Articles | Volume 19, issue 1
https://doi.org/10.5194/os-19-209-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-209-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The effects of Hurricane Harvey on Texas coastal-zone chemistry
Department of Oceanography, Texas A&M University, College Station, TX 77843, USA
Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77843, USA
Steven F. DiMarco
Department of Oceanography, Texas A&M University, College Station, TX 77843, USA
Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77843, USA
Anthony H. Knap
Department of Oceanography, Texas A&M University, College Station, TX 77843, USA
Geochemical and Environmental Research Group, Texas A&M University, College Station, TX 77843, USA
Antonietta Quigg
Department of Oceanography, Texas A&M University, College Station, TX 77843, USA
Department of Marine Biology, Texas A&M University, Galveston, TX 77553, USA
Nan D. Walker
Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
Related authors
Jongsun Kim, Piers Chapman, Gilbert Rowe, Steven F. DiMarco, and Daniel C. O. Thornton
Ocean Sci., 16, 45–63, https://doi.org/10.5194/os-16-45-2020, https://doi.org/10.5194/os-16-45-2020, 2020
Short summary
Short summary
We used a simple nitrogen-based box model to estimate production in the coastal northern Gulf of Mexico and off the west of the Korean Peninsula, which receive nitrogen in different forms. The Gulf of Mexico gets almost all its nitrogen from rivers, while atmosphere and groundwater discharges are also contributed in Korea. Production in both areas decreased away from river mouths, and we identified three zones with different productivity that vary in size as river flow and other factors change.
Jongsun Kim, Piers Chapman, Gilbert Rowe, Steven F. DiMarco, and Daniel C. O. Thornton
Ocean Sci., 16, 45–63, https://doi.org/10.5194/os-16-45-2020, https://doi.org/10.5194/os-16-45-2020, 2020
Short summary
Short summary
We used a simple nitrogen-based box model to estimate production in the coastal northern Gulf of Mexico and off the west of the Korean Peninsula, which receive nitrogen in different forms. The Gulf of Mexico gets almost all its nitrogen from rivers, while atmosphere and groundwater discharges are also contributed in Korea. Production in both areas decreased away from river mouths, and we identified three zones with different productivity that vary in size as river flow and other factors change.
Cited articles
Ahn, J. H., Grant, S. B., Surbeck, C. Q., DiGiacomo, P. M., Nexlin, N., and Jiang, S.: Coastal water quality impact of stormwater runoff from an urban watershed in southern California, Environ. Sci. Technol., 39, 5940–5963, https://doi.org/10.1021/es0501464, 2005.
Balaguru, K., Foltz, G. R., and Leung, L. R.: Increasing magnitude of hurricane rapid intensification in the central and eastern tropical Atlantic, Geophys. Res. Lett., 45, 4238–4247, https://doi.org/10.1029/2018GL077597, 2018.
Bianchi, T. S., Lambert, C. D., Santschi, P. H., and Guo, L.: Sources and transport of land-derived particulate and dissolved organic matter in the Gulf of Mexico (Texas slope/shelf): The use of lignin-phenols and loliolides as biomarkers, Org. Geochem., 27, 65–78, https://doi.org/10.1016/S0146-6380(97)00040-5, 1997.
Bianchi, T. S., DiMarco, S. F., Smith, R. W., and Schreiner, K. M.: A gradient of dissolved organic carbon and lignin from Terrebonne-Timbalier Bay estuary to the Louisiana shelf (USA), Mar. Chem., 117, 32–41, https://doi.org/10.1016/j.marchem.2009.07.010, 2009.
Bianchi, T. S., DiMarco, S. F., Cowan, J. H., Hetland, R. D., Chapman, P., Day, J. W., and Allison, M. A.: The science of hypoxia in the northern Gulf of Mexico: A review, Sci. Total Environ., 408, 1471–1484, https://doi.org/10.1016/j.scitotenv.2009.11.047, 2010.
Blake, E. S. and Zelinsky, D. A.: Hurricane Harvey, NOAA National Hurricane Center Tropical Cyclone Report AL092017, 2018.
