Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-1277-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1277-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Nouméa: a new multi-mission calibration and validation site for past and future altimetry missions?
Clémence Chupin
CORRESPONDING AUTHOR
Lab-STICC, UMR 6285, ENSTA Bretagne, 2 rue François Verny,
29200
Brest, France
Valérie Ballu
Littoral Environnement et Sociétés (LIENSs), UMR 7266,
CNRS/La
Rochelle Université, 2 rue Olympe de Gouges, 17000 La
Rochelle, France
Laurent Testut
Littoral Environnement et Sociétés (LIENSs), UMR 7266,
CNRS/La
Rochelle Université, 2 rue Olympe de Gouges, 17000 La
Rochelle, France
Yann-Treden Tranchant
Littoral Environnement et Sociétés (LIENSs), UMR 7266,
CNRS/La
Rochelle Université, 2 rue Olympe de Gouges, 17000 La
Rochelle, France
Jérôme Aucan
Pacific Community Centre for Ocean Science (PCCOS), 98848 Nouméa, New Caledonia
Related authors
No articles found.
Md Jamal Uddin Khan, Inge Van Den Beld, Guy Wöppelmann, Laurent Testut, Alexa Latapy, and Nicolas Pouvreau
Earth Syst. Sci. Data, 15, 5739–5753, https://doi.org/10.5194/essd-15-5739-2023, https://doi.org/10.5194/essd-15-5739-2023, 2023
Short summary
Short summary
Established in the southwest of France in 1875, the Socoa tide gauge is part of the national sea level monitoring network in France. Through a data archaeology exercise, a large part of the records of this gauge in paper format have been rescued and digitized. The digitized data were processed and quality controlled to produce a uniform hourly sea level time series covering 1875 to the present day. This new dataset is important for climate research on sea level rise, tides, and storm surges.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci., 22, 2359–2379, https://doi.org/10.5194/nhess-22-2359-2022, https://doi.org/10.5194/nhess-22-2359-2022, 2022
Short summary
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Jean Roger, Bernard Pelletier, Maxime Duphil, Jérôme Lefèvre, Jérôme Aucan, Pierre Lebellegard, Bruce Thomas, Céline Bachelier, and David Varillon
Nat. Hazards Earth Syst. Sci., 21, 3489–3508, https://doi.org/10.5194/nhess-21-3489-2021, https://doi.org/10.5194/nhess-21-3489-2021, 2021
Short summary
Short summary
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern Pacific) triggered by a Mw 7.5 earthquake that occurred southeast of Maré, Loyalty Islands, and was widely felt in the region. Numerical modeling results of the tsunami using a non-uniform and a uniform slip model compared to real tide gauge records and observations are globally well correlated for the uniform slip model, especially in far-field locations.
Md. Jamal Uddin Khan, Fabien Durand, Xavier Bertin, Laurent Testut, Yann Krien, A. K. M. Saiful Islam, Marc Pezerat, and Sazzad Hossain
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, https://doi.org/10.5194/nhess-21-2523-2021, https://doi.org/10.5194/nhess-21-2523-2021, 2021
Short summary
Short summary
The Bay of Bengal is well known for some of the deadliest cyclones in history. At the same time, storm surge forecasting in this region is physically involved and computationally costly. Here we show a proof of concept of a real-time, computationally efficient, and physically consistent forecasting system with an application to the recent Supercyclone Amphan. While challenges remain, our study paves the path forward to the improvement of the quality of localized forecast and disaster management.
Jean Roger, Bernard Pelletier, and Jérôme Aucan
Nat. Hazards Earth Syst. Sci., 19, 1471–1483, https://doi.org/10.5194/nhess-19-1471-2019, https://doi.org/10.5194/nhess-19-1471-2019, 2019
Short summary
Short summary
This paper presents an update of the tsunami catalogue of New Caledonia within the framework of the tsunami hazard assessment project TSUCAL. It provides 25 events for the last decade, leading to 37 tsunamis triggered by earthquakes reported in New Caledonia since 1875. It is a topic of great concern for modelers looking for real case data to set up potential scenarios and for decision makers to constrain hazard management including evacuation processes in the case of a tsunami.
