recognition techniques

Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher

Related authors

Statistical modelling and climate variability of compound surge and precipitation events in a managed water system: a case study in the Netherlands
Víctor M. Santos, Mercè Casas-Prat, Benjamin Poschlod, Elisa Ragno, Bart van den Hurk, Zengchao Hao, Tímea Kalmár, Lianhua Zhu, and Husain Najafi
Hydrol. Earth Syst. Sci., 25, 3595–3615, https://doi.org/10.5194/hess-25-3595-2021,https://doi.org/10.5194/hess-25-3595-2021, 2021
Short summary

Related subject area

Approach: Numerical Models | Properties and processes: Sea level | Depth range: Surface | Geographical range: All Geographic Regions | Challenges: Oceans and climate
Attributing decadal climate variability in coastal sea-level trends
Sam Royston, Rory J. Bingham, and Jonathan L. Bamber
Ocean Sci., 18, 1093–1107, https://doi.org/10.5194/os-18-1093-2022,https://doi.org/10.5194/os-18-1093-2022, 2022
Short summary
Contribution of buoyancy fluxes to tropical Pacific sea level variability
Patrick Wagner, Markus Scheinert, and Claus W. Böning
Ocean Sci., 17, 1103–1113, https://doi.org/10.5194/os-17-1103-2021,https://doi.org/10.5194/os-17-1103-2021, 2021
Short summary
The transient sensitivity of sea level rise
Aslak Grinsted and Jens Hesselbjerg Christensen
Ocean Sci., 17, 181–186, https://doi.org/10.5194/os-17-181-2021,https://doi.org/10.5194/os-17-181-2021, 2021
Short summary

Cited articles

Becker, M., Karpytchev, M., and Lennartz-Sassinek, S.: Long-term sea level trends: Natural or anthropogenic?, Geophys. Res. Lett., 41, 5571–5580, https://doi.org/10.1002/2014GL061027, 2014. 
Bilbao, R. A. F., Gregory, J. M., and Bouttes, N.: Analysis of the regional pattern of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs, Clim. Dynam., 45, 2647–2666, https://doi.org/10.1007/s00382-015-2499-z, 2015. 
Bouttes, N., Gregory, J. M., Kuhlbrodt, T., and Smith, R. S.: The drivers of projected North Atlantic sea level change, Clim. Dynam., 43, 1531–1544, https://doi.org/10.1007/s00382-013-1973-8, 2014. 
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013. 
CMIP5: CMIP5 data search, ESGF-cog – Lawrence Livermore National [data set], https://esgf-node.llnl.gov/search/cmip5/, last access: 18 April 2023. 
Download
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.