Campbell, L. and Henrichs, D. W.:
Hydrographic, nutrient and oxygen data from CTD bottles and beam
transmission and fluorescence data from CTD profiles during R/V Point Sur
PS1809 (HRR legs 1, 2, 3) at the Gulf of Mexico, Louisiana and Texas coast,
September–October 2017, WHOAS [data set], https://doi.org/10.1575/1912/bco-dmo.784290.1, 2020.
Campbell, L., Knap, A., DiMarco, S., and Henrichs, D. W.:
Processed CTD profile
data from all electronic sensors mounted on rosette from R/V Pt. Sur PS
18–09 Legs 01 and 03, Hurricane Harvey RAPID Response cruise (western Gulf
of Mexico) September–October 2017, WHOAS [data set], https://doi.org/10.26008/1912/bco-dmo.809428.1, 2021.
Chen, C.-T. A., Liu, C.-T., Chuang, W. S., Yang, Y. J., Shiah, F.-K., Tang, T. Y., and Chung, S. W.: Enhanced buoyancy and hence upwelling of subsurface Kuroshio waters after a typhoon in the southern East China Sea, J. Marine Syst, 42, 65–79, https://doi.org/10.1016/S0924-7963(03)00065-4, 2003.
Cochrane, J. D. and Kelly, F. J.: Low-frequency circulation on the Texas-Louisiana continental shelf, J. Geophys. Res., 91, 10645–10659, https://doi.org/10.1029/JC091iC09p10645, 1986.
Corbett, D. R., McKee, R. A., and Allison, M. A.: Nature of decadal-scale sediment accumulation in the Mississippi River deltaic region, Cont. Shelf Res., 26, 2125–2140, https://doi.org/10.1016/j.csr.2006.07.012, 2006.
Cordery, I.: Quality characteristics of urban storm water in Sydney, Australia, Water Resour. Res., 13, 197–202, https://doi.org/10.1029/WR013i001p00197, 1977.
De Carlo, E., Hoover, D. J., Young, C. W., Hoover, R. S., and Mackenzie, F. T.: Impact of storm runoff from tropical watersheds on coastal water quality and productivity, Appl. Geochem., 22, 1777–1797, https://doi.org/10.1016/j.apgeochem.2007.03.034, 2007.
DiMarco, S. F. and Zimmerle, H. M.: MCH Atlas: Oceanographic Observations of the Mechanisms Controlling Hypoxia Project, Texas A&M University, Texas Sea Grant Publication TAMU-SG-17-601, 300 pp., ISBN 978-0-692-87961-0, plates also available online at: http://mchatlas.tamu.edu (last access: 23 February 2023), 2017.
DiMarco, S. F., Strauss, J., May, N., Mullins-Perry, R. L., Grossman, E., and Shormann, D.: Texas coastal hypoxia linked to Brazos River discharge as revealed by oxygen isotopes, Aquat. Geochem., 18, 159–181, https://doi.org/10.1007/s10498-011-9156-x, 2012.
D'Sa, E., Joshi, I., and Liu, B.: Galveston Bay and coastal ocean optical-geochemical response to Hurricane Harvey from VIIRS ocean color, Geophys. Res. Lett., 45, 10579–10589, https://doi.org/10.1029/2018GL079954, 2018.
Du, J., Park, K., Dellapenna, T. M., and Clay, J. C.: Dramatic hydrodynamic and sedimentary responses in Galveston Bay and adjacent inner shelf to Hurricane Harvey, Sci. Total Environ., 653, 554–564, https://doi.org/10.1016/j.scitotenv.2018.10.403, 2019.
Eldridge, P. M. and Morse, J. W.: Origins and temporal scales of hypoxia on the Louisiana shelf: importance of benthic and sub-pycnocline water column metabolism, Mar. Chem., 108, 159–171, https://doi.org/10.1016/j.marchem.2007.11.009, 2008.
Emanuel, K.: Assessing the present and future probability of Hurricane Harvey's rainfall, P. Natl. Acad. Sci. USA, 114, 12681–12684, https://doi.org/10.1073/pnas.1716222114, 2017.
