Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-351-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-351-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The signature of NAO and EA climate patterns on the vertical structure of the Canary Current upwelling system
Universidade do Algarve, FCT, Campus de Gambelas, Faro, 8005-139,
Portugal
now at: Institute of Geography, Johannes Gutenberg-Universität
Mainz, 55099 Mainz, Germany
Maria C. Neves
Universidade do Algarve, FCT, Campus de Gambelas, Faro, 8005-139,
Portugal
Instituto Dom Luiz (IDL), Universidade de Lisboa, Lisbon, 1749-016,
Portugal
Paulo Relvas
Universidade do Algarve, FCT, Campus de Gambelas, Faro, 8005-139,
Portugal
Centre of Marine Sciences (CCMAR), Campus de Gambelas, Faro, 8005-139, Portugal
Related authors
No articles found.
Sarah A. Rautenbach, Carlos Mendes de Sousa, Mafalda Carapuço, and Paulo Relvas
Earth Syst. Sci. Data, 16, 4641–4654, https://doi.org/10.5194/essd-16-4641-2024, https://doi.org/10.5194/essd-16-4641-2024, 2024
Short summary
Short summary
This article presents the data of a 4-month observation of the Iberian Margin Cape St. Vincent ocean observatory, in Portugal (2022), a European Multidisciplinary Seafloor and water column Observatory node. Three instruments at depths between 150 and 200 m collected physical/biogeochemical parameters at different spatial and temporal scales. EMSO-ERIC aims at developing strategies to enable sustainable ocean observation with regards to costs, time, and resolution.
Luciano de Oliveira Júnior, Paulo Relvas, and Erwan Garel
Ocean Sci., 18, 1183–1202, https://doi.org/10.5194/os-18-1183-2022, https://doi.org/10.5194/os-18-1183-2022, 2022
Short summary
Short summary
The circulation patterns of surface water over the northern Gulf of Cádiz are described based on hourly high-frequency radar data from 2016 to 2020. A persistent current follows the continental shelf slope eastward while near the coast, and currents generally have a balanced (eastward–westward) direction. In summer cross-shelf transport is promoted when westward coastal countercurrents recirculate offshore in the western region and merge with the slope current.
Cited articles
Abrahams, A., Schlegel, R. W., and Smit, A. J.: Variation and Change of
Upwelling Dynamics Detected in the World's Eastern Boundary Upwelling
Systems, Front. Mar. Sci., 8, 11,
https://doi.org/10.3389/fmars.2021.626411, 2021.
Angell, J. K. and Korshover, J.: Quasi-biennial and long-term fluctuations
in the centres of action, Mon. Weather Rev., 102, 669–678, 1974.
Arístegui, J., Barton, E. D., Álvarez-Salgado, X. A., Santos, A. M.
P., Figueiras, F. G., Kifani, S., Hernández-León, S., Mason, E.,
Machú, E., and Demarcq, H.: Sub-regional ecosystem variability in the
Canary Current upwelling, Prog. Oceanogr., 83, 33–48,
https://doi.org/10.1016/j.pocean.2009.07.031, 2009.
Bakun, A.: Global Climate Change and Intensification of Coastal Ocean
Upwelling, Science, 247, 198–201,
https://doi.org/10.1126/science.247.4939.198, 1990.
Bakun, A. and Nelson, C. S.: The Seasonal Cycle of Wind-Stress Curl in
Subtropical Eastern Boundary Current Regions, J. Phys. Ocean., 21, 1815–1834, 1991.
Barnston, A. G. and Livezey, R. E.: Classification, Seasonality and
Persistence of Low-Frequency Atmospheric Circulation Patterns, Mon. Weather Rev., 115, 1083–1126, 1987.
Barton, E. D., Field, D. B., and Roy, C.: Canary current upwelling: More or
less?, Prog. Oceanogr., 116, 167–178,
https://doi.org/10.1016/j.pocean.2013.07.007, 2013.
