Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-321-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-321-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revisiting the global mean ocean mass budget over 2005–2020
Magellium, 31520 Ramonville-Saint-Agne, France
Julia Pfeffer
Magellium, 31520 Ramonville-Saint-Agne, France
Anny Cazenave
Magellium, 31520 Ramonville-Saint-Agne, France
LEGOS, Toulouse, France
Robin Fraudeau
Magellium, 31520 Ramonville-Saint-Agne, France
Victor Rousseau
Magellium, 31520 Ramonville-Saint-Agne, France
Michaël Ablain
Magellium, 31520 Ramonville-Saint-Agne, France
Related authors
Andrea Storto, Giulia Chierici, Julia Pfeffer, Anne Barnoud, Romain Bourdalle-Badie, Alejandro Blazquez, Davide Cavaliere, Noémie Lalau, Benjamin Coupry, Marie Drevillon, Sebastien Fourest, Gilles Larnicol, and Chunxue Yang
State Planet, 4-osr8, 12, https://doi.org/10.5194/sp-4-osr8-12-2024, https://doi.org/10.5194/sp-4-osr8-12-2024, 2024
Short summary
Short summary
The variability in the manometric sea level (i.e. the sea level mass component) in three ocean basins is investigated in this study using three different methods (reanalyses, gravimetry, and altimetry in combination with in situ observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale climate modes on the regional manometric sea level variations at both seasonal and interannual timescales.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Florence Marti, Alejandro Blazquez, Benoit Meyssignac, Michaël Ablain, Anne Barnoud, Robin Fraudeau, Rémi Jugier, Jonathan Chenal, Gilles Larnicol, Julia Pfeffer, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, https://doi.org/10.5194/essd-14-229-2022, 2022
Short summary
Short summary
The Earth energy imbalance at the top of the atmosphere due to the increase in greenhouse gases and aerosol concentrations is responsible for the accumulation of energy in the climate system. With its high thermal inertia, the ocean accumulates most of this energy excess in the form of heat. The estimation of the global ocean heat content through space geodetic observations allows monitoring of the energy imbalance with realistic uncertainties to better understand the Earth’s warming climate.
Florence Marti, Benoit Meyssignac, Victor Rousseau, Michaël Ablain, Robin Fraudeau, Alejandro Blazquez, and Sébastien Fourest
State Planet, 4-osr8, 3, https://doi.org/10.5194/sp-4-osr8-3-2024, https://doi.org/10.5194/sp-4-osr8-3-2024, 2024
Short summary
Short summary
As space geodetic observations are used to monitor the global ocean heat content change, they allow estimating the Earth energy imbalance (EEI). Over 1993–2022, the space geodetic EEI estimate shows a positive trend of 0.29 W m−2 per decade, indicating accelerated warming of the ocean in line with other independent estimates. The study highlights the importance of comparing various estimates and their uncertainties to reliably assess EEI changes.
Andrea Storto, Giulia Chierici, Julia Pfeffer, Anne Barnoud, Romain Bourdalle-Badie, Alejandro Blazquez, Davide Cavaliere, Noémie Lalau, Benjamin Coupry, Marie Drevillon, Sebastien Fourest, Gilles Larnicol, and Chunxue Yang
State Planet, 4-osr8, 12, https://doi.org/10.5194/sp-4-osr8-12-2024, https://doi.org/10.5194/sp-4-osr8-12-2024, 2024
Short summary
Short summary
The variability in the manometric sea level (i.e. the sea level mass component) in three ocean basins is investigated in this study using three different methods (reanalyses, gravimetry, and altimetry in combination with in situ observations). We identify the emerging long-term signals, the consistency of the datasets, and the influence of large-scale climate modes on the regional manometric sea level variations at both seasonal and interannual timescales.
Michaël Ablain, Noémie Lalau, Benoit Meyssignac, Robin Fraudeau, Anne Barnoud, Gérald Dibarboure, Alejandro Egido, and Craig James Donlon
EGUsphere, https://doi.org/10.5194/egusphere-2024-1802, https://doi.org/10.5194/egusphere-2024-1802, 2024
Short summary
Short summary
This study proposes a novel cross-validation method to assess the instrumental stability in sea level trends. The method involves implementing a second tandem flight phase between two successive altimeter missions a few years after the first. The trend in systematic instrumental differences made during the two tandem phases can be estimated below ±0.1 mm/yr (16–84 % confidence level) on a global scale, for time intervals between the tandem phases of four years or more.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Anny Cazenave, Julia Pfeffer, Mioara Mandea, and Veronique Dehant
Earth Syst. Dynam., 14, 733–735, https://doi.org/10.5194/esd-14-733-2023, https://doi.org/10.5194/esd-14-733-2023, 2023
Short summary
Short summary
While a 6-year oscillation has been reported for some time in the motions of the fluid outer core of the Earth, in the magnetic field and in the Earth rotation, novel results indicate that the climate system also oscillates at this 6-year frequency. This strongly suggests the existence of coupling mechanisms affecting the Earth system as a whole, from the deep Earth interior to the surface fluid envelopes.
Victor Rousseau, Robin Fraudeau, Matthew Hammond, Odilon Joël Houndegnonto, Michaël Ablain, Alejandro Blazquez, Fransisco Mir Calafat, Damien Desbruyères, Giuseppe Foti, William Llovel, Florence Marti, Benoît Meyssignac, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-236, https://doi.org/10.5194/essd-2023-236, 2023
Preprint withdrawn
Short summary
Short summary
The estimation of regional Ocean Heat Content (OHC) is crucial for climate analysis and future climate predictions. In our study, we accurately estimate regional OHC changes in the Atlantic Ocean using satellite and in situ data. Findings reveal significant warming in the Atlantic basin from 2002 to 2020 with a mean trend of 0.17W/m², representing 230 times the power of global nuclear plants. The product has also been successfully validated in the North Atlantic basin using in situ data.