Related subject area
Approach: In situ Observations | Properties and processes: Sea level | Depth range: Surface | Geographical range: Shelf Seas | Challenges: Oceans and climate
The acceleration of sea-level rise along the coast of the Netherlands started in the 1960s
Mean sea level and tidal change in Ireland since 1842: a case study of Cork
Iris Keizer, Dewi Le Bars, Cees de Valk, André Jüling, Roderik van de Wal, and Sybren Drijfhout
Ocean Sci., 19, 991–1007, https://doi.org/10.5194/os-19-991-2023, https://doi.org/10.5194/os-19-991-2023, 2023
Short summary
Short summary
Using tide gauge observations, we show that the acceleration of sea-level rise (SLR) along the coast of the Netherlands started in the 1960s but was masked by wind field and nodal-tide variations. This finding aligns with global SLR observations and expectations based on a physical understanding of SLR related to global warming.
David T. Pugh, Edmund Bridge, Robin Edwards, Peter Hogarth, Guy Westbrook, Philip L. Woodworth, and Gerard D. McCarthy
Ocean Sci., 17, 1623–1637, https://doi.org/10.5194/os-17-1623-2021, https://doi.org/10.5194/os-17-1623-2021, 2021
Short summary
Short summary
Observations of sea level, taken manually by reading a tide pole, were carefully taken at a number of locations around Ireland in 1842 as part of the first land survey of Ireland. Our study investigates how useful this type of sea level observation is for understanding mean sea level and tidal change. We find that when carefully adjusted for seasonal, meteorological, and astronomical factors, these data can provide important insights into changing sea levels.
Cited articles
Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment
of the error budget of global mean sea level rate estimated by satellite
altimetry over 1993–2008, Ocean Sci., 5, 193–201,
https://doi.org/10.5194/os-5-193-2009, 2009.
Ablain, M., Meyssignac, B., Zawadzki, L., Jugier, R., Ribes, A., Spada, G.,
Benveniste, J., Cazenave, A., and Picot, N.: Uncertainty in satellite
estimates of global mean sea-level changes, trend and acceleration, Earth
Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019,
2019.
Andersen, O. B. and Scharroo, R.: Range and Geophysical Corrections in
Coastal Regions: And Implications for Mean Sea Surface Determination, in:
Coastal Altimetry, edited by: Vignudelli, S., Kostianoy, A. G., Cipollini,
P., and Benveniste, J., Springer Berlin Heidelberg, Berlin, Heidelberg,
103–145, https://doi.org/10.1007/978-3-642-12796-0_5, 2011.
André, G., Miguez, B. M., Ballu, V., Testut, L., and Wöppelmann, G.:
Measuring sea level with gps-equipped buoys: a multi-instruments experiment
at Aix Island, Int. Hydrogr. Rev.,
26–38, https://journals.lib.unb.ca/index.php/ihr/article/view/22826/26514 (last access: 20 July 2023), 2013.
Aucan, J., Merrifield, M. A., and Pouvreau, N.: Historical Sea Level in the
South Pacific from Rescued Archives, Geodetic Measurements, and Satellite
Altimetry, Pure Appl. Geophys., 174, 3813–3823,
https://doi.org/10.1007/s00024-017-1648-1, 2017a.
Aucan, J., Vendé-Leclerc, M., Dumas, P., and Bricquir, M.: Wave forcing
and morphological changes of New Caledonia lagoon islets: Insights on their
possible relations, C. R. Geosci., 349, 248–259,
https://doi.org/10.1016/j.crte.2017.09.003, 2017b.
Ballu, V.: GEOCEAN-NC cruise, RV Alis [data set], https://doi.org/10.17600/18000899,
2019.
Ballu, V., Gravelle, M., Woppelmann, G., de Viron, O., Rebischung, P.,
Becker, M., and Sakic, P.: Vertical land motion in the Southwest and Central
Pacific from available GNSS solutions and implications for relative sea
levels, Geophys. J. Int., 218, 1537–1551,
https://doi.org/10.1093/gji/ggz247, 2019.
Barbu, A. L., Laurent-Varin, J., Perosanz, F., Mercier, F., and Marty,
J.-C.: Efficient QR sequential least square algorithm for high frequency
GNSS precise point positioning seismic application, Adv. Space Res., 61,
448–456, https://doi.org/10.1016/j.asr.2017.10.032, 2018.
