Articles | Volume 19, issue 5
https://doi.org/10.5194/os-19-1393-2023
https://doi.org/10.5194/os-19-1393-2023
Research article
 | 
21 Sep 2023
Research article |  | 21 Sep 2023

Evaluating altimetry-derived surface currents on the south Greenland shelf with surface drifters

Arthur Coquereau and Nicholas P. Foukal

Related subject area

Approach: In situ Observations | Properties and processes: Mesoscale to submesoscale dynamics
An emerging pathway of Atlantic Water to the Barents Sea through the Svalbard Archipelago: drivers and variability
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024,https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
The Polar Front in the northwestern Barents Sea: structure, variability and mixing
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024,https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Tipping of the double-diffusive regime in the southern Adriatic Pit in 2017 in connection with record high-salinity values
Felipe L. L. Amorim, Julien Le Meur, Achim Wirth, and Vanessa Cardin
Ocean Sci., 20, 463–474, https://doi.org/10.5194/os-20-463-2024,https://doi.org/10.5194/os-20-463-2024, 2024
Short summary
Characterization of physical properties of a coastal upwelling filament with evidence of enhanced submesoscale activity and transition from balanced to unbalanced motions in the Benguela upwelling region
Ryan P. North, Julia Dräger-Dietel, and Alexa Griesel
Ocean Sci., 20, 103–121, https://doi.org/10.5194/os-20-103-2024,https://doi.org/10.5194/os-20-103-2024, 2024
Short summary
Relative dispersion and kinematic properties of the coastal submesoscale circulation in the southeastern Ligurian Sea
Pierre-Marie Poulain, Luca Centurioni, Carlo Brandini, Stefano Taddei, Maristella Berta, and Milena Menna
Ocean Sci., 19, 1617–1631, https://doi.org/10.5194/os-19-1617-2023,https://doi.org/10.5194/os-19-1617-2023, 2023
Short summary

Cited articles

Arbic, B. K., Scott, R. B., Chelton, D. B., Richman, J. G., and Shriver, J. F.: Effects of Stencil Width on Surface Ocean Geostrophic Velocity and Vorticity Estimation from Gridded Satellite Altimeter Data, J. Geophys. Res.-Oceans, 117, https://doi.org/10.1029/2011JC007367, 2012. a
Arctic Ocean Physics Analysis and Forecast: E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS), [data set], https://doi.org/10.48670/moi-00001, last access: 26 April 2022. a
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., and Bamber, J. L.: Emerging Impact of Greenland Meltwater on Deepwater Formation in the North Atlantic Ocean, Nat. Geosci., 9, 523–527, https://doi.org/10.1038/ngeo2740, 2016. a, b
Castelao, R. M., Luo, H., Oliver, H., Rennermalm, A. K., Tedesco, M., Bracco, A., Yager, P. L., Mote, T. L., and Medeiros, P. M.: Controls on the Transport of Meltwater From the Southern Greenland Ice Sheet in the Labrador Sea, J. Geophys. Res.-Oceans, 124, 3551–3560, https://doi.org/10.1029/2019JC015159, 2019. a
Copin, Y.: Taylor Diagram for Python/Matplotlib, Zenodo, https://doi.org/10.5281/zenodo.5548061, 2012. a
Download
Short summary
Understanding meltwater circulation around Greenland is crucial as it could influence climate variability but difficult as data are scarce. Here, we use 34 surface drifters to evaluate satellite-derived surface currents and show that satellite data recover the general structure of the flow and can recreate the pathways of particles around the southern tip of Greenland. This result permits a wide range of work to proceed looking at long-term changes in the circulation of the region since 1993.