Articles | Volume 19, issue 5
https://doi.org/10.5194/os-19-1437-2023
https://doi.org/10.5194/os-19-1437-2023
Research article
 | 
17 Oct 2023
Research article |  | 17 Oct 2023

Intraseasonal and interannual variability of sea temperature in the Arabian Sea Warm Pool

Na Li, Xueming Zhu, Hui Wang, Shouwen Zhang, and Xidong Wang

Related authors

Effect of nonlinear tide-surge interaction in the Pearl River Estuary during Typhoon Nida (2016)
Linxu Huang, Tianyu Zhang, Shouwen Zhang, and Hui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1940,https://doi.org/10.5194/egusphere-2024-1940, 2024
Short summary
Distinct role of intraseasonal and interannual sea surface temperature anomaly in the rapid intensification onset of Typhoon Megi (2010)
Caixia Shao, Xidong Wang, and Kaigui Fan
EGUsphere, https://doi.org/10.5194/egusphere-2023-61,https://doi.org/10.5194/egusphere-2023-61, 2023
Preprint withdrawn
Short summary
Improvements in the regional South China Sea Operational Oceanography Forecasting System (SCSOFSv2)
Xueming Zhu, Ziqing Zu, Shihe Ren, Miaoyin Zhang, Yunfei Zhang, Hui Wang, and Ang Li
Geosci. Model Dev., 15, 995–1015, https://doi.org/10.5194/gmd-15-995-2022,https://doi.org/10.5194/gmd-15-995-2022, 2022
Short summary
The improvements to the regional South China Sea Operational Oceanography Forecasting System
Xueming Zhu, Ziqing Zu, Shihe Ren, Yunfei Zhang, Miaoyin Zhang, and Hui Wang
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-104,https://doi.org/10.5194/os-2020-104, 2020
Preprint withdrawn
Short summary

Related subject area

Approach: Analytic Theory | Properties and processes: Climate and modes of variability
Investigating extreme marine summers in the Mediterranean Sea
Dimitra Denaxa, Gerasimos Korres, Emmanouil Flaounas, and Maria Hatzaki
Ocean Sci., 20, 433–461, https://doi.org/10.5194/os-20-433-2024,https://doi.org/10.5194/os-20-433-2024, 2024
Short summary
Equatorial wave diagnosis for the Atlantic Niño in 2019 with an ocean reanalysis
Qingyang Song and Hidenori Aiki
Ocean Sci., 19, 1705–1717, https://doi.org/10.5194/os-19-1705-2023,https://doi.org/10.5194/os-19-1705-2023, 2023
Short summary

Cited articles

Annamalai, H., Murtugudde, R., Potemra, J., Xie, S. P., Liu, P., and Wang, B.: Coupled dynamics over the Indian Ocean: spring initiation of the Zonal Mode, Deep-Sea Res., Pt. II., 50, 2305–2330, https://doi.org/10.1016/S0967-0645(03)00058-4, 2003. 
Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., and Yamagata, T.: A CGCM Study on the Interaction between IOD and ENSO, J. Climate, 19, 1688–1705, https://doi.org/10.1175/JCLI3797.1, 2006. 
Bruce, J. G., Johnson, D. R., and Kindle, J. C.: Evidence for eddy formation in the eastern Arabian Sea during the northeast monsoon, J. Geophys. Res.-Oceans, 99, 7651–7664, https://doi.org/10.1029/94JC00035, 1994. 
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate Reanalysis, J. Climate, 31, 6967–6983, https://doi.org/10.1175/JCLI-D-18-0149.1, 2018. 
Chowdary, J. S. and Gnanaseelan, C.: Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years, Int. J. Climatol., 27, 1421–1438, https://doi.org/10.1002/joc.1482, 2007. 
Download
Short summary
Observations of the sea surface temperature in the Arabian Sea show exceptional warming before the onset of the Indian Ocean summer monsoon. The sea surface temperature change is mainly caused by sea surface heat flux forcing, horizontal advection, and vertical entrainment. Here, we quantify the contribution of those factors to the Arabian Sea warm pool using heat budget analysis and highlight how large-scale ocean modes control its change.