Becker, M., Meyssignac, B., Letetrel, C., Llovel, W., Cazenave, A., and
Delcroix, T.: Sea level variations at tropical Pacific islands since 1950,
Glob. Planet. Change, 80/81, 85–98,
https://doi.org/10.1016/j.gloplacha.2011.09.004, 2012.
Blewitt, G., Kreemer, C., Hammond, W. C., and Gazeaux, J.: MIDAS robust
trend estimator for accurate GPS station velocities without step detection,
J. Geophys. Res.-Sol. Ea., 121, 2054–2068,
https://doi.org/10.1002/2015JB012552, 2016.
Bonnefond, P., Exertier, P., Laurain, O., Ménard, Y., Orsoni, A.,
Jeansou, E., Haines, B. J., Kubitschek, D. G., and Born, G.: Leveling the
Sea Surface Using a GPS-Catamaran, Mar. Geod., 26, 319–334,
https://doi.org/10.1080/714044524, 2003.
Bonnefond, P., Haines, B. J., and Watson, C.: In situ Absolute Calibration
and Validation: A Link from Coastal to Open-Ocean Altimetry, in: Coastal
Altimetry, edited by: Vignudelli, S., Kostianoy, A. G., Cipollini, P., and
Benveniste, J., Springer Berlin Heidelberg, Berlin, Heidelberg, 259–296,
https://doi.org/10.1007/978-3-642-12796-0_11, 2011.
Bonnefond, P., Exertier, P., Laurain, O., Thibaut, P., and Mercier, F.:
GPS-based sea level measurements to help the characterization of land
contamination in coastal areas, Adv. Space Res., 51, 1383–1399,
https://doi.org/10.1016/j.asr.2012.07.007, 2013.
Bonnefond, P., Exertier, P., Laurain, O., Guinle, T., and Féménias,
P.: Corsica: A 20-Yr multi-mission absolute altimeter calibration site, Adv.
Space Res., 68, 1171–1186, https://doi.org/10.1016/j.asr.2019.09.049,
2019.
Bonnefond, P., Haines, B., Legresy, B., and Watson, C.: Absolute calibration
results from Bass Strait, Corsica, and Harvest facilities, 2022 Ocean Surface Topography Science Team Meeting, 2022a.
Bonnefond, P., Laurain, Olivier., Exertier, P., Calzas, M., Guinle, T.,
Picot, N., and the FOAM Project Team: Validating a New GNSS-Based Sea Level
Instrument (CalNaGeo) at Senetosa Cape, Mar. Geod., 45, 121–150,
https://doi.org/10.1080/01490419.2021.2013355, 2022b.
Bonneton, P., Lefebvre, J.-P., Bretel, P., Ouillon, S., and Douillet, P.:
Tidal modulation of wave-setup and wave-induced currents on the Aboré
coral reef, New Caledonia, J. Coast. Res., Special Issue 50: The International Coastal Symposium,
762–766, 2007.
Born, G. H., Parke, M. E., Axelrad, P., Gold, K. L., Johnson, J., Key, K.
W., Kubitschek, D. G., and Christensen, E. J.: Calibration of the TOPEX
altimeter using a GPS buoy, J. Geophys. Res., 99, 24517,
https://doi.org/10.1029/94JC00920, 1994.
Cazenave, A., Palanisamy, H., and Ablain, M.: Contemporary sea level changes
from satellite altimetry: What have we learned? What are the new
challenges?, Adv. Space Res., 62, 1639–1653,
https://doi.org/10.1016/j.asr.2018.07.017, 2018.
Chelton, D. B., Ries, J. C., Haines, B. J., Fu, L.-L., and Callahan, P. S.:
Satellite altimetry, Satell. Altimetry Earth Sci., 69, 1–131, 2001.
Chupin, C., Ballu, V., Aucan, J., Poirier, E., Testut, L., and Tranchant, Y.-T.: GEOCEAN-NC 2019 – Measuring sea level in Noumea Lagoon for Cal/Val studies, SEANOE [data set], https://doi.org/10.17882/95455, 2019.