Adrien Guérou, Benoit Meyssignac, Pierre Prandi, Michaël Ablain, Aurélien Ribes, and François Bignalet-Cazalet
Ocean Sci., 19, 431–451, https://doi.org/10.5194/os-19-431-2023, https://doi.org/10.5194/os-19-431-2023, 2023
Short summary
Short summary
Based on the latest satellite observations published by the French space agency CNES, we present the current state of the sea level at the scale of the planet and assess its rise and acceleration over the past 29 years. To support scientific research we provide updated estimations of our confidence in our estimations and highlight key technological and scientific fields. Making progress on that will help to better characterize the sea level in the future.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Rémi Jugier, Michaël Ablain, Robin Fraudeau, Adrien Guerou, and Pierre Féménias
Ocean Sci., 18, 1263–1274, https://doi.org/10.5194/os-18-1263-2022, https://doi.org/10.5194/os-18-1263-2022, 2022
Short summary
Short summary
To ensure that the sea level is measured as accurately as possible by satellite altimeters, we must monitor possible sea level drifts caused by those instruments through comparison with other satellite altimeters or tide gauges. In this paper, we describe a method and estimate the associated uncertainties for detecting altimeter drifts over short time periods (from 2 to 10 years) through cross-comparison with other satellite altimeters and apply it to the recent Sentinel-3 A/B altimeters.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Florence Marti, Alejandro Blazquez, Benoit Meyssignac, Michaël Ablain, Anne Barnoud, Robin Fraudeau, Rémi Jugier, Jonathan Chenal, Gilles Larnicol, Julia Pfeffer, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, https://doi.org/10.5194/essd-14-229-2022, 2022
Short summary
Short summary
The Earth energy imbalance at the top of the atmosphere due to the increase in greenhouse gases and aerosol concentrations is responsible for the accumulation of energy in the climate system. With its high thermal inertia, the ocean accumulates most of this energy excess in the form of heat. The estimation of the global ocean heat content through space geodetic observations allows monitoring of the energy imbalance with realistic uncertainties to better understand the Earth’s warming climate.
Zacharie Barrou Dumont, Simon Gascoin, Olivier Hagolle, Michaël Ablain, Rémi Jugier, Germain Salgues, Florence Marti, Aurore Dupuis, Marie Dumont, and Samuel Morin
The Cryosphere, 15, 4975–4980, https://doi.org/10.5194/tc-15-4975-2021, https://doi.org/10.5194/tc-15-4975-2021, 2021
Short summary
Short summary
Since 2020, the Copernicus High Resolution Snow & Ice Monitoring Service has distributed snow cover maps at 20 m resolution over Europe in near-real time. These products are derived from the Sentinel-2 Earth observation mission, with a revisit time of 5 d or less (cloud-permitting). Here we show the good accuracy of the snow detection over a wide range of regions in Europe, except in dense forest regions where the snow cover is hidden by the trees.
Yvan Gouzenes, Fabien Léger, Anny Cazenave, Florence Birol, Pascal Bonnefond, Marcello Passaro, Fernando Nino, Rafael Almar, Olivier Laurain, Christian Schwatke, Jean-François Legeais, and Jérôme Benveniste
Ocean Sci., 16, 1165–1182, https://doi.org/10.5194/os-16-1165-2020, https://doi.org/10.5194/os-16-1165-2020, 2020
Short summary
Short summary
This study provides for the first time estimates of sea level anomalies very close to the coastline based on high-resolution retracked altimetry data, as well as corresponding sea level trends, over a 14-year time span. This new information has so far not been provided by standard altimetry data.
Michaël Ablain, Benoît Meyssignac, Lionel Zawadzki, Rémi Jugier, Aurélien Ribes, Giorgio Spada, Jerôme Benveniste, Anny Cazenave, and Nicolas Picot
Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, https://doi.org/10.5194/essd-11-1189-2019, 2019
Short summary
Short summary
A description of the uncertainties in the Global Mean Sea Level (GMSL) record has been performed; 25 years of satellite altimetry data were used to estimate the error variance–covariance matrix for the GMSL record to derive its confidence envelope. Then a least square approach was used to estimate the GMSL trend and acceleration uncertainties over any time periods. A GMSL trend of 3.35 ± 0.4 mm/yr and a GMSL acceleration of 0.12 ± 0.07 mm/yr² have been found within a 90 % confidence level.
WCRP Global Sea Level Budget Group
Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, https://doi.org/10.5194/essd-10-1551-2018, 2018
Short summary
Short summary
Global mean sea level is an integral of changes occurring in the climate system in response to unforced climate variability as well as natural and anthropogenic forcing factors. Studying the sea level budget, i.e., comparing observed global mean sea level to the sum of components (ocean thermal expansion, glaciers and ice sheet mass loss as well as changes in land water storage) improves our understanding of processes at work and provides constraints on missing contributions (e.g., deep ocean).