Bastos, A., Janssens, I. A., Gouveia, C. M., Trigo, R. M., Ciais, P.,
Chevallier, F., Peñuelas, J., Rödenbeck, C., Piao, S.,
Friedlingstein, P., and Running, S. W.: European land CO2 sink influenced by
NAO and East-Atlantic Pattern coupling, Nat. Commun., 7, 1–9,
https://doi.org/10.1038/ncomms10315, 2016.
Benazzouz, A., Mordane, S., Orbi, A., Chagdali, M., Hilmi, K., Atillah, A.,
Lluís Pelegrí, J., and Hervé, D.: An improved coastal
upwelling index from sea surface temperature using satellite-based approach
– The case of the Canary Current upwelling system, Cont. Shelf
Res., 81, 38–54, https://doi.org/10.1016/j.csr.2014.03.012, 2014.
Bernard, B., Madec, G., Penduff, T., Molines, J.-M., Treguier, A.-M., Le
Sommer, J., Beckmann, A., Biastoch, A., Böning, C., Dengg, J., Derval,
C., Durand, E., Gulev, S., Remy, E., Talandier, C., Theetten, S., Maltrud,
M., McClean, J., and De Cuevas, B.: Impact of partial steps and momentum
advection schemes in a global ocean circulation model at eddy-permitting
resolution, Ocean Dynam., 56, 543–567,
https://doi.org/10.1007/s10236-006-0082-1, 2006.
Bessa, I., Makaoui, A., Agouzouk, A., Idrissi, M., Hilmi, K., and Afifi, M.:
Seasonal variability of the ocean mixed layer depth depending on the cape
Ghir filament and the upwelling in the Moroccan Atlantic coast, Mater.
Today, 13, 637–645,
https://doi.org/10.1016/j.matpr.2019.04.023, 2019.
Bessa, I., Makaoui, A., Agouzouk, A., Idrissi, M., Hilmi, K., and Afifi, M.:
Variability of the ocean mixed layer depth and the upwelling activity in the
Cape Bojador, Morocco, Model. Earth Syst. Environ., 6,
1345–1355, https://doi.org/10.1007/s40808-020-00774-1, 2020.
Bonino, G., Di Lorenzo, E., Masina, S., and Iovino, D.: Interannual to
decadal variability within and across the major Eastern Boundary Upwelling
Systems, Sci. Rep., 9, 1–14,
https://doi.org/10.1038/s41598-019-56514-8, 2019.
Carr, M.-E. and Kearns, E. J.: Production regimes in four Eastern Boundary
Current systems, Deep Sea Res. Pt. II, 50, 3199–3221,
https://doi.org/10.1016/j.dsr2.2003.07.015, 2003.
Chavez, F. P. and Messié, M.: A comparison of Eastern Boundary Upwelling
Ecosystems, Prog. Oceanogr., 83, 80–96,
https://doi.org/10.1016/j.pocean.2009.07.032, 2009.
Chu, P. C. and Fan, C.: Optimal Linear Fitting for Objective Determination
of Ocean Mixed Layer Depth from Glider Profiles, J. Atmos. Ocean. Tech., 27, 1893–1898, https://doi.org/10.1175/2010JTECHO804.1,
2010.
Chu, P. C. and Fan, C.: Determination of Ocean Mixed Layer Depth from
Profile Data, in: Integrated Observing and Assimilation Systems for the
Atmosphere, Oceans and Land Surface (IOAS-AOLS), Seattle, 1001–1008, 2011.
Cleverly, J., Eamus, D., Luo, Q., Restrepo Coupe, N., Kljun, N., Ma, X.,
Ewenz, C., Li, L., Yu, Q., and Huete, A.: The importance of interacting
climate modes on Australia's contribution to global carbon cycle extremes,
Sci. Rep., 6, 23113, https://doi.org/10.1038/srep23113, 2016.
Comas-Bru, L. and McDermott, F.: Impacts of the EA and SCA patterns on the
European twentieth century NAO− winter climate relationship, Q. J. Roy. Meteor. Soc., 140, 354–363,
https://doi.org/10.1002/qj.2158, 2014.
