Articles | Volume 19, issue 5
https://doi.org/10.5194/os-19-1437-2023
https://doi.org/10.5194/os-19-1437-2023
Research article
 | 
17 Oct 2023
Research article |  | 17 Oct 2023

Intraseasonal and interannual variability of sea temperature in the Arabian Sea Warm Pool

Na Li, Xueming Zhu, Hui Wang, Shouwen Zhang, and Xidong Wang

Related authors

Effect of nonlinear tide–surge interaction in the Pearl River Estuary during Typhoon Nida (2016)
Linxu Huang, Tianyu Zhang, Shouwen Zhang, and Hui Wang
Ocean Sci., 21, 1891–1908, https://doi.org/10.5194/os-21-1891-2025,https://doi.org/10.5194/os-21-1891-2025, 2025
Short summary
Correcting errors in seasonal Arctic sea ice prediction of Earth system models with machine learning
Zikang He, Yiguo Wang, Julien Brajard, Xidong Wang, and Zheqi Shen
The Cryosphere, 19, 3279–3293, https://doi.org/10.5194/tc-19-3279-2025,https://doi.org/10.5194/tc-19-3279-2025, 2025
Short summary
A global daily mesoscale front dataset from satellite observations: in situ validation and cross-dataset comparison
Qinwang Xing, Haiqing Yu, Wei Yu, Xinjun Chen, and Hui Wang
Earth Syst. Sci. Data, 17, 2831–2848, https://doi.org/10.5194/essd-17-2831-2025,https://doi.org/10.5194/essd-17-2831-2025, 2025
Short summary
A surface ocean pCO2 product with improved representation of interannual variability using a vision transformer-based model
Xueying Zhang, Enhui Liao, Wenfang Lu, Zelun Wu, Guansuo Wang, Xueming Zhu, and Shiyu Liang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-286,https://doi.org/10.5194/essd-2025-286, 2025
Preprint under review for ESSD
Short summary
Improving dynamical climate predictions with machine learning: insights from a twin experiment framework
Zikang He, Julien Brajard, Yiguo Wang, Xidong Wang, and Zheqi Shen
EGUsphere, https://doi.org/10.5194/egusphere-2025-212,https://doi.org/10.5194/egusphere-2025-212, 2025
Short summary

Cited articles

Annamalai, H., Murtugudde, R., Potemra, J., Xie, S. P., Liu, P., and Wang, B.: Coupled dynamics over the Indian Ocean: spring initiation of the Zonal Mode, Deep-Sea Res., Pt. II., 50, 2305–2330, https://doi.org/10.1016/S0967-0645(03)00058-4, 2003. 
Behera, S. K., Luo, J. J., Masson, S., Rao, S. A., Sakuma, H., and Yamagata, T.: A CGCM Study on the Interaction between IOD and ENSO, J. Climate, 19, 1688–1705, https://doi.org/10.1175/JCLI3797.1, 2006. 
Bruce, J. G., Johnson, D. R., and Kindle, J. C.: Evidence for eddy formation in the eastern Arabian Sea during the northeast monsoon, J. Geophys. Res.-Oceans, 99, 7651–7664, https://doi.org/10.1029/94JC00035, 1994. 
Carton, J. A., Chepurin, G. A., and Chen, L.: SODA3: A New Ocean Climate Reanalysis, J. Climate, 31, 6967–6983, https://doi.org/10.1175/JCLI-D-18-0149.1, 2018. 
Chowdary, J. S. and Gnanaseelan, C.: Basin-wide warming of the Indian Ocean during El Niño and Indian Ocean dipole years, Int. J. Climatol., 27, 1421–1438, https://doi.org/10.1002/joc.1482, 2007. 
Download
Short summary
Observations of the sea surface temperature in the Arabian Sea show exceptional warming before the onset of the Indian Ocean summer monsoon. The sea surface temperature change is mainly caused by sea surface heat flux forcing, horizontal advection, and vertical entrainment. Here, we quantify the contribution of those factors to the Arabian Sea warm pool using heat budget analysis and highlight how large-scale ocean modes control its change.
Share