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
H. B. Dieng, A. Cazenave, K. von Schuckmann, M. Ablain, and B. Meyssignac
Ocean Sci., 11, 789–802, https://doi.org/10.5194/os-11-789-2015, https://doi.org/10.5194/os-11-789-2015, 2015
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
Related subject area
Approach: Remote Sensing | Properties and processes: Sea level | Depth range: All Depths | Geographical range: All Geographic Regions | Challenges: Oceans and climate
Current observed global mean sea level rise and acceleration estimated from satellite altimetry and the associated measurement uncertainty
On the uncertainty associated with detecting global and local mean sea level drifts on Sentinel-3A and Sentinel-3B altimetry missions
Adrien Guérou, Benoit Meyssignac, Pierre Prandi, Michaël Ablain, Aurélien Ribes, and François Bignalet-Cazalet
Ocean Sci., 19, 431–451, https://doi.org/10.5194/os-19-431-2023, https://doi.org/10.5194/os-19-431-2023, 2023
Short summary
Short summary
Based on the latest satellite observations published by the French space agency CNES, we present the current state of the sea level at the scale of the planet and assess its rise and acceleration over the past 29 years. To support scientific research we provide updated estimations of our confidence in our estimations and highlight key technological and scientific fields. Making progress on that will help to better characterize the sea level in the future.
Rémi Jugier, Michaël Ablain, Robin Fraudeau, Adrien Guerou, and Pierre Féménias
Ocean Sci., 18, 1263–1274, https://doi.org/10.5194/os-18-1263-2022, https://doi.org/10.5194/os-18-1263-2022, 2022
Short summary
Short summary
To ensure that the sea level is measured as accurately as possible by satellite altimeters, we must monitor possible sea level drifts caused by those instruments through comparison with other satellite altimeters or tide gauges. In this paper, we describe a method and estimate the associated uncertainties for detecting altimeter drifts over short time periods (from 2 to 10 years) through cross-comparison with other satellite altimeters and apply it to the recent Sentinel-3 A/B altimeters.
Cited articles
Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Spada, G., Benveniste, J., Cazenave, A., and Picot, N.: Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration, Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, 2019. a
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo
GDAC), [data set], https://doi.org/10.17882/42182, 2021. a, b
AVISO+: Altimeter along-track Level-2+ products, Ssalto ground processing segment,
Dataset available at https://www.aviso.altimetry.fr/ (last access: 22 February 2023), 2021. a
Bandikova, T., McCullough, C., Kruizinga, G. L., Save, H., and Christophe, B.:
GRACE accelerometer data transplant, Adv. Space Res., 64,
623–644, https://doi.org/10.1016/j.asr.2019.05.021, 2019. a
Barnoud, A., Pfeffer, J., Guérou, A., Frery, M.-L., Siméon, M.,
Cazenave, A., Chen, J., Llovel, W., Thierry, V., Legeais, J.-F., and Ablain,
M.: Contributions of altimetry and Argo to non-closure of the global mean sea
level budget since 2016, Geophys. Res. Lett., 48, e2021GL092824,
https://doi.org/10.1029/2021gl092824, 2021. a, b
Barnoud, A., Picard, B., Meyssignac, B., Marti, F., Ablain, M., and Roca, R.:
Improving long term estimates of global mean sea level, global ocean heat
content and Earth's energy imbalance using CDR water vapour data,
https://doi.org/10.24400/527896/A03-2022.3403, 2022. a
Barnoud, A., Picard, B., Meyssignac, B., Marti, F., Ablain, M., and Roca, R.: Reducing the
uncertainty in the satellite altimetry estimates of global mean sea level trends using highly stable
water vapour climate data records, J. Geophys. Res.-Oceans, 128, e2022JC019378,
https://doi.org/10.1029/2022jc019378, 2023. a, b
Bettadpur, S.: Gravity Recovery and Climate Experiment Level-2 Gravity Field
Product User Handbook, Tech. Rep., Center for Space Research at The
University of Texas at Austin,
https://podaac-tools.jpl.nasa.gov/drive/files/allData/grace/docs/L2-UserHandbook_v4.0.pdf (last access: 22 February 2023),
2018. a, b
Blazquez, A., Meyssignac, B., Lemoine, J., Berthier, E., Ribes, A., and
Cazenave, A.: Exploring the uncertainty in GRACE estimates of the mass
redistributions at the Earth surface: implications for the global water and
sea level budgets, Geophys. J. Int., 215, 415–430,
https://doi.org/10.1093/gji/ggy293, 2018. a
Cáceres, D., Marzeion, B., Malles, J. H., Gutknecht, B. D., Müller Schmied, H., and Döll, P.: Assessing global water mass transfers from continents to oceans over the period 1948–2016, Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, 2020. a, b, c, d
Chang, L., Tang, H., Wang, Q., and Sun, W.: Global thermosteric sea level
change contributed by the deep ocean below 2000 m estimated by Argo and CTD