Cropper, T. E., Hanna, E., and Bigg, G. R.: Spatial and temporal seasonal
trends in coastal upwelling off Northwest Africa, 1981–2012, Deep Sea
Res. Pt. I, 86, 94–111, https://doi.org/10.1016/j.dsr.2014.01.007,
2014.
Delworth, T. L. and Zeng, F.: The Impact of the North Atlantic Oscillation
on Climate through Its Influence on the Atlantic Meridional Overturning
Circulation, J. Climate, 29, 941–962,
https://doi.org/10.1175/JCLI-D-15-0396.1, 2016.
E.U. Copernicus Marine Service Information: CMEMS: Global Ocean Ensemble Physics
Reanalysis (PHY_001_026) [data set],
https://doi.org/10.48670/moi-00023, last access: 2 May 2020.
Gallego, D., Garcia-Herrera, R., Mohino, E., Losada, T., and
Rodriguez-Fonseca, B.: Secular Variability of the Upwelling at the Canaries
Latitude: An Instrumental Approach, J. Geophys. Res.-Oceans,
127, e2021JC018039, https://doi.org/10.1029/2021JC018039, 2022.
Gómez-Gesteira, M., de Castro, M., Álvarez, I., Lorenzo, M. N.,
Gesteira, J. L. G., and Crespo, A. J. C.: Spatio-temporal Upwelling Trends
along the Canary Upwelling System (1967–2006), Ann. NY Acad. Sci., 1146, 320–337,
https://doi.org/10.1196/annals.1446.004, 2008.
Gómez-Letona, M., Ramos, A. G., Coca, J., and Arístegui, J.: Trends
in Primary Production in the Canary Current Upwelling System – A Regional
Perspective Comparing Remote Sensing Models, Front. Mar. Sci., 4,
370, https://doi.org/10.3389/fmars.2017.00370, 2017.
Gruber, N., Lachkar, Z., Frenzel, H., Marchesiello, P., Münnich, M.,
McWilliams, J. C., Nagai, T., and Plattner, G.-K.: Eddy-induced reduction of
biological production in eastern boundary upwelling systems, Nat.
Geosci., 4, 787–792, https://doi.org/10.1038/ngeo1273, 2011.
Häkkinen, S.: Variability of the simulated meridional heat transport in
the North Atlantic for the period 1951–1993, J. Geophys. Res.-Oceans, 104, 10991–11007, https://doi.org/10.1029/1999JC900034,
1999.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 monthly averaged data on single levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.f17050d7, 2019.
Hurrell, J. W., Kushnir, Y., and Visbeck, M.: The North Atlantic
Oscillation, Science, 291, 603–604, 2001.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.: An overview of
the North Atlantic Oscillation, in: Geophysical Monograph Series,
edited by: Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.,
American Geophysical Union, Washington, D.C., 134, 1–35,
https://doi.org/10.1029/134GM01, 2003.
IPCC: Summary for Policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and
New York, NY, USA, 3–35, https://doi.org/10.1017/9781009157964.001, 2019.
Kalimeris, A., Ranieri, E., Founda, D., and Norrant, C.: Variability modes
of precipitation along a Central Mediterranean area and their relations with
ENSO, NAO, and other climatic patterns, Atmos. Res., 198, 56–80,
https://doi.org/10.1016/j.atmosres.2017.07.031, 2017.
Kara, A. B., Rochford, P. A., and Hurlburt, H. E.: Mixed layer depth
variability and barrier layer formation over the North Pacific Ocean,
J. Geophys. Res.-Oceans, 105, 16783–16801,
https://doi.org/10.1029/2000JC900071, 2000.
Luo, D., Gong, T., and Diao, Y.: Dynamics of Eddy-Driven Low-Frequency
Dipole Modes. Part III: Meridional Displacement of Westerly Jet Anomalies
during Two Phases of NAO, J. Atmos. Sci., 64,
3232–3248, https://doi.org/10.1175/JAS3998.1, 2007.