Fellman, J. B., Hood, E., Edwards, R. T. and D'Amore, D. V.: Return of salmon-derived nutrients from the riparian zone to the stream during a storm in southeastern Alaska, Ecosystems, 11, 537–544, https://doi.org/10.1007/s10021-008-9139-y, 2008.
Fritz, A. and Samenow, J.: Harvey Unloaded 33 Trillion Gallons of Water in the U. S., The Washington Post,
https://www.washingtonpost.com/news/capital-weather-gang/wp/2017/08/30/harvey-has-unloaded-24-5-trillion-gallons-of-water-on-texas-and-louisiana/
(last access: 11 December 2019), 2 September 2017.
Gearing, P., Plucker, F. T., and Parker, P. L.: Organic carbon stable isotope ratios of continental margin sediments, Mar. Chem., 5, 251–266, https://doi.org/10.1016/0304-4203(77)90020-2, 1977.
Gilbes, F., Armstrong, R. A., Webb, R. M. T., and Muller-Karger, F. E.: SeaWiFS helps assess hurricane impact on phytoplankton in Caribbean Sea, EOS T. Am. Geophys. Un., 82, 529, 533, https://doi.org/10.1029/01EO00314, 2001.
Gordon, E. S. and Goni, M. A.: Controls on the distribution and accumulation of terrigenous organic matter in sediments from the Mississippi and Atchafalaya river margin, Mar. Chem., 92, 331–352, https://doi.org/10.1016/j.marchem.2004.06.035, 2004.
Gray, S. E. C., DeGrandpre, M. D., Langsdon, C., and Corredor, J. E.: Short-term and seasonal pH, pCO2 and saturation state variability in a coral reef ecosystem, Global Biogeochem. Cy., 26, GB3012, https://doi.org/10.1029/2011GB004114, 2012.
Harper Jr., D. E., Salzer, R. R., and Case, R. J.: The occurrence of hypoxic bottom water off the upper Texas coast and its effect on the benthic biota, Contrib. Mar. Sci., 24, 53–79, 1981.
Hedges, J. I. and Parker, P. L.: Land-derived organic matter in surface sediments from the Gulf of Mexico, Geochim. Cosmochim. Ac., 40, 1019–1029, https://doi.org/10.1016/0016-7037(76)90044-2, 1974.
Hetland, R. D. and DiMarco, S. F.: How does the character of oxygen demand control the structure of hypoxia on the Texas-Louisiana continental shelf?, J. Marine Syst., 70, 49–62, https://doi.org/10.1016/j.jmarsys.2007.03.002, 2008.
Hicks, T. L., Shamberger, K. E. F., Fitzsimmons, J. N., Jensen, C. C., and DiMarco, S. F.: Tropical cyclone-induced coastal acidification in Galveston Bay, Texas, Commun. Earth Environ., 3, 297, https://doi.org/10.1038/s43247-022-00608-1, 2022.
Horner, R. R., Skupien, J. J., Livingston, E. H., and Shaver, H. E.: Fundamentals of urban runoff management: Technical and institutional issues, 2nd Edn., Terrene Institute, Washington, D.C., https://ilma-lakes.org/PDF/Fundamentals_full_manual_lowres.pdf (last access: 23 February 2023), 2007.
Jarvis, B. M., Greene, R. M., Wan, Y., Lehrter, J. C., Lowe, L. L., and Ko, D. S.: Contiguous low oxygen waters between the continental shelf hypoxia zone and nearshore coastal waters of Louisiana, USA: interpreting 30 years of profiling data and three-dimensional ecosystem modeling, Environ. Sci. Technol., 55, 4709–4719, https://doi.org/10.1021/acs.est.0c05973, 2021.
Kealoha, A. K., Doyle, S. M., Shamberger, K. E. F., Sylvan, J. B., Hetland, R. D., and DiMarco, S. F.: Localized hypoxia may have caused coral reef mortality at the Flower Garden Banks, Coral Reefs, 39, 119–132, https://doi.org/10.1007/s00338-019-01883-9, 2020.
