Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-1067-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1067-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Mode-1 N2 internal tides observed by satellite altimetry
Applied Physics Laboratory, University of Washington, Seattle, Washington, USA
School of Oceanography, University of Washington, Seattle, Washington, USA
Related authors
Zhongxiang Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-611, https://doi.org/10.5194/essd-2024-611, 2025
Preprint under review for ESSD
Short summary
Short summary
Internal tides are generated by barotropic tidal currents flowing over variable topography. They play an important role in a variety of ocean processes such as diapycnal mixing and tracer transport. A global internal tide model is developed using 30 years of satellite altimetry data and a new mapping technique. It decomposes the internal tide field into 60 plane waves at each point, giving numerous long-range beams that contain key information on their generation, propagation, and dissipation.
Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver
Ocean Sci., 20, 1187–1208, https://doi.org/10.5194/os-20-1187-2024, https://doi.org/10.5194/os-20-1187-2024, 2024
Short summary
Short summary
This study examines the seasonal variability in internal tide sea surface height in a global model simulation. We also compare this with altimetry and the seasonal