Articles | Volume 19, issue 5
https://doi.org/10.5194/os-19-1393-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1393-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluating altimetry-derived surface currents on the south Greenland shelf with surface drifters
Arthur Coquereau
CORRESPONDING AUTHOR
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Laboratoire d’Océanographie Physique et Spatiale, Univ. Brest, CNRS, IRD, Ifremer, Brest, France
Nicholas P. Foukal
Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Related authors
Arthur Coquereau, Florian Sévellec, Thierry Huck, Joël J.-M. Hirschi, and Quentin Jamet
EGUsphere, https://doi.org/10.5194/egusphere-2025-17, https://doi.org/10.5194/egusphere-2025-17, 2025
Short summary
Short summary
Using statistical methods and a set of ensemble climate models, we decompose the sources of Atlantic Meridional Overturning Circulation (AMOC) variance. Three distinct phases of physical variability are identified: from 1850 to 1990, internal variability dominates; from 1990 to 2050, dynamical adjustment related to AMOC decline takes over; after 2050, differences between forcing scenarios become dominant. Beyond these physical factors, model variability remains the major source of uncertainty.
Elodie Duyck, Nicholas P. Foukal, and Eleanor Frajka-Williams
Ocean Sci., 21, 241–260, https://doi.org/10.5194/os-21-241-2025, https://doi.org/10.5194/os-21-241-2025, 2025
Short summary
Short summary
This study uses drifters – instruments that follow surface ocean currents – to investigate the pathways of Arctic origin waters that enter the North Atlantic west of Greenland. It shows that these waters remain close to the coast as they flow over the Labrador shelf and only spread into the open ocean south of the Labrador Sea. These results contribute to better understanding how the North Atlantic will be affected by additional freshwater from Greenland and the Arctic in the coming decades.
Arthur Coquereau, Florian Sévellec, Thierry Huck, Joël J.-M. Hirschi, and Quentin Jamet
EGUsphere, https://doi.org/10.5194/egusphere-2025-17, https://doi.org/10.5194/egusphere-2025-17, 2025
Short summary
Short summary
Using statistical methods and a set of ensemble climate models, we decompose the sources of Atlantic Meridional Overturning Circulation (AMOC) variance. Three distinct phases of physical variability are identified: from 1850 to 1990, internal variability dominates; from 1990 to 2050, dynamical adjustment related to AMOC decline takes over; after 2050, differences between forcing scenarios become dominant. Beyond these physical factors, model variability remains the major source of uncertainty.
Cited articles
Arbic, B. K., Scott, R. B., Chelton, D. B., Richman, J. G., and Shriver, J. F.:
Effects of Stencil Width on Surface Ocean Geostrophic Velocity and Vorticity
Estimation from Gridded Satellite Altimeter Data, J. Geophys.
Res.-Oceans, 117, https://doi.org/10.1029/2011JC007367, 2012. a
Arctic Ocean Physics Analysis and Forecast: E.U. Copernicus Marine Service Information
(CMEMS), Marine Data Store (MDS), [data set], https://doi.org/10.48670/moi-00001, last access: 26 April 2022. a
Böning, C. W., Behrens, E., Biastoch, A., Getzlaff, K., and Bamber, J. L.:
Emerging Impact of Greenland Meltwater on Deepwater Formation in the
North Atlantic Ocean, Nat. Geosci., 9, 523–527,
https://doi.org/10.1038/ngeo2740, 2016. a, b