Lewin, J. C.: The dissolution of silica from diatom walls, Geochim. Cosmochim. Ac., 21, 182–198, 1961.
Liu, B., D'Sa, E. J., and Joshi, I. D.: Floodwater impact on Galveston Bay phytoplankton taxonomy, pigment composition and photo-physiological state following Hurricane Harvey from field and ocean color (Sentinel-3A OLCI) observations, Biogeosciences, 16, 1975–2001, https://doi.org/10.5194/bg-16-1975-2019, 2019.
Mallin, M. A. and Corbett, C. A.: How hurricane attributes determine the extent of environmental effects: multiple hurricanes and different coastal systems, Estuar. Coast., 29, 1046–1061, https://doi.org/10.1007/BF02798667, 2006.
Manzello, D., Enochs, I., Musielewicz, S., Carlton, R., and Gledhill, D.: Tropical cyclones cause CaCO3 undersaturation of coral reef seawater in a high-CO2 world, J. Geophys. Res.-Oceans, 118, 5312–5321, https://doi.org/10.1002/jgrc.20378, 2013.
Montagna, P., Hu, X., Walker, L., and Wetz, M.: Biogeochemical impact of Hurricane Harvey on Texas coastal lagoons, AGU Fall Meeting, Abstract #NH23E-2797, 11–15 November 2017, New Orleans, 2017.
Nowlin Jr., W. D., Jochens, A. E., Reid, R. O., and DiMarco, S. F.: Texas-Louisiana Shelf Circulation and Transport Processes Study: Synthesis Report, PCS Study MMS 98-0035, U. S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, New Orleans, LA, https://digital.library.unt.edu/ark:/67531/metadc955396/ (last access: 23 February 2023), 1998.
Paerl, H. W., Bales, J. D., Ausley, L. W., Buzzelli, C. P., Crowder, L. B., Eby, L. A., Fear, J. M., Go, M., Peierls, B. L., Richardson, T. L., and Ramus, J. S.: Ecosystem impacts of three sequential hurricanes (Dennis, Floyd, and Irene) on the United States' largest lagoonal estuary, PamlicoSound, NC, P. Natl. Acad. Sci. USA, 98, 5655–5660, https://doi.org/10.1073/pnas.101097398, 2001.
Paerl, H. W., Valdes, L. M., Joyner, A. R., Peierls, B. L., Piehler, M. F., Riggs, S. R., Christian, R. R., Eby, L. A., Crowder, L. B., Ramus, J. S., Clesceri, E. J., Buzzelli, C. P., and Luettich, R. A.: Ecological response to hurricane events in the Pamlico Sound system, North Carolina, and implications for assessment and management in a regime of increased frequency, Estuar. Coast., 29, 1033–1045, https://doi.org/10.1007/BF02798666, 2006.
Paerl, H. W., Crosswell, J. R., Van Dam, B., Hall, N. S., Rossignol, K. L., Osburn, C. L., Hounshell, A. G., Sloup, R. S., and Harding Jr., L. W.: Two decades of tropical cyclone impacts on North Carolina's estuarine carbon, nutrient and phytoplankton dynamics: implications for biogeochemical cycling and water quality in a stormier world, Biogeochemistry, 141, 307–332, https://doi.org/10.1007/s10533-018-0438-x, 2018.
Peierls, B. L., Christian, R. R., and Paerl, H. W.: Water quality and phytoplankton as indicators of hurricane impacts on a large estuarine system, Estuaries, 26, 1329–1343, https://doi.org/10.1007/BF02803635, 2003.
Pokryfki, L. and Randall, R. E.: Nearshore hypoxia in the bottom water of the northwestern Gulf of Mexico from 1981 to 1984, Mar. Environ. Res., 22, 75–90, https://doi.org/10.1016/0141-1136(87)90081-X, 1987.
Potter, H., DiMarco, S. F., and Knap, A. H.: Tropical cyclone heat potential and the rapid intensification of hurricane Harvey in the Texas Bight, J. Geophys. Res.-Oceans, 124, 2440–2451, https://doi.org/10.1029/2018JC014776, 2019.