Chupin, C., Ballu, V., Testut, L., Tranchant, Y.-T., Calzas, M., Poirier,
E., Coulombier, T., Laurain, O., Bonnefond, P., and Team FOAM Project:
Mapping Sea Surface Height Using New Concepts of Kinematic GNSS Instruments,
Remote Sens., 12, 2656, https://doi.org/10.3390/rs12162656, 2020.
DeMets, C., Gordon, R. G., and Argus, D. F.: Geologically current plate
motions, Geophys. J. Int., 181, 1–80,
https://doi.org/10.1111/j.1365-246X.2009.04491.x, 2010.
Douillet, P.: Tidal dynamics of the south-west lagoon of New Caledonia:
observations and 2D numerical modelling, Oceanol. Acta, 21, 69–79,
https://doi.org/10.1016/S0399-1784(98)80050-9, 1998.
Escudier, P., Couhert, A., Mercier, F., Mallet, A., Thibaut, P., Tran, N.,
Amarouche, L., Picard, B., Carrere, L., Dibarboure, G., Ablain, M., Richard,
J., Steunou, N., Dubois, P., Rio, M.-H., and Dorandeu, J.: Satellite Radar
Altimetry: Principle, Accuracy, and Precision, in: Satellite Altimetry Over
Oceans and Land Surfaces, 1st Edn., CRC Press, ISBN: 9781315151779, 2017.
Fu, L.-L. and Haines, B. J.: The challenges in long-term altimetry
calibration for addressing the problem of global sea level change, Adv.
Space Res., 51, 1284–1300, https://doi.org/10.1016/j.asr.2012.06.005, 2013.
Fund, F., Perosanz, F., Testut, L., and Loyer, S.: An Integer Precise Point
Positioning technique for sea surface observations using a GPS buoy, Adv.
Space Res., 51, 1311–1322, https://doi.org/10.1016/j.asr.2012.09.028, 2013.
Garcin, M., Vendé-Leclerc, M., Maurizot, P., Le Cozannet, G., Robineau,
B., and Nicolae-Lerma, A.: Lagoon islets as indicators of recent
environmental changes in the South Pacific – The New Caledonian example,
Cont. Shelf Res., 122, 120–140, https://doi.org/10.1016/j.csr.2016.03.025,
2016.
GCOS: GCOS Essential Climate Variables Requirements, World Meteorological
Organization (WMO), https://library.wmo.int/doc_num.php?explnum_id=11318 (last access: 21 July 2023), 2022.
GEBCO Compilation Group: GEBCO Grid 2020, NERC EDS British Oceanographic Data Centre NOC,
https://doi.org/10.5285/f98b053b-0cbc-6c23-e053-6c86abc0af7b, 2020.
Gobron, K., de Viron, O., Wöppelmann, G., Poirier, É., Ballu, V.,
and Van Camp, M.: Assessment of Tide Gauge Biases and Precision by the
Combination of Multiple Collocated Time Series, J. Atmos. Ocean.
Technol., 36, 1983–1996, https://doi.org/10.1175/JTECH-D-18-0235.1, 2019.
Gommenginger, C., Thibaut, P., Fenoglio-Marc, L., Quartly, G., Deng, X.,
Gómez-Enri, J., Challenor, P., and Gao, Y.: Retracking Altimeter
Waveforms Near the Coasts, in: Coastal Altimetry, edited by: Vignudelli, S.,
Kostianoy, A. G., Cipollini, P., and Benveniste, J., Springer Berlin
Heidelberg, Berlin, Heidelberg, 61–101,
https://doi.org/10.1007/978-3-642-12796-0_4, 2011.
Gourdeau, L., Cravatte, S., and Marin, F.: Internal tides and mesoscale
interactions in a tropical area: insights from model, in situ data, and
SWOT, SWOT in the tropics : A case study in the South West Pacific, https://swot.jpl.nasa.gov/documents/1543/?list=projects7
(last access: 21 July 2023), 2020.
Gravelle, M., Wöppelmann, G., Gobron, K., Altamimi, Z., Guichard, M.,
Herring, T., and Rebischung, P.: The ULR-repro3 GPS data reanalysis and its
estimates of vertical land motion at tide gauges for sea level science, Earth
Syst. Sci. Data, 15, 497–509, https://doi.org/10.5194/essd-15-497-2023,
2023.