Castelao, R. M., Luo, H., Oliver, H., Rennermalm, A. K., Tedesco, M., Bracco,
A., Yager, P. L., Mote, T. L., and Medeiros, P. M.: Controls on the
Transport of Meltwater From the Southern Greenland Ice Sheet in
the Labrador Sea, J. Geophys. Res.-Oceans, 124,
3551–3560, https://doi.org/10.1029/2019JC015159, 2019. a
Copin, Y.: Taylor Diagram for Python/Matplotlib, Zenodo,
https://doi.org/10.5281/zenodo.5548061, 2012. a
Coquereau, A.: Coquereau/ADSC-SVP-Comparison: ADSC-SVP-Comparison v.1.0.0
(v.1.0.0), Zenodo [code], https://doi.org/10.5281/zenodo.8341550, 2023. a
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a
Dukhovskoy, D. S., Myers, P. G., Platov, G., Timmermans, M.-L., Curry, B.,
Proshutinsky, A., Bamber, J. L., Chassignet, E., Hu, X., Lee, C. M., and
Somavilla, R.: Greenland Freshwater Pathways in the Sub-Arctic Seas from
Model Experiments with Passive Tracers, J. Geophys. Res.-Oceans, 121, 877–907, https://doi.org/10.1002/2015JC011290, 2016. a
Dukhovskoy, D. S., Yashayaev, I., Proshutinsky, A., Bamber, J. L.,
Bashmachnikov, I. L., Chassignet, E. P., Lee, C. M., and Tedstone, A. J.:
Role of Greenland Freshwater Anomaly in the Recent Freshening of the
Subpolar North Atlantic, J. Geophys. Res.-Oceans, 124,
3333–3360, https://doi.org/10.1029/2018JC014686, 2019. a, b
Dukhovskoy, D. S., Yashayaev, I., Chassignet, E. P., Myers, P. G., Platov, G.,
and Proshutinsky, A.: Time Scales of the Greenland Freshwater Anomaly
in the Subpolar North Atlantic, J. Climate, 34, 8971–8987,
https://doi.org/10.1175/JCLI-D-20-0610.1, 2021. a
Duyck, E. and De Jong, M. F.: Circulation Over the South-East Greenland
Shelf and Potential for Liquid Freshwater Export: A Drifter
Study, Geophys. Res. Lett., 48, e2020JB020886,
https://doi.org/10.1029/2020GL091948, 2021. a, b
Duyck, E., Gelderloos, R., and de Jong, M. F.: Wind-Driven Freshwater
Export at Cape Farewell, J. Geophys. Res.-Oceans, 127,
e2021JC018309, https://doi.org/10.1029/2021JC018309, 2022. a, b
Elipot, S., Lumpkin, R., Perez, R. C., Lilly, J. M., Early, J. J., and
Sykulski, A. M.: A Global Surface Drifter Data Set at Hourly Resolution,
J. Geophys. Res.-Oceans, 121, 2937–2966,
https://doi.org/10.1002/2016JC011716, 2016. a
Faugère, Y., Taburet, G., Ballarotta, M., Pujol, I., Legeais, J. F., Maillard, G., Durand, C., Dagneau, Q., Lievin, M., Sanchez Roman, A., and Dibarboure, G.: DUACS DT2021: 28 years of reprocessed sea level altimetry products, EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022, EGU22-7479, https://doi.org/10.5194/egusphere-egu22-7479, 2022. a
Fichefet, T., Poncin, C., Goosse, H., Huybrechts, P., Janssens, I., and
Le Treut, H.: Implications of Changes in Freshwater Flux from the
Greenland Ice Sheet for the Climate of the 21st Century, Geophys.
Res. Lett., 30, https://doi.org/10.1029/2003GL017826, 2003. a
Foukal, N. P., Gelderloos, R., and Pickart, R. S.: A Continuous Pathway for
Fresh Water along the East Greenland Shelf, Sci. Adv., 6,
eabc4254, https://doi.org/10.1126/sciadv.abc4254, 2020. a
Garcia-Quintana, Y., Courtois, P., Hu, X., Pennelly, C., Kieke, D., and
Myers, P. G.: Sensitivity of Labrador Sea Water Formation to Changes
in Model Resolution, Atmospheric Forcing, and Freshwater Input,
J. Geophys. Res.-Oceans, 124, 2126–2152,
https://doi.org/10.1029/2018JC014459, 2019. a, b
Gillard, L. C., Hu, X., Myers, P. G., and Bamber, J. L.: Meltwater Pathways
from Marine Terminating Glaciers of the Greenland Ice Sheet, Geophys.
