Articles | Volume 19, issue 6
https://doi.org/10.5194/os-19-1579-2023
https://doi.org/10.5194/os-19-1579-2023
Research article
 | 
16 Nov 2023
Research article |  | 16 Nov 2023

Impact of surface and subsurface-intensified eddies on sea surface temperature and chlorophyll a in the northern Indian Ocean utilizing deep learning

Yingjie Liu and Xiaofeng Li

Related authors

Characteristics of surface physical and biogeochemical parameters within mesoscale eddies in the Southern Ocean
Qian Liu, Yingjie Liu, and Xiaofeng Li
Biogeosciences, 20, 4857–4874, https://doi.org/10.5194/bg-20-4857-2023,https://doi.org/10.5194/bg-20-4857-2023, 2023
Short summary

Related subject area

Approach: Remote Sensing | Properties and processes: Mesoscale to submesoscale dynamics
Deep learning for the super resolution of Mediterranean sea surface temperature fields
Claudia Fanelli, Daniele Ciani, Andrea Pisano, and Bruno Buongiorno Nardelli
Ocean Sci., 20, 1035–1050, https://doi.org/10.5194/os-20-1035-2024,https://doi.org/10.5194/os-20-1035-2024, 2024
Short summary
Regional mapping of energetic short mesoscale ocean dynamics from altimetry: performances from real observations
Florian Le Guillou, Lucile Gaultier, Maxime Ballarotta, Sammy Metref, Clément Ubelmann, Emmanuel Cosme, and Marie-Helène Rio
Ocean Sci., 19, 1517–1527, https://doi.org/10.5194/os-19-1517-2023,https://doi.org/10.5194/os-19-1517-2023, 2023
Short summary
Ocean 2D eddy energy fluxes from small mesoscale processes with SWOT
Elisa Carli, Rosemary Morrow, Oscar Vergara, Robin Chevrier, and Lionel Renault
Ocean Sci., 19, 1413–1435, https://doi.org/10.5194/os-19-1413-2023,https://doi.org/10.5194/os-19-1413-2023, 2023
Short summary
MAESSTRO: Masked Autoencoders for Sea Surface Temperature Reconstruction under Occlusion
Edwin Goh, Alice R. Yepremyan, Jinbo Wang, and Brian Wilson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1385,https://doi.org/10.5194/egusphere-2023-1385, 2023
Short summary

Cited articles

Assassi, C., Morel, Y., Vandermeirsch, F., Chaigneau, A., Pegliasco, C., Morrow, R., Colas, F., Fleury, S., Carton, X., and Klein, P.: An index to distinguish surface- and subsurface-intensified vortices from surface observations, J. Phys. Oceanogr., 46, 2529–2552, https://doi.org/10.1175/JPO-D-15-0122.1, 2016. 
Babu, M. T., Kumar, S. P., and Rao, D. P.: A subsurface cyclonic eddy in the Bay of Bengal, J. Mar. Res., 49, 403–410, 1991. 
Badin, G., Tandon, A., and Mahadevan, A.: Lateral mixing in the pycnocline by baroclinic mixed layer eddies, J. Phys. Oceanogr., 41, 2080–2101, https://doi.org/10.1175/JPO-D-11-05.1, 2011. 
Banse, K. and English, D.: Geographical differences in seasonality of CZCS-derived phytoplankton pigment in the Arabian Sea for 1978–1986, Deep-Sea Res. Pt. II, 47, 1623–1677, https://doi.org/10.1016/S0967-0645(99)00157-5, 2000. 
Bartier, P. M. and Keller, C. P.: Multivariate interpolation to incorporate thematic surface data using inverse distance weighting (IDW), Comput. Geosci., 22, 795–799, https://doi.org/10.1016/0098-3004(96)00021-0, 1996. 
Download
Short summary
The study developed a deep learning model that effectively distinguishes between surface- and subsurface-intensified eddies in the northern Indian Ocean by integrating sea surface height and temperature data. The accurate distinction between these types of eddies provides valuable insights into their dynamics and their impact on marine ecosystems in the northern Indian Ocean and contributes to understanding the complex interactions between eddy dynamics and biogeochemical processes in the ocean.