GRGS: Algorithmic documentation of the GINS software,
https://www5.obs-mip.fr/wp-content-omp/uploads/sites/28/2020/05/GINS_Algo.pdf (last access: 21 July 2023), 2018.
Haasnoot, M., Winter, G., Brown, S., Dawson, R. J., Ward, P. J., and
Eilander, D.: Long-term sea-level rise necessitates a commitment to
adaptation: A first order assessment, Clim. Risk Manag., 34, 100355,
https://doi.org/10.1016/j.crm.2021.100355, 2021.
Haines, B., Desai, S. D., Kubitschek, D., and Leben, R. R.: A brief history
of the Harvest experiment: 1989–2019, Adv. Space Res., 68, 1161–1170,
https://doi.org/10.1016/j.asr.2020.08.013, 2020.
Hammond, W. C., Blewitt, G., Kreemer, C., and Nerem, R. S.: GPS Imaging of
Global Vertical Land Motion for Studies of Sea Level Rise, J. Geophys.
Res.-Sol. Ea., 126, e2021JB022355,
https://doi.org/10.1029/2021JB022355, 2021.
Heflin, M., Donnellan, A., Parker, J., Lyzenga, G., Moore, A., Ludwig, L.
G., Rundle, J., Wang, J., and Pierce, M.: Automated Estimation and Tools to
Extract Positions, Velocities, Breaks, and Seasonal Terms From Daily GNSS
Measurements: Illuminating Nonlinear Salton Trough Deformation, Earth Space
Sci., 7, e2019EA000644,
https://doi.org/10.1029/2019EA000644, 2020.
Hernández-Pajares, M., Juan, J. M., Sanz, J., and Orús, R.:
Second-order ionospheric term in GPS: Implementation and impact on geodetic
estimates, J. Geophys. Res.-Sol. Ea., 112, B08417,
https://doi.org/10.1029/2006JB004707, 2007.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I.,
Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5
hourly data on pressure levels from 1979 to present, Copernicus Climate
Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.bd0915c6, 2018.
Imel, D. A.: Evaluation of the TOPEX/POSEIDON dual-frequency ionosphere
correction, J. Geophys. Res., 99, 24895, https://doi.org/10.1029/94JC01869,
1994.
Jason-3 Products Handbook: Jason-3 Products Handbook, CNES,
EUMETSAT, JPL, NOAA, https://www.aviso.altimetry.fr/fileadmin/documents/data/tools/hdbk_j3.pdf (last access: 21 July 2023),
2020.
Jouon, A., Lefebvre, J. P., Douillet, P., Ouillon, S., and Schmied, L.: Wind
wave measurements and modelling in a fetch-limited semi-enclosed lagoon,
Coast. Eng., 56, 599–608, https://doi.org/10.1016/j.coastaleng.2008.12.005,
2009.
Jullien, S., Aucan, J., Lefèvre, J., Peltier, A., and Menkes, C. E.:
Tropical Cyclone Induced Wave Setup around New Caledonia during Cyclone COOK
(2017), J. Coast. Res., 95, 1454, https://doi.org/10.2112/SI95-281.1, 2020.
Kouba, J.: Implementation and testing of the gridded Vienna Mapping Function
1 (VMF1), J. Geod., 82, 193–205, https://doi.org/10.1007/s00190-007-0170-0,
2008.
Kouba, J.: A guide to using International GNSS Service (IGS) products, http://acc.igs.org/UsingIGSProductsVer21.pdf (last access: 20 July 2023), 2015.
Legeais, J.-F., Ablain, M., Zawadzki, L., Zuo, H., Johannessen, J. A.,
Scharffenberg, M. G., Fenoglio-Marc, L., Fernandes, M. J., Andersen, O. B.,
Rudenko, S., Cipollini, P., Quartly, G. D., Passaro, M., Cazenave, A., and
Benveniste, J.: An improved and homogeneous altimeter sea level record from
the ESA Climate Change Initiative, Earth Syst. Sci. Data, 10, 281–301,
https://doi.org/10.5194/essd-10-281-2018, 2018.