Res. Lett., 43, 10873–10882, https://doi.org/10.1002/2016GL070969, 2016. a, b
Glikson, A. Y.: North Atlantic and Sub-Antarctic Ocean Temperatures:
Possible Onset of a Transient Stadial Cooling Stage, Clim. Change, 155,
311–321, https://doi.org/10.1007/s10584-019-02458-x, 2019. a
Global Ocean Gridded L4 Sea Surface Heights And Derived Variables Nrt: E.U. Copernicus
Marine Service Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00149, last access: 19 April 2022. a
Global Ocean Gridded L4 Sea Surface Heights And Derived Variables Reprocessed 1993
Ongoing: E.U. Copernicus Marine Service Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00148, last access: 15 December 2022. a
Global Total Surface and 15 m Current (COPERNICUS-GLOBCURRENT) from Altimetric
Geostrophic Current and Modeled Ekman Current Processing: E.U. Copernicus Marine Service
Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00049, last access: 19 April 2022. a
Global Total Surface and 15 m Current (COPERNICUS-GLOBCURRENT) from Altimetric
Geostrophic Current and Modeled Ekman Current Reprocessing: E.U. Copernicus Marine Service
Information (CMEMS), Marine Data Store (MDS) [data set], https://doi.org/10.48670/moi-00050, last access: 15 December 2022. a
Gou, R., Feucher, C., Pennelly, C., and Myers, P. G.: Seasonal Cycle of the
Coastal West Greenland Current System Between Cape Farewell and Cape
Desolation From a Very High-Resolution Numerical Model, J. Geophys. Res.-Oceans, 126, e2020JC017017,
https://doi.org/10.1029/2020JC017017, 2021. a
Gou, R., Pennelly, C., and Myers, P. G.: The Changing Behavior of the
West Greenland Current System in a Very High-Resolution Model,
J. Geophys. Res.-Oceans, 127, e2022JC018404,
https://doi.org/10.1029/2022JC018404, 2022. a
Haine, T. W. N., Gelderloos, R., Jimenez-Urias, M. A., Siddiqui, A. H.,
Lemson, G., Medvedev, D., Szalay, A., Abernathey, R. P., Almansi, M., and
Hill, C. N.: Is Computational Oceanography Coming of Age?, B. Am. Meteorol. Soc., 102, 1481–1493,
https://doi.org/10.1175/BAMS-D-20-0258.1, 2021. a
Hansen, J., Sato, M., Hearty, P., Ruedy, R., Kelley, M., Masson-Delmotte, V., Russell, G., Tselioudis, G., Cao, J., Rignot, E., Velicogna, I., Tormey, B., Donovan, B., Kandiano, E., von Schuckmann, K., Kharecha, P., Legrande, A. N., Bauer, M., and Lo, K.-W.: Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous, Atmos. Chem. Phys., 16, 3761–3812, https://doi.org/10.5194/acp-16-3761-2016, 2016. a
Håvik, L., Pickart, R. S., Våge, K., Torres, D., Thurnherr, A. M.,
Beszczynska-Möller, A., Walczowski, W., and von Appen, W.-J.:
Evolution of the East Greenland Current from Fram Strait to Denmark
Strait: Synoptic Measurements from Summer 2012, J. Geophys.
Res.-Oceans, 122, 1974–1994, https://doi.org/10.1002/2016JC012228, 2017. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Johnson, G. C., Hosoda, S., Jayne, S. R., Oke, P. R., Riser, S. C., Roemmich,
D., Suga, T., Thierry, V., Wijffels, S. E., and Xu, J.: Argo – Two
Decades: Global Oceanography, Revolutionized, Annu. Rev. Mar. Sci., 14, 379–403, https://doi.org/10.1146/annurev-marine-022521-102008,
2022. a
Koszalka, I. M. and LaCasce, J. H.: Lagrangian Analysis by Clustering, Ocean
Dynam., 60, 957–972, https://doi.org/10.1007/s10236-010-0306-2, 2010. a
Kundu, P. K.: Ekman Veering Observed near the Ocean Bottom, J.