Quigg, A., Sylvan, S. B., Gustafson, A. B., Fisher, T. R., Oliver, R. L., Tozzi, S., and Ammerman, J. W.: Going West: nutrient limitation of primary production in the northern Gulf of Mexico and the importance of the Atchafalaya River, Aquat. Geochem., 17, 519–544, https://doi.org/10.1007/s10498-011-9134-3, 2011.
Rabalais, N. N., Turner, R. E., Justic, D., Dortch, Q., and Wiseman Jr., W. J.: Characterization of Hypoxia: Topic 1 Report for the Integrated Assessment of Hypoxia in the Gulf of Mexico, NOAA Coastal Ocean Program Decision Analysis Series no. 15, NOAA Coastal Ocean Program, Silver Spring, Maryland, 1999.
Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., Boesch, D. F., Chapman, P., and Murrell, M. C.: Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate and control hypoxia?, Estuar. Coast., 30, 753–772, https://doi.org/10.1007/BF02841332, 2007.
Rayson, M. D., Gross, E. S., Hetland, R. D., and Fringer, O. B.: Time scales in Galveston Bay: an unsteady estuary, J. Geophys. Res.-Oceans, 121, 2268–2285, https://doi.org/10.1002/2015JC011181, 2016.
Roman, M. R., Adolf, J. E., Bichy, J., Boicourt, W. C., Harding, L. W., Houde, E. D., Jung, S., Kimmel, D. G., Miller, W. D., and Zhang, X.: Chesapeake Bay plankton and fish abundance enhanced by Hurricane Isabel, EOS T. Am. Geophys. Un., 86, 261–265, https://doi.org/10.1029/2005EO280001, 2005.
Sahl, L. E., Merrell, W. J., and Biggs, D. C.: The influence of advection on the spatial variability of nutrient concentrations on the Texas-Louisiana continental shelf, Cont. Shelf Res., 13, 233–251, https://doi.org/10.1016/0278-4343(93)90108-A, 1993.
Shiah, F. K., Chang, S. W., Kao, S. J., Gong, G. C., and Liu, K. K.: Biological and hydrographical responses to tropical cyclones (typhoons) in the continental shelf of the Taiwan Strait, Cont. Shelf Res., 20, 2029–2044, https://doi.org/10.1016/S0278-4343(00)00055-8, 2000.
Shim, M. J., Cai, Y., Guo, L, and Shiller, A. M.: Floodplain effects on the transport of dissolved and colloidal trace elements in the East Pearl River, Mississippi, Hydrol. Process., 31, 1086–1099, https://doi.org/10.1002/hyp.11093, 2017.
Shore, A., Sims, J. A., Grimes, M., Howe-Kerr, L. I., Grupstra, C. G. B., Doyle, S. M., Stadler, L., Sylvan, J. B., Shamberger, K. E. F., Davies, S. W., Santiago-Vazquez, L. Z., and Correa, A. N. S.: On a reef far, far away: Anthropogenic impacts following extreme storms affect sponge health and bacterial communities, Front. Mar. Sci., 8, 608036, https://doi.org/10.3389/fmars.2021.608036, 2021.
Solis, G. S. and Powell, G. L.: Hydrography, mixing characteristics, and residence times of Gulf of Mexico estuaries, in: Biogeochemistry of Gulf of Mexico Estuaries, edited by: Bianchi, T. S., Pennock, J. R., and Twilley, R. R., John Wiley, NY, 29–61, ISBN 0-471-16174-8, 1999.
Steichen, J. L., Labonte, J. M., Windham, R., Hala, D., Kaiser, K., Setta, S., Faulkner, P. C., Bacosa, H., Yan, G., Kamalanathan, M., and Quigg, A.: Microbial, physical and chemical changes in Galveston Bay following an extreme flood event, Hurricane Harvey, Front. Mar. Sci., 7, 186, https://doi.org/10.3389/fmars.2020.00186, 2020.