Lemoine, J.-M., Biancale, R., Reinquin, F., Bourgogne, S., and Gégout,
P.: CNES/GRGS RL04 Earth gravity field models, from GRACE and SLR
data, GFZ Data Services,
https://doi.org/10.5880/ICGEM.2019.010, 2019.
Männel, B., Schöne, T., Bradke, M., and Schuh, H.: Vertical Land
Motion at Tide Gauges Observed by GNSS: A New GFZ-TIGA Solution, Springer
Berlin Heidelberg, Berlin, Heidelberg, 1–9,
https://doi.org/10.1007/1345_2022_150, 2022.
Martínez-Asensio, A., Wöppelmann, G., Ballu, V., Becker, M.,
Testut, L., Magnan, A. K., and Duvat, V. K. E.: Relative sea-level rise and
the influence of vertical land motion at Tropical Pacific Islands, Glob.
Planet. Change, 176, 132–143,
https://doi.org/10.1016/j.gloplacha.2019.03.008, 2019.
Marty, J. C., Loyer, S., Perosanz, F., Mercier, F., Bracher, G., Legresy,
B., Portier, L., Capdeville, H., Fund, F., Lemoine, J. M., and Biancale, R.:
GINS: The CNES/GRGS GNSS scientific software, in: ESA Proceedings WPP326, 3
rd International Colloquium Scientific and Fundamental Aspects of the Galileo
Programme, Copenhagen, Denmark, https://hpiers.obspm.fr/combinaison/documentation/articles/GINS_Marty.pdf (last access: 20 July 2023), 2011.
Mertikas, S., Donlon, C., Féménias, P., Mavrocordatos, C.,
Galanakis, D., Tripolitsiotis, A., Frantzis, X., Tziavos, I., Vergos, G.,
and Guinle, T.: Fifteen Years of Cal/Val Service to Reference Altimetry
Missions: Calibration of Satellite Altimetry at the Permanent Facilities in
Gavdos and Crete, Greece, Remote Sens., 10, 1557,
https://doi.org/10.3390/rs10101557, 2018.
Mitchum, G. T.: An Improved Calibration of Satellite Altimetric Heights
Using Tide Gauge Sea Levels with Adjustment for Land Motion, Mar. Geod., 23,
145–166, https://doi.org/10.1080/01490410050128591, 2000.
Nerem, R. S. and Mitchum, G. T.: Estimates of vertical crustal motion
derived from differences of TOPEX/POSEIDON and tide gauge sea level
measurements, Geophys. Res. Lett., 29, 40-1-40–4,
https://doi.org/10.1029/2002GL015037, 2002.
Nerem, R. S., Haines, B. J., Hendricks, J., Minster, J. F., Mitchum, G. T.,
and White, W. B.: Improved determination of global mean sea level variations
using TOPEX/POSEIDON altimeter data, Geophys. Res. Lett., 24, 1331–1334,
https://doi.org/10.1029/97GL01288, 1997.
Okada, Y.: Surface deformation due to shear and tensile faults in a
half-space, Bull. Seismol. Soc. Am., 75, 1135–1154,
https://doi.org/10.1785/BSSA0750041135, 1985.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Rica, C., DeConto, R. M.,
Ghosh, T., Hay, J., Islands, C., Isla, F., Marzeion, B., Meyssignac, B.,
Sebesvari, Z., Biesbroek, R., Buchanan, M. K., de Campos, R. S., Cozannet,
G. L., Domingues, C., Dangendorf, S., Döll, P., Duvat, V. K. E.,
Edwards, T., Ekaykin, A., Frederikse, T., Gattuso, J.-P., Kopp, R., Lambert,
E., Lawrence, J., Narayan, S., Nicholls, R. J., Renaud, F., Simm, J., Smit,
A., Woodruff, J., Wong, P. P., Xian, S., Abe-Ouchi, A., Gupta, K., and
Pereira, J.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O.,. Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 321–445, https://doi.org/10.1017/9781009157964.006, 2019.
Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K.: The
development and evaluation of the Earth Gravitational Model 2008 (EGM2008),
J. Geophys. Res-Sol. Ea., 117, B04406, https://doi.org/10.1029/2011JB008916,
2012.