Marchesiello, P. and Estrade, P.: Upwelling limitation by onshore
geostrophic flow, J. Mar. Res., 68, 37–62,
https://doi.org/10.1357/002224010793079004, 2010.
Marrero-Betancort, N., Marcello, J., Rodríguez Esparragón, D., and Hernández-León, S.: Wind variability in the Canary Current during the last 70 years, Ocean Sci., 16, 951–963, https://doi.org/10.5194/os-16-951-2020, 2020.
McDougall T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, [code], SCOR/IAPSO WG127, 1-28, ISBN 978-0-646-55621-5, 2011.
McGregor, H. V., Dima, M., Fischer, H. W., and Mulitza, S.: Rapid
20th-Century Increase in Coastal Upwelling off Northwest Africa, Science,
315, 637–639, https://doi.org/10.1126/science.1134839, 2007.
Messié, M. and Chavez, F. P.: Seasonal regulation of primary production
in eastern boundary upwelling systems, Prog. Oceanogr., 134, 1–18,
https://doi.org/10.1016/j.pocean.2014.10.011, 2015.
Narayan, N., Paul, A., Mulitza, S., and Schulz, M.: Trends in coastal upwelling intensity during the late 20th century, Ocean Sci., 6, 815–823, https://doi.org/10.5194/os-6-815-2010, 2010.
Neves, M. C., Jerez, S., and Trigo, R. M.: The response of piezometric
levels in Portugal to NAO, EA, and SCAND climate patterns, J.
Hydrol., 568, 1105–1117, https://doi.org/10.1016/j.jhydrol.2018.11.054,
2019.
Neves, M. C., Malmgren, K., and Neves, R. M.: Climate-driven variability in
the context of the water-energy nexus: A case study in southern Portugal,
J. Clean. Prod., 320, 128828,
https://doi.org/10.1016/j.jclepro.2021.128828, 2021.
NOAA Fisheries: Environmental Research Division: Upwelling Indices [data set], https://oceanview.pfeg.noaa.gov/products/upwelling/bakun (last access: 23 July 2020), 2019.
NOAA: National Weather Service, Climate Prediction Center: East Atlantic (EA) [data set],
https://www.cpc.ncep.noaa.gov/data/teledoc/ea.shtml, last access: 5 July 2020a.
NOAA: National Weather Service, Climate Prediction Center: North Atlantic Oscillation (NAO), [data set],
https://www.cpc.ncep.noaa.gov/products/precip/CWlink/pna/nao.shtml, last access: 5 July 2020b.
Nykjær, L. and Van Camp, L.: Seasonal and interannual variability of
coastal upwelling along northwest Africa and Portugal from 1981 to 1991,
J. Geophys. Res., 99, 14197–14207,
https://doi.org/10.1029/94JC00814, 1994.
Pardo, P., Padín, X., Gilcoto, M., Farina-Busto, L., and Pérez, F.:
Evolution of upwelling systems coupled to the long-term variability in sea
surface temperature and Ekman transport, Clim. Res., 48, 231–246,
https://doi.org/10.3354/cr00989, 2011.
Polonsky, A. B. and Serebrennikov, A. N.: Long-Term Sea Surface Temperature
Trends in the Canary Upwelling Zone and their Causes, Izvestiya, Atmos. Ocean. Phys., 54, 1062–1067,
https://doi.org/10.1134/S0001433818090281, 2018.
Santos, A., Nogueira, J., and Martins, H.: Survival of sardine larvae off
the Atlantic Portuguese coast: a preliminary numerical study, ICES J. Mar. Sci., 62, 634–644,
https://doi.org/10.1016/j.icesjms.2005.02.007, 2005.
Schlesinger, M. E. and Ramankutty, N.: An oscillation in the global climate
system of period 65-70 years, Nature, 367, 723–726,
https://doi.org/10.1038/367723a0, 1994.