data, Earth Planet. Sc. Lett., 524, 115727,
https://doi.org/10.1016/j.epsl.2019.115727, 2019. a, b
Chen, J., Tapley, B., Seo, K.-W., Wilson, C., and Ries, J.: Improved
Quantification of Global Mean Ocean Mass Change Using GRACE Satellite
Gravimetry Measurements, Geophys. Res. Lett., 46, 13984–13991,
https://doi.org/10.1029/2019gl085519, 2019. a
Chen, J., Tapley, B., Wilson, C., Cazenave, A., Seo, K.-W., and Kim, J.-S.:
Global ocean mass change from GRACE and GRACE Follow-On and altimeter and
Argo measurements, Geophys. Res. Lett., 47, e2020GL090656,
https://doi.org/10.1029/2020GL090656, 2020. a
Chen, J., Cazenave, A., Dahle, C., Llovel, W., Panet, I., Pfeffer, J., and
Moreira, L.: Applications and Challenges of GRACE and GRACE Follow-On
Satellite Gravimetry, Surv. Geophys., 43, 305–345,
https://doi.org/10.1007/s10712-021-09685-x, 2022. a
Cheng, L., Trenberth, K. E., Fasullo, J., Boyer, T., Abraham, J., and Zhu, J.:
Improved estimates of ocean heat content from 1960 to 2015, Sci. Adv.,
3, e1601545, https://doi.org/10.1126/sciadv.1601545, 2017. a
Cheng, L., Trenberth, K. E., Gruber, N., Abraham, J. P., Fasullo, J. T., Li,
G., Mann, M. E., Zhao, X., and Zhu, J.: Improved Estimates of Changes in
Upper Ocean Salinity and the Hydrological Cycle, J. Climate, 33,
10357–10381, https://doi.org/10.1175/jcli-d-20-0366.1, 2020. a
Copernicus Climate Change Service: Climate Data Store, Sea level daily gridded data from
satellite observations for the global ocean from 1993 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS), [data set], https://doi.org/10.24381/cds.4c328c78, 2018. a
Dahle, C., Flechtner, F., Murböck, M., Michalak, G., Neumayer, H., Abrykosov,
O., Reinhold, A., and König, R.: GRACE Geopotential GSM Coefficients GFZ
RL06, https://doi.org/10.5880/GFZ.GRACE_06_GSM, 2018. a
Dahle, C., Murböck, M., Flechtner, F., Dobslaw, H., Michalak, G., Neumayer,
K., Abrykosov, O., Reinhold, A., König, R., Sulzbach, R., and Förste, C.:
The GFZ GRACE RL06 Monthly Gravity Field Time Series: Processing
Details and Quality Assessment, Remote Sens., 11, 2116,
https://doi.org/10.3390/rs11182116, 2019. a, b
Decharme, B., Alkama, R., Douville, H., Becker, M., and Cazenave, A.: Global
Evaluation of the ISBA-TRIP Continental Hydrological System. Part II:
Uncertainties in River Routing Simulation Related to Flow Velocity and
Groundwater Storage, J. Hydrometeorol., 11, 601–617,
https://doi.org/10.1175/2010jhm1212.1, 2010. a
Decharme, B., Delire, C., Minvielle, M., Colin, J., Vergnes, J.-P., Alias, A.,
Saint-Martin, D., Séférian, R., Sénési, S., and
Voldoire, A.: Recent Changes in the ISBA-CTRIP Land Surface System for
Use in the CNRM-CM6 Climate Model and in Global Off-Line Hydrological
Applications, J. Adv. Model. Earth Sys., 11, 1207–1252,
https://doi.org/10.1029/2018ms001545, 2019. a, b
Dobslaw, H., Bergmann-Wolf, I., Dill, R., Poropat, L., Thomas, M., Dahle, C.,
Esselborn, S., König, R., and Flechtner, F.: A new high-resolution model of
non-tidal atmosphere and ocean mass variability for de-aliasing of satellite
gravity observations: AOD1B RL06, Geophys. J. Int.,
211, 263–269, https://doi.org/10.1093/gji/ggx302, 2017. a
Dobslaw, H., Dill, R., Bagge, M., Klemann, V., Boergens, E., Thomas, M., Dahle,
C., and Flechtner, F.: Gravitationally Consistent Mean Barystatic Sea Level
Rise From Leakage-Corrected Monthly GRACE Data, J. Geophys.
Res.-Sol. Ea., 125, e2020JB020923, https://doi.org/10.1029/2020jb020923, 2020. a
Döll, P., Kaspar, F., and Lehner, B.: A global hydrological model for deriving
water availability indicators: model tuning and validation, J.
Hydrol., 270, 105–134, https://doi.org/10.1016/s0022-1694(02)00283-4, 2003. a
Döll, P., Douville, H., Güntner, A., Schmied, H. M., and Wada, Y.: Modelling
Freshwater Resources at the Global Scale: Challenges and Prospects, Surv. Geophys., 37, 195–221, https://doi.org/10.1007/s10712-015-9343-1, 2015. a
EN4: EN.4.2.2 data, obtained from https://www.metoffice.gov.uk/hadobs/en4/ (last access:
22 February 2023), © British Crown Copyright, Met Office, 2021, [data set], provided under a Non-Commercial Government Licence http://www.nationalarchives.gov.uk/doc/non-commercialgovernment-licence/version/2/, 2021. a
Fasullo, J. T., Boening, C., Landerer, F. W., and Nerem, R. S.:
Australia's unique influence on global sea level in
2010–2011, Geophys. Res. Lett., 40, 4368–4373,
https://doi.org/10.1002/grl.50834, 2013. a
Fox-Kemper, B., Hewitt, H. T., Xiao, C., Adalgeirsdottir, G., Drijfhout, S. S.,
Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix,
A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen,
A. B. A., and Yu, Y.: Ocean, Cryosphere and Sea Level Change, in: Climate
Change 2021: The Physical Science Basis, Contribution of Woring Group I to
the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan,