Peltier, W. R., Argus, D. F., and Drummond, R.: Space geodesy constrains ice
age terminal deglaciation: The global ICE-6G_C (VM5a) model,
J. Geophys. Res.-Sol. Ea., 120, 450–487,
https://doi.org/10.1002/2014JB011176, 2015.
Petit, G. and Luzum, B.: IERS Conventions, International Earth Rotation and
Reference Systems Service (IERS), https://iers-conventions.obspm.fr/content/tn36.pdf
(last access: 21 July 2023),
2010.
Prandi, P., Meyssignac, B., Ablain, M., Spada, G., Ribes, A., and
Benveniste, J.: Local sea level trends, accelerations and uncertainties over
1993–2019, Sci. Data, 8, 1, https://doi.org/10.1038/s41597-020-00786-7,
2021.
Saastamoinen, J.: Atmospheric Correction for the Troposphere and
Stratosphere in Radio Ranging Satellites, in: Geophysical Monograph Series,
edited by: Henriksen, S. W., Mancini, A., and Chovitz, B. H., American
Geophysical Union, Washington, DC, 247–251,
https://doi.org/10.1029/GM015p0247, 1972.
Vondrak, J.: Problem of Smoothing Observational Data II, Astron. Institue
Czechoslov. Acad. Sci. Praha, 28, 84–89, 1977.
Watson, C., White, N., Church, J., Burgette, R., Tregoning, P., and Coleman,
R.: Absolute Calibration in Bass Strait, Australia: TOPEX, Jason-1 and
OSTM/Jason-2, Mar. Geod., 34, 242–260,
https://doi.org/10.1080/01490419.2011.584834, 2011.
Weatherall, P., Marks, K. M., Jakobsson, M., Schmitt, T., Tani, S., Arndt,
J. E., Rovere, M., Chayes, D., Ferrini, V., and Wigley, R.: A new digital
bathymetric model of the world's oceans, Earth Space Sci., 2, 331–345,
https://doi.org/10.1002/2015EA000107, 2015.
Willis, J.: Report of the 2011 Ocean Surface Topography Science Team
Meeting, edited by: Willis, J., Jet Propulsion Laboratory
Organized by NASA, CNES, NOAA and EUMETSAT, https://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2011/OSTST_2011_SanDiego_final_report.pdf (last access: 21 July 2023),
2011.
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to
understanding sea level change and variability: Vertical Land Motion and Sea
Level Change, Rev. Geophys., 54, 64–92,
https://doi.org/10.1002/2015RG000502, 2016.
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale
modeling with SCHISM, Ocean Model., 102, 64–81,
https://doi.org/10.1016/j.ocemod.2016.05.002, 2016.
Zhou, B., Watson, C., Legresy, B., King, M. A., Beardsley, J., and Deane,
A.: GNSS/INS-Equipped Buoys for Altimetry Validation: Lessons Learnt and New
Directions from the Bass Strait Validation Facility, Remote Sens., 12, 3001,
https://doi.org/10.3390/rs12183001, 2020.
Zhou, B., Watson, C., Legresy, B., King, M. A., and Beardsley, J.: Ongoing
Development of the Bass Strait GNSS/INS Buoy System for Altimetry Validation
in Preparation for SWOT, Remote Sens., 15, 287 pp.,
https://doi.org/10.3390/rs15010287, 2023.
Zingerle, P., Pail, R., Gruber, T., and Oikonomidou, X.: The combined global
gravity field model XGM2019e, J. Geod., 94, 66,
https://doi.org/10.1007/s00190-020-01398-0, 2020.
Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb,
F. H.: Precise point positioning for the efficient and robust analysis of
GPS data from large networks, J. Geophys. Res.-Sol. Ea., 102, 5005–5017,
https://doi.org/10.1029/96JB03860, 1997.
Short summary
Reducing uncertainties in coastal sea level trend estimates requires a better understanding of altimeter measurements and local sea level dynamics. Using long-term sea level time series from the Nouméa tide gauge (New Caledonia) and in situ data collected as part of the GEOCEAN-NC campaign, this study presents a method inspired from Cal/Val studies to re-analyse about 20 years of altimetry observations and re-address the question of sea level evolution in the lagoon.
Reducing uncertainties in coastal sea level trend estimates requires a better understanding of...