Phys. Ocean., 6, 238–242,
https://doi.org/10.1175/1520-0485(1976)006<0238:EVONTO>2.0.CO;2, 1976. a
LaCasce, J. H.: Statistics from Lagrangian Observations, Prog.
Oceanogr., 77, 1–29, https://doi.org/10.1016/j.pocean.2008.02.002, 2008. a
Lumpkin, R. and Centurioni, L.: Global Drifter Program qualitycontrolled
6-hour interpolated data from ocean surface drifting buoys. NOAA National Centers for
Environmental Information, [data set], https://doi.org/10.25921/7ntx-z961, 2019. a, b
Lumpkin, R. and Johnson, G. C.: Global Ocean Surface Velocities from Drifters:
Mean, Variance, El Niño–Southern Oscillation
Response, and Seasonal Cycle, J. Geophys. Res.-Oceans, 118,
2992–3006, https://doi.org/10.1002/jgrc.20210, 2013. a
Lumpkin, R. and Centurioni, L.: Global Drifter Program quality-controlled 6-hour
interpolated data from ocean surface drifting buoys. NOAA National Centers for Environmental
Information, [data set], https://doi.org/10.25921/7ntx-z961, 2019. a
Luo, H., Castelao, R. M., Rennermalm, A. K., Tedesco, M., Bracco, A., Yager,
P. L., and Mote, T. L.: Oceanic Transport of Surface Meltwater from the
Southern Greenland Ice Sheet, Nat. Geosci., 9, 528–532,
https://doi.org/10.1038/ngeo2708, 2016. a, b
Marsh, R., Desbruyères, D., Bamber, J. L., de Cuevas, B. A., Coward, A. C., and Aksenov, Y.: Short-term impacts of enhanced Greenland freshwater fluxes in an eddy-permitting ocean model, Ocean Sci., 6, 749–760, https://doi.org/10.5194/os-6-749-2010, 2010. a
Morrison, T. J., Dukhovskoy, D. S., McClean, J. L., Gille, S. T., and
Chassignet, E. P.: Mechanisms of Heat Flux Across the Southern
Greenland Continental Shelf in 1/10∘ and 1/12∘Ocean/Sea Ice Simulations, J. Geophys. Res.-Oceans,
128, e2022JC019021, https://doi.org/10.1029/2022JC019021, 2023. a
Mulet, S., Rio, M.-H., Etienne, H., Artana, C., Cancet, M., Dibarboure, G., Feng, H., Husson, R., Picot, N., Provost, C., and Strub, P. T.: The new CNES-CLS18 global mean dynamic topography, Ocean Sci., 17, 789–808, https://doi.org/10.5194/os-17-789-2021, 2021. a, b
Oliver, H., Luo, H., Castelao, R. M., van Dijken, G. L., Mattingly, K. S.,
Rosen, J. J., Mote, T. L., Arrigo, K. R., Rennermalm, Å. K., Tedesco, M.,
and Yager, P. L.: Exploring the Potential Impact of Greenland
Meltwater on Stratification, Photosynthetically Active Radiation,
and Primary Production in the Labrador Sea, J. Geophys.
Res.-Oceans, 123, 2570–2591, https://doi.org/10.1002/2018JC013802, 2018. a
Pacini, A. and Pickart, R. S.: Wind-Forced Upwelling Along the West
Greenland Shelfbreak: Implications for Labrador Sea Water
Formation, J. Geophys. Res.-Oceans, 128, e2022JC018952,
https://doi.org/10.1029/2022JC018952, 2023. a
Pennelly, C., Hu, X., and Myers, P. G.: Cross-Isobath Freshwater Exchange
Within the North Atlantic Subpolar Gyre, J. Geophys.