C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M.,
Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T.,
Yelekci, O., Yu, R., and Zhou, B., Cambridge University
Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362,
https://doi.org/10.1017/9781009157896.011, 2021. a
Frederikse, T., Simon, K., Katsman, C. A., and Riva, R.: The sea-level budget
along the N orthwest A tlantic coast: GIA , mass changes, and large-scale
ocean dynamics, J. Geophys. Res.-Oceans, 122, 5486–5501,
https://doi.org/10.1002/2017jc012699, 2017. a
Gaillard, F., Reynaud, T., Thierry, V., Kolodziejczyk, N., and von Schuckmann,
K.: In Situ – Based Reanalysis of the Global Ocean Temperature and
Salinity with ISAS: Variability of the Heat Content and Steric Height,
J. Climate, 29, 1305–1323, https://doi.org/10.1175/jcli-d-15-0028.1, 2016. a
Garcia, H. E., Boyer, T. P., Baranova, O. K., Locarnini, R. A., Mishonov,
A. V., Grodsky, A., Paver, C. R., Weathers, K. W., Smolyar, I. V., Reagan,
J. R., Seidov, D., and Zweng, M. M.: World Ocean Atlas 2018: Product
Documentation, Tech. Rep., NOAA,
https://data.nodc.noaa.gov/woa/WOA18/DOC/woa18documentation.pdf (last access: 22 February 2023),
2019. a
Good, S. A., Martin, M. J., and Rayner, N. A.: EN4: Quality controlled ocean
temperature and salinity profiles and monthly objective analyses with
uncertainty estimates, J. Geophys. Res.-Oceans, 118,
6704–6716, https://doi.org/10.1002/2013jc009067, 2013. a
Gouretski, V. and Reseghetti, F.: On depth and temperature biases in
bathythermograph data: Development of a new correction scheme based on
analysis of a global ocean database, Deep Sea Res. Pt. I, 57, 812–833, https://doi.org/10.1016/j.dsr.2010.03.011, 2010. a
GRACE-FO: GRACE-FO Level-2 Monthly Geopotential Spherical Harmonics JPL Release
6.0 (RL06) GRACEFO_L2_JPL_MONTHLY_0060, Ver. 6. PO.DAAC, CA, USA, Dataset
accessed [2022-07-29] at https://doi.org/10.5067/GFL20-MJ060, 2019a. a, b
GRACE-FO: GRACE-FO Level-2 Monthly Geopotential Spherical Harmonics CSR Release
6.0 (RL06) GRACEFO_L2_CSR_MONTHLY_0060, Ver. 6. PO.DAAC, CA, USA. Dataset
accessed [2022-07-29] at https://doi.org/10.5067/GFL20-MC060, 2019b. a
GRACE-FO: GRACE-FO Level-2 Monthly Geopotential Spherical Harmonics GFZ Release
6.0 (RL06) GRACEFO_L2_GFZ_MONTHLY_0060, Ver. 6. PO.DAAC, CA, USA, Dataset
accessed [2022-07-29] at https://doi.org/10.5067/GFL20-MG060, 2019c.
Gregory, J. M. and Lowe, J. A.: Predictions of global and regional sea-level
rise using AOGCMs with and without flux adjustment, Geophys. Res. Lett., 27, 3069–3072, https://doi.org/10.1029/1999gl011228, 2000. a
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte,
R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and
Terminology for Sea Level: Mean, Variability and Change, Both Local and
Global, Surv. Geophys., 40, 1251–1289,
https://doi.org/10.1007/s10712-019-09525-z, 2019. a
Hakuba, M. Z., Frederikse, T., and Landerer, F. W.: Earth's Energy Imbalance
From the Ocean Perspective (2005–2019), Geophys. Res. Lett., 48, e2021GL093624,
https://doi.org/10.1029/2021gl093624, 2021. a
Hanna, E., Navarro, F. J., Pattyn, F., Domingues, C. M., Fettweis, X., Ivins,
E. R., Nicholls, R. J., Ritz, C., Smith, B., Tulaczyk, S., Whitehouse, P. L.,
and Zwally, H. J.: Ice-sheet mass balance and climate change, Nature, 498,
51–59, https://doi.org/10.1038/nature12238, 2013. a
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz
Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., and
Simmons, A.: ERA5 monthly averaged data on pressure levels from 1979 to
present, https://doi.org/10.24381/CDS.6860A573, 2019. a
Horwath, M., Gutknecht, B. D., Cazenave, A., Palanisamy, H. K., Marti, F., Marzeion, B., Paul, F., Le Bris, R., Hogg, A. E., Otosaka, I., Shepherd, A., Döll, P., Cáceres, D., Müller Schmied, H., Johannessen, J. A., Nilsen, J. E. Ø., Raj, R. P., Forsberg, R., Sandberg Sørensen, L., Barletta, V. R., Simonsen, S. B., Knudsen, P., Andersen, O. B., Ranndal, H., Rose, S. K., Merchant, C. J., Macintosh, C. R., von Schuckmann, K., Novotny, K., Groh, A., Restano, M., and Benveniste, J.: Global sea-level budget and ocean-mass budget, with a focus on advanced data products and uncertainty characterisation, Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, 2022. a, b
Hosoda, S., Ohira, T., Sato, K., and Suga, T.: Improved description of global
mixed-layer depth using Argo profiling floats, J. Oceanogr., 66,
773–787, https://doi.org/10.1007/s10872-010-0063-3, 2010. a
Hugonnet, R., McNabb, R., Berthier, E., Menounos, B., Nuth, C., Girod, L.,
Farinotti, D., Huss, M., Dussaillant, I., Brun, F., and Kääb, A.:
Accelerated global glacier mass loss in the early twenty-first century,
Nature, 592, 726–731, https://doi.org/10.1038/s41586-021-03436-z, 2021. a, b
IMBIE: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 558,
