Articles | Volume 19, issue 5
https://doi.org/10.5194/os-19-1453-2023
https://doi.org/10.5194/os-19-1453-2023
Technical note
 | 
18 Oct 2023
Technical note |  | 18 Oct 2023

Technical note: Determining Arctic Ocean halocline and cold halostad depths based on vertical stability

Enrico P. Metzner and Marc Salzmann

Related authors

Subgrid-scale variability of cloud ice in the ICON-AES 1.3.00
Sabine Doktorowski, Jan Kretzschmar, Johannes Quaas, Marc Salzmann, and Odran Sourdeval
Geosci. Model Dev., 17, 3099–3110, https://doi.org/10.5194/gmd-17-3099-2024,https://doi.org/10.5194/gmd-17-3099-2024, 2024
Short summary
Separating radiative forcing by aerosol–cloud interactions and rapid cloud adjustments in the ECHAM–HAMMOZ aerosol–climate model using the method of partial radiative perturbations
Johannes Mülmenstädt, Edward Gryspeerdt, Marc Salzmann, Po-Lun Ma, Sudhakar Dipu, and Johannes Quaas
Atmos. Chem. Phys., 19, 15415–15429, https://doi.org/10.5194/acp-19-15415-2019,https://doi.org/10.5194/acp-19-15415-2019, 2019
Short summary
Arctic clouds in ECHAM6 and their sensitivity to cloud microphysics and surface fluxes
Jan Kretzschmar, Marc Salzmann, Johannes Mülmenstädt, and Johannes Quaas
Atmos. Chem. Phys., 19, 10571–10589, https://doi.org/10.5194/acp-19-10571-2019,https://doi.org/10.5194/acp-19-10571-2019, 2019
Short summary
Subgrid-scale variability in clear-sky relative humidity and forcing by aerosol–radiation interactions in an atmosphere model
Paul Petersik, Marc Salzmann, Jan Kretzschmar, Ribu Cherian, Daniel Mewes, and Johannes Quaas
Atmos. Chem. Phys., 18, 8589–8599, https://doi.org/10.5194/acp-18-8589-2018,https://doi.org/10.5194/acp-18-8589-2018, 2018
Short summary
Implementation of aerosol–cloud interactions in the regional atmosphere–aerosol model COSMO-MUSCAT(5.0) and evaluation using satellite data
Sudhakar Dipu, Johannes Quaas, Ralf Wolke, Jens Stoll, Andreas Mühlbauer, Odran Sourdeval, Marc Salzmann, Bernd Heinold, and Ina Tegen
Geosci. Model Dev., 10, 2231–2246, https://doi.org/10.5194/gmd-10-2231-2017,https://doi.org/10.5194/gmd-10-2231-2017, 2017

Related subject area

Approach: In situ Observations | Properties and processes: Overturning circulation, gyres and water masses
The Southern Ocean deep mixing band emerges from a competition between winter buoyancy loss and upper stratification strength
Romain Caneill, Fabien Roquet, and Jonas Nycander
Ocean Sci., 20, 601–619, https://doi.org/10.5194/os-20-601-2024,https://doi.org/10.5194/os-20-601-2024, 2024
Short summary
Comparing observed and modelled components of the Atlantic Meridional Overturning Circulation at 26° N
Harry Bryden, Jordi Beunk, Sybren Drijfhout, Wilco Hazeleger, and Jennifer Mecking
Ocean Sci., 20, 589–599, https://doi.org/10.5194/os-20-589-2024,https://doi.org/10.5194/os-20-589-2024, 2024
Short summary
Water properties and bottom water patterns in hadal trench environments
Jessica Kolbusz, Jan Zika, Charitha Pattiaratchi, and Alan Jamieson
Ocean Sci., 20, 123–140, https://doi.org/10.5194/os-20-123-2024,https://doi.org/10.5194/os-20-123-2024, 2024
Short summary
Long-term eddy modulation affects the meridional asymmetry of the halocline in the Beaufort Gyre
Jinling Lu, Ling Du, and Shuhao Tao
Ocean Sci., 19, 1773–1789, https://doi.org/10.5194/os-19-1773-2023,https://doi.org/10.5194/os-19-1773-2023, 2023
Short summary
The Iceland–Faroe warm-water flow towards the Arctic estimated from satellite altimetry and in situ observations
Bogi Hansen, Karin M. H. Larsen, Hjálmar Hátún, Steffen M. Olsen, Andrea M. U. Gierisch, Svein Østerhus, and Sólveig R. Ólafsdóttir
Ocean Sci., 19, 1225–1252, https://doi.org/10.5194/os-19-1225-2023,https://doi.org/10.5194/os-19-1225-2023, 2023
Short summary

Cited articles

Aagaard, K., Coachman, L. K., and Carmack, E.: On the halocline of the Arctic Ocean, Deep-Sea Res. Pt. I, 28, 529–545, https://doi.org/10.1016/0198-0149(81)90115-1, 1981. a, b, c, d, e, f
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research: Meereisportal, https://www.meereisportal.de, last access: 17 October 2023. a
Alkire, M. B., Polyakov, I., Rember, R., Pnyushkov, A., Ivanov, V., and Ashik, I.: Combining physical and geochemical methods to investigate lower halocline water formation and modification along the Siberian continental slope, Ocean Sci., 13, 983–995, https://doi.org/10.5194/os-13-983-2017, 2017. a, b
Anderson, L. G., Andersson, P. S., Björk, G., Jones, E. P., Jutterström, S., and Wåhlström, I.: Source and formation of the upper halocline of the Arctic Ocean, J. Geophys. Res.-Oceans, 118, 410–421, https://doi.org/10.1029/2012jc008291, 2013. a, b
Athanase, M., Provost, C., Artana, C., Pérez-Hernández, M. D., Sennéchael, N., Bertosio, C., Garric, G., Lellouche, J.-M., and Prandi, P.: Changes in Atlantic Water circulation patterns and volume transports north of Svalbard over the last 12 years (2008–2020), J. Geophys. Res.-Oceans, 126, e2020JC016825, https://doi.org/10.1029/2020jc016825, 2021. a
Download
Short summary
The Arctic Ocean cold halocline separates the cold surface mixed layer from the underlying warm Atlantic Water, and thus provides a precondition for sea ice formation. Here, we introduce a new method for detecting the halocline base and compare it to two existing methods. We show that the largest differences between the methods are found in the regions that are most prone to a halocline retreat in a warming climate, and we discuss the advantages and disadvantages of the three methods.