Suess, E.: Phosphate regeneration from sediments of the Peru continental margin by dissolution of fish debris, Geochim. Cosmochim. Ac., 45, 577–588, https://doi.org/10.1016/0016-7037(81)90191-5, 1981.
Sylvan, J. B., Dortch, Q., Nelson, D. M., Brown, A. F. M., Morrison, W., and Ammerman, J. W.: Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation, Environ. Sci. Technol., 40, 7548–7553, https://doi.org/10.1021/es061417t, 2006.
Sylvan, J. B., Quigg, A., Tozzi, S., and Ammerman, J. W.: Eutrophication induced phosphorus limitation in the Mississippi River plume: evidence from fast repetition rate fluorometry, Limnol. Oceanogr., 52, 2679–2685, https://doi.org/10.4319/lo.2007.52.6.2679, 2007.
Thyng, K. M., Hetland, R. D., Socolofsky, S. A., Fernando, N., Turner, E. L., and Schoenbaechler, C.: Hurricane Harvey caused unprecedented freshwater inflow to Galveston Bay, Estuar. Coast., 43, 1836–1852, https://doi.org/10.1007/s12237-020-00800-6, 2020.
Trenberth, K. E., Chang, L., Jacobs, P., Zhang, Y., and Fasullo, J.: Hurricane Harvey links to ocean heat content and climate change adaptation, Earths Future, 6, 730–744, https://doi.org/10.1029/2018EF000825, 2018.
Turner, R. E., Rabalais, N. N., and Justic, D.: Gulf of Mexico hypoxia: Alternate states and a legacy, Environ. Sci. Technol., 42, 2323–2327, https://doi.org/10.1021/es071617k, 2008.
Walker, L. M., Montagna, P. A., Hu, X., and Wetz, M. S.: Timescales and magnitude of water quality change in three Texas estuaries induced by passage of Hurricane Harvey, Estuar. Coast., 44, 960–971, https://doi.org/10.1007/s12237-020-00846-6, 2021.
Walker, N. D.: Wind and eddy-related shelf/slope circulation processes and coastal upwelling in the Northwestern Gulf of Mexico, in: Circulation in the Gulf of Mexico: Observations and Models, edited by: Sturges, W. and Lugo-Fernandez, A., Geophys. Monographs 161, American Geophysical Union, 295–313, https://doi.org/10.1029/161GM21, 2005.
Walker, N. D., Leben, R. R., and Balasubramanian, S.: Hurricane-forced upwelling and chlorophyll a enhancement within cold-core cyclones in the Gulf of Mexico, Geophys. Res. Lett., 32, L18610, https://doi.org/10.1029/2005GL023716, 2005.
WHPO: WHP Operations and Methods, WOCE Hydrographic Office Report 91/1, as revised, WOCE Hydrographic Programme Office, Woods Hole, MA, https://books.google.com/books/about/WHP_Operations_and_Methods.html?id=IbQPAQAAIAAJ (last access: 23 February 2023), 1994.
Wiseman, W. J., Rabalais, N. N., Turner, R. E., Dinnel, S. P., and McNaughton, A.: Seasonal and interannual variability within the Louisiana coastal current: stratification and hypoxia, J. Marine Syst., 12, 237–248, https://doi.org/10.1016/S0924-7963(96)00100-5, 1997.
Zhang, J.-Z., Kelbie, C. R., Fischer, C. J., and Moore, L.: Hurricane Katrina induced nutrient runoff from an agricultural area to coastal waters in Biscayne Bay, Florida, Estuar. Coast. Shelf S., 84, 209–218, https://doi.org/10.1016/j.ecss.2009.06.026, 2009.
Short summary
Hurricane Harvey led to unprecedented rainfall over south central Texas in August/September 2017. We obtained physical and chemical data from the affected offshore area both before and after the hurricane passed. Despite the intense rainfall, the effects on the coastal ocean were apparently only short-lived, and we did not observe major blooms of plankton or inputs of nutrients, possibly because of the sheer volume of rainwater that diluted any runoff.
Hurricane Harvey led to unprecedented rainfall over south central Texas in August/September...