219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
IMBIE: Mass balance of the Greenland Ice Sheet from 1992 to 2018, Nature, 579,
233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020. a
IPCC: IPCC Special Report on the ocean and cryosphere in a changing climate,
Cambridge University Press, https://doi.org/10.1017/9781009157964, 2019. a
IAP: IAP Argo temperature and salinity data, [data set], http://159.226.119.60/cheng/ (last access: 22 February 2023), 2017. a
Ishii, M., Fukuda, Y., Hirahara, S., Yasui, S., Suzuki, T., and Sato, K.:
Accuracy of Global Upper Ocean Heat Content Estimation Expected from Present
Observational Data Sets, SOLA, 13, 163–167, https://doi.org/10.2151/sola.2017-030,
2017a. a
Ishii, M., Fukuda, Y., Hirahara, S., Yasui, S., Suzuki, T., and Sato, K.: Ishii et al. v7.3.1 Argo
temperature and salinity data, https://climate.mri-jma.go.jp/pub/ocean/ts/v7.3.1/ (last
access: 22 February 2023), 2017b. a
JAMSTEC: MOAA GPV Argo temperature and salinity data, [data set],
https://www.jamstec.go.jp/e/about/informations/notification_2021_maintenance.html?page_id=83lang=en, last access: 22 February 2023. a
Kato, S., Rose, F. G., Rutan, D. A., Thorsen, T. J., Loeb, N. G., Doelling,
D. R., Huang, X., Smith, W. L., Su, W., and Ham, S.-H.: Surface Irradiances
of Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy
Balanced and Filled (EBAF) Data Product, J. Climate, 31,
4501–4527, https://doi.org/10.1175/jcli-d-17-0523.1, 2018. a
Kolodziejczyk, N., Prigent-Mazella, A., and Gaillard, F.: ISAS temperature and salinity gridded
fields, SEANOE, [data set], https://doi.org/10.17882/52367, 2021. a
Landerer, F. W., Flechtner, F. M., Save, H., Webb, F. H., Bandikova, T.,
Bertiger, W. I., Bettadpur, S. V., Byun, S. H., Dahle, C., Dobslaw, H.,
Fahnestock, E., Harvey, N., Kang, Z., Kruizinga, G. L. H., Loomis, B. D.,
McCullough, C., Murböck, M., Nagel, P., Paik, M., Pie, N., Poole, S.,
Strekalov, D., Tamisiea, M. E., Wang, F., Watkins, M. M., Wen, H.-Y., Wiese,
D. N., and Yuan, D.-N.: Extending the Global Mass Change Data Record: GRACE
Follow-On Instrument and Science Data Performance, Geophys. Res. Lett., 47, e2020GL088306, https://doi.org/10.1029/2020gl088306, 2020. a, b
Legeais, J.-F., Meyssignac, B., Faugère, Y., Guerou, A., Ablain, M.,
Pujol, M.-I., Dufau, C., and Dibarboure, G.: Copernicus Sea Level Space
Observations: A Basis for Assessing Mitigation and Developing Adaptation
Strategies to Sea Level Rise, Front. Mar. Sci., 8, 704721
https://doi.org/10.3389/fmars.2021.704721, 2021. a
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E.,
Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S.,
and Zweng, M. M.: World ocean heat content and thermosteric sea level change
(0–2000 m), 1955–2010, Geophys. Res. Lett., 39, L10603,
https://doi.org/10.1029/2012gl051106, 2012. a
Lickley, M. J., Hay, C. C., Tamisiea, M. E., and Mitrovica, J. X.: Bias in
Estimates of Global Mean Sea Level Change Inferred from Satellite Altimetry,
J. Climate, 31, 5263–5271, https://doi.org/10.1175/jcli-d-18-0024.1, 2018. a
Llovel, W., Purkey, S., Meyssignac, B., Blazquez, A., Kolodziejczyk, N., and
Bamber, J.: Global ocean freshening, ocean mass increase and global mean sea
level rise over 2005–2015, Sci. Rep., 9, 17717,
https://doi.org/10.1038/s41598-019-54239-2, 2019. a
Loeb, N. G., Doelling, D. R., Wang, H., Su, W., Nguyen, C., Corbett, J. G.,
Liang, L., Mitrescu, C., Rose, F. G., and Kato, S.: Clouds and the Earth's
Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)
Top-of-Atmosphere (TOA) Edition-4.0 Data Product, J. Climate, 31,
895–918, https://doi.org/10.1175/jcli-d-17-0208.1, 2018. a
Loomis, B. D., Rachlin, K. E., and Luthcke, S. B.: Improved Earth Oblateness
Rate Reveals Increased Ice Sheet Losses and Mass-Driven Sea Level Rise,
Geophys. Res. Lett., 46, 6910–6917, https://doi.org/10.1029/2019gl082929,
2019. a, b
Loomis, B. D., Luthcke, S. B., and Sabaka, T. J.: GSFC mascon monthy data, [data set], https://earth.gsfc.nasa.gov/geo/data/grace-mascons (last access: 22 February 2023), 2019b. a
Loomis, B. D., Rachlin, K. E., Wiese, D. N., Landerer, F. W., and Luthcke,
S. B.: Replacing GRACE/GRACE-FO C30 With Satellite Laser Ranging: Impacts
on Antarctic Ice Sheet Mass Change, Geophys. Res. Lett., 47,
https://doi.org/10.1029/2019gl085488, 2020. a
Marti, F., Blazquez, A., Meyssignac, B., Ablain, M., Barnoud, A., Fraudeau, R., Jugier, R., Chenal, J., Larnicol, G., Pfeffer, J., Restano, M., and Benveniste, J.: Monitoring the ocean heat content change and the Earth energy imbalance from space altimetry and space gravimetry, Earth Syst. Sci. Data, 14, 229–249, https://doi.org/10.5194/essd-14-229-2022, 2022. a, b
McNabb, R., Nuth, C., Kääb, A., and Girod, L.: Sensitivity of glacier volume change estimation to DEM void interpolation, The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, 2019. a