Res.-Oceans, 124, 6831–6853, https://doi.org/10.1029/2019JC015144, 2019. a, b
Poulain, P.-M., Gerin, R., Mauri, E., and Pennel, R.: Wind Effects on
Drogued and Undrogued Drifters in the Eastern Mediterranean,
J. Atmos. Ocean. Technol., 26, 1144–1156,
https://doi.org/10.1175/2008JTECHO618.1, 2009. a
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M., and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years, Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, 2016. a, b
Pujol, M.-I., Dupuy, S., Vergara, O., Sánchez Román, A., Faugère,
Y., Prandi, P., Dabat, M.-L., Dagneaux, Q., Lievin, M., Cadier, E.,
Dibarboure, G., and Picot, N.: Refining the Resolution of DUACS
Along-Track Level-3 Sea Level Altimetry Products, Remote Sens., 15, 793,
https://doi.org/10.3390/rs15030793, 2023.
a
Rahmstorf, S., Box, J. E., Feulner, G., Mann, M. E., Robinson, A., Rutherford,
S., and Schaffernicht, E. J.: Exceptional Twentieth-Century Slowdown in
Atlantic Ocean Overturning Circulation, Nat. Clim. Change, 5,
475–480, https://doi.org/10.1038/nclimate2554, 2015. a
Révelard, A., Reyes, E., Mourre, B., Hernández-Carrasco, I., Rubio,
A., Lorente, P., Fernández, C. D. L., Mader, J., Álvarez-Fanjul, E.,
and Tintoré, J.: Sensitivity of Skill Score Metric to Validate
Lagrangian Simulations in Coastal Areas: Recommendations for
Search and Rescue Applications, Front. Mar. Sci., 8, 2296–7745, https://doi.org/10.3389/fmars.2021.630388, 2021. a, b, c, d, e, f, g
Rio, M.-H.: Use of Altimeter and Wind Data to Detect the
Anomalous Loss of SVP-Type Drifter's Drogue, J. Atmos. Ocean. Tech., 29, 1663–1674,
https://doi.org/10.1175/JTECH-D-12-00008.1, 2012. a
Rio, M.-H. and Hernandez, F.: High-Frequency Response of Wind-Driven Currents
Measured by Drifting Buoys and Altimetry over the World Ocean, J. Geophys. Res.-Oceans, 108, https://doi.org/10.1029/2002JC001655, 2003. a
Rio, M. H. and Santoleri, R.: Improved Global Surface Currents from the Merging
of Altimetry and Sea Surface Temperature Data, Remote Sens. Environ., 216, 770–785, https://doi.org/10.1016/j.rse.2018.06.003, 2018. a
Rio, M.-H., Mulet, S., and Picot, N.: Beyond GOCE for the Ocean Circulation
Estimate: Synergetic Use of Altimetry, Gravimetry, and in Situ Data
Provides New Insight into Geostrophic and Ekman Currents, Geophys.
Res. Lett., 41, 8918–8925, https://doi.org/10.1002/2014GL061773, 2014. a, b
Sakov, P., Counillon, F., Bertino, L., Lisæter, K. A., Oke, P. R., and Korablev, A.: TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic, Ocean Sci., 8, 633–656, https://doi.org/10.5194/os-8-633-2012, 2012. a, b
Schulze Chretien, L. M. and Frajka-Williams, E.: Wind-driven transport of fresh shelf water into the upper 30 m of the Labrador Sea, Ocean Sci., 14, 1247–1264, https://doi.org/10.5194/os-14-1247-2018, 2018. a, b
Tagklis, F., Bracco, A., Ito, T., and Castelao, R. M.: Submesoscale Modulation
of Deep Water Formation in the Labrador Sea, Sci. Rep., 10,
17489, https://doi.org/10.1038/s41598-020-74345-w, 2020. a, b, c
Taylor, K. E.: Summarizing Multiple Aspects of Model Performance in a Single
Diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001. a
Short summary
Understanding meltwater circulation around Greenland is crucial as it could influence climate variability but difficult as data are scarce. Here, we use 34 surface drifters to evaluate satellite-derived surface currents and show that satellite data recover the general structure of the flow and can recreate the pathways of particles around the southern tip of Greenland. This result permits a wide range of work to proceed looking at long-term changes in the circulation of the region since 1993.
Understanding meltwater circulation around Greenland is crucial as it could influence climate...