Siemer, J. P., Machín, F., González-Vega, A., Arrieta, J. M.,
Gutiérrez-Guerra, M. A., Pérez-Hernández, M. D.,
Vélez-Belchí, P., Hernández-Guerra, A., and Fraile-Nuez, E.:
Recent Trends in SST, Chl-a, Productivity and Wind Stress in Upwelling and
Open Ocean Areas in the Upper Eastern North Atlantic Subtropical Gyre,
J. Geophys. Res.-Oceans, 126, e2021JC017268,
https://doi.org/10.1029/2021JC017268, 2021.
Sprintall, J. and Tomczak, M.: Evidence of the barrier layer in the surface
layer of the tropics, J. Geophys. Res., 97, 7305–7316,
https://doi.org/10.1029/92JC00407, 1992.
Sydeman, W. J., García-Reyes, M., Schoeman, D. S., Rykaczewski, R. R.,
Thompson, S. A., Black, B. A., and Bograd, S. J.: Climate change and wind
intensification in coastal upwelling ecosystems, Science, 345, 77–80, 2014.
Trigo, R. M., Pozo-Vázquez, D., Osborn, T. J., Castro-Díez, Y.,
Gámiz-Fortis, S., and Esteban-Parra, M. J.: North Atlantic oscillation
influence on precipitation, river flow and water resources in the Iberian
Peninsula, Int. J. Clim., 24, 925–944,
https://doi.org/10.1002/joc.1048, 2004.
Troupin, C., Sangrà, P., and Arístegui, J.: Seasonal variability of
the oceanic upper layer and its modulation of biological cycles in the
Canary Island region, J. Mar. Syst., 80, 172–183,
https://doi.org/10.1016/j.jmarsys.2009.10.007, 2010.
Visbeck, M., Chassignet, E. P., Curry, R. G., Delworth, T. L., Dickson, R.
R., and Krahmann, G.: The ocean's response to North Atlantic Oscillation
variability, in: The North Atlantic Oscillation: Climatic significance and
environmental impact, edited by: Hurell, J. W., Kushnir, Y., Ottersen, G.,
and Visbeck, M., American Geophysical Union, Washington, D.C., 113–145,
2003.
Wang, J., Yang, B., Ljungqvist, F. C., Luterbacher, J., Osborn, T. J.,
Briffa, K. R., and Zorita, E.: Internal and external forcing of multidecadal
Atlantic climate variability over the past 1,200 years, Nat. Geosci.,
10, 512–517, https://doi.org/10.1038/ngeo2962, 2017.
Yamaguchi, R. and Suga, T.: Trend and Variability in Global Upper-Ocean
Stratification Since the 1960s, J. Geophys. Res.-Oceans,
124, 8933–8948, https://doi.org/10.1029/2019JC015439, 2019.
Yamamoto, A., Tatebe, H., and Nonaka, M.: On the Emergence of the Atlantic
Multidecadal SST Signal: A Key Role of the Mixed Layer Depth Variability
Driven by North Atlantic Oscillation, J. Climate, 33, 3511–3531,
https://doi.org/10.1175/JCLI-D-19-0283.1, 2020.
Yan, Z., Tsimplis, M. N., and Woolf, D.: Analysis of the relationship
between the North Atlantic oscillation and sea-level changes in northwest
Europe, Int. J. Climatol., 24, 743–758,
https://doi.org/10.1002/joc.1035, 2004.
Short summary
This study aims to analyse the changes of the vertical structure of the ocean during upwelling and the role of climate patterns in the Canary Current (25–35°N) over a period of 25 years (1993–2017). Ocean mixing is enhanced during upwelling events and extends deeper (shallower) in the winters of positive (negative) North Atlantic Oscillation. It is enhanced during coupled, opposite phases of the East Atlantic pattern, suggesting stronger upwelling activity independent of climate patterns.
This study aims to analyse the changes of the vertical structure of the ocean during upwelling...