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C.,
Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R.,
Shadkam, S., Trautmann, T., and Döll, P.: The global water resources and use
model WaterGAP v2.2d – Standard model output, [data set], https://doi.org/10.1594/PANGAEA.918447,
2020. a, b
Müller Schmied, H., Cáceres, D., Eisner, S., Flörke, M., Herbert, C., Niemann, C., Peiris, T. A., Popat, E., Portmann, F. T., Reinecke, R., Schumacher, M., Shadkam, S., Telteu, C.-E., Trautmann, T., and Döll, P.: The global water resources and use model WaterGAP v2.2d: model description and evaluation, Geosci. Model Dev., 14, 1037–1079, https://doi.org/10.5194/gmd-14-1037-2021, 2021. a
NOAA: NOAA Argo temperature and salinity data, [data set],
https://www.ncei.noaa.gov/ access/global-ocean-heat-content/, last access: 22 February 2023. a
Otosaka, I. N.: Improving estimates of ice sheet elevation change derived from
AltiKa and CryoSat-2 satellite radar altimetry, PhD. thesis, University of
Leeds, School Earth and Environment, 2021. a
Palmer, M. D. and McNeall, D. J.: Internal variability of Earth's energy budget
simulated by CMIP5 climate models, Environ. Res. Lett., 9,
034016, https://doi.org/10.1088/1748-9326/9/3/034016, 2014. a
Peltier, W.: Global glacial isostasy and the surface of the
ice-age earth: The ICE-5G (VM2) Model and GRACE, Annu. Rev. Earth Planet. Sci., 32, 111–149,
https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004. a
Peltier, W. R., Argus, D. F., and Drummond, R.: Comment on
“An Assessment of the ICE-6G_C (VM5a) Glacial
Isostatic Adjustment Model” by Purcell et al., J. Geophys. Res.-Sol. Ea., 123, 2019–2028,
https://doi.org/10.1002/2016jb013844, 2018. a
Pfeffer, J., Cazenave, A., and Barnoud, A.: Analysis of the interannual
variability in satellite gravity solutions: detection of climate modes
fingerprints in water mass displacements across continents and oceans,
Clim. Dynam., 58, 1065–1084, https://doi.org/10.1007/s00382-021-05953-z,
2022a. a
Pfeffer, J., Cazenave, A., Blazquez, A., Decharme, B., Munier, S., and Barnoud, A.: Detection of slow changes in terrestrial water storage with GRACE and GRACE-FO satellite gravity missions, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1032, 2022b. a
Randolph Glacier Inventory – A dataset of global glacier outlines: Version 6.0,
Tech. Rep., RGI Consortium,
https://www.glims.org/RGI/00_rgi60_TechnicalNote.pdf (last access: 22 February 2023), 2017. a
Remote Sensing Systems: updated 202112, Monthly Mean Total Precipitable Water Data Set
on a 1 degree grid made from Remote Sensing Systems Version-7 Microwave Radiometer Data,
V07r01, accessed 29 July 2022, Santa Rosa, CA, USA, [data set], https://www.remss.com (last access:
22 February 2023), 2016. a
Roemmich, D. and Gilson, J.: The 2004–2008 mean and annual cycle of
temperature, salinity, and steric height in the global ocean from the Argo
Program, Prog. Oceanogr., 82, 81–100,
https://doi.org/10.1016/j.pocean.2009.03.004, 2009. a
Save, H.: CSR GRACE and GRACE-FO RL06 Mascon Solutions v02, [data set],
https://doi.org/10.15781/cgq9-nh24, 2020. a, b
Save, H., Bettadpur, S., and Tapley, B. D.: High-resolution CSR GRACE
RL05 mascons, J. Geophys. Res.-Sol. Ea., 121,
7547–7569, https://doi.org/10.1002/2016jb013007, 2016. a
Scanlon, B. R., Zhang, Z., Save, H., Sun, A. Y., Schmied, H. M., van Beek, L.
P. H., Wiese, D. N., Wada, Y., Long, D., Reedy, R. C., Longuevergne, L.,
Döll, P., and Bierkens, M. F. P.: Global models underestimate large decadal
declining and rising water storage trends relative to GRACE satellite data,
P. Natl. Acad. Sci. USA, 115, 1080–1089,
https://doi.org/10.1073/pnas.1704665115, 2018. a
Schröder, M., Lockhoff, M., Forsythe, J. M., Cronk, H. Q., Haar, T. H. V., and
Bennartz, R.: The GEWEX Water Vapor Assessment: Results from
Intercomparison, Trend, and Homogeneity Analysis of Total Column Water Vapor,
J. Appl. Meteor. Clim., 55, 1633–1649,
https://doi.org/10.1175/jamc-d-15-0304.1, 2016. a
Shepherd, A., Ivins, E. R., A, G., Barletta, V. R., Bentley, M. J., Bettadpur,
S., Briggs, K. H., Bromwich, D. H., Forsberg, R., Galin, N., Horwath, M.,
Jacobs, S., Joughin, I., King, M. A., Lenaerts, J. T. M., Li, J., Ligtenberg,
S. R. M., Luckman, A., Luthcke, S. B., McMillan, M., Meister, R., Milne, G.,
Mouginot, J., Muir, A., Nicolas, J. P., Paden, J., Payne, A. J., Pritchard,
H., Rignot, E., Rott, H., Sorensen, L. S., Scambos, T. A., Scheuchl, B.,
Schrama, E. J. O., Smith, B., Sundal, A. V., van Angelen, J. H., van de Berg,
W. J., van den Broeke, M. R., Vaughan, D. G., Velicogna, I., Wahr, J.,
Whitehouse, P. L., Wingham, D. J., Yi, D., Young, D., and Zwally, H. J.: A
Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338, 1183–1189,
https://doi.org/10.1126/science.1228102, 2012. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna,
I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne,
A., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G.,
Barletta, V., Bjørk, A., Blazquez, A., Bonin, J., Colgan, W., Csatho, B.,
Cullather, R., Engdahl, M., Felikson, D., Fettweis, X., Forsberg, R., Gallee,
H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B., Hanna, E.,
Harig, C., Helm, V., Hogg, A., Horvath, A., Horwath, M., Khan, S., Kjeldsen,
K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S.,
McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mottram,
R., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J.,
Noël, B., Otosaka, I., Pattle, M., Peltier, W., Pie, N., Rietbroek, R.,
Rott, H., Sørensen, L. S., Sasgen, I., Save, H., Scheuchl, B., Schrama, E.,
Schröder, L., Seo, K.-W., Simonsen, S., Slater, T., Spada, G., Sutterley,
T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem,
M., Vishwakarma, B. D., Wagner, T., Wiese, D., Wilton, D., Wouters, B., and
Wuite, J.: Antarctic and Greenland Ice Sheet mass balance 1992–2020 for IPCC
AR6 (Version 1.0) [data set],
https://doi.org/10.5285/77B64C55-7166-4A06-9DEF-2E400398E452, 2021. a, b
SIO: Roemmich-Gilson Argo climatology data Version 2019, [data set], http://sioargo.ucsd.edu/RG_Climatology.html (last access: 22 February 2023), 2019. a
Sun, Y., Riva, R., and Ditmar, P.: Optimizing estimates of annual variations
and trends in geocenter motion and J2 from a combination of GRACE data and
geophysical models, J. Geophys. Res.-Sol. Ea., 121,
8352–8370, https://doi.org/10.1002/2016jb013073, 2016. a
Swenson, S., Chambers, D., and Wahr, J.: Estimating geocenter variations from a
combination of GRACE and ocean model output, J. Geophys. Res.-Sol. Ea., 113, B08410, https://doi.org/10.1029/2007jb005338, 2008. a
Tapley, B. D., Watkins, M. M., Flechtner, F., Reigber, C., Bettadpur, S.,
Rodell, M., Sasgen, I., Famiglietti, J. S., Landerer, F. W., Chambers, D. P.,
Reager, J. T., Gardner, A. S., Save, H., Ivins, E. R., Swenson, S. C.,
Boening, C., Dahle, C., Wiese, D. N., Dobslaw, H., Tamisiea, M. E., and
Velicogna, I.: Contributions of GRACE to understanding climate change,
Nat. Clim. Change, 9, 358–369, https://doi.org/10.1038/s41558-019-0456-2, 2019. a
Tielidze, L. G. and Wheate, R. D.: The Greater Caucasus Glacier Inventory (Russia, Georgia and Azerbaijan), The Cryosphere, 12, 81–94, https://doi.org/10.5194/tc-12-81-2018, 2018. a
Velicogna, I., Mohajerani, Y., A, G., Landerer, F., Mouginot, J., Noel, B.,
Rignot, E., Sutterley, T., Broeke, M., Wessem, M., and Wiese, D.: Continuity
of Ice Sheet Mass Loss in Greenland and Antarctica From the GRACE and
GRACE Follow-On Missions, Geophys. Res. Lett., 47,
https://doi.org/10.1029/2020gl087291, 2020. a, b, c, d, e
Vishwakarma, B. D., Bates, P., Sneeuw, N., Westaway, R. M., and Bamber, J. L.:
Re-assessing global water storage trends from GRACE time series,
Environ. Res. Lett., 16, 034005, https://doi.org/10.1088/1748-9326/abd4a9,
2021. a
von Schuckmann, K., Cheng, L., Palmer, M. D., Hansen, J., Tassone, C., Aich, V., Adusumilli, S., Beltrami, H., Boyer, T., Cuesta-Valero, F. J., Desbruyères, D., Domingues, C., García-García, A., Gentine, P., Gilson, J., Gorfer, M., Haimberger, L., Ishii, M., Johnson, G. C., Killick, R., King, B. A., Kirchengast, G., Kolodziejczyk, N., Lyman, J., Marzeion, B., Mayer, M., Monier, M., Monselesan, D. P., Purkey, S., Roemmich, D., Schweiger, A., Seneviratne, S. I., Shepherd, A., Slater, D. A., Steiner, A. K., Straneo, F., Timmermans, M.-L., and Wijffels, S. E.: Heat stored in the Earth system: where does the energy go?, Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, 2020. a
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass
distribution with GRACE using spherical cap mascons, J. Geophys.
Res.-Sol. Ea., 120, 2648–2671, https://doi.org/10.1002/2014jb011547, 2015. a
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018. a
Wiese, D. N., Yuan, D.-N., Boening, C., Landerer, F. W., and Watkins, M. M.: JPL GRACE Mascon
Ocean, Ice, and Hydrology Equivalent Water Height Release 06 Coastal Resolution Improvement
(CRI) Filtered Version 1.0. Ver. 1.0. PO.DAAC, CA, USA, Dataset accessed [2022-07-29] at https://doi.org/10.5067/TEMSC-3MJC6, 2018. a
Short summary
The increase in ocean mass due to land ice melting is responsible for about two-thirds of the global mean sea level rise. The ocean mass variations are monitored by GRACE and GRACE Follow-On gravimetry satellites that faced instrumental issues over the last few years. In this work, we assess the robustness of these data by comparing the ocean mass gravimetry estimates to independent observations (other satellite observations, oceanographic measurements and land ice and water models).
The increase in ocean mass due to land ice melting is responsible for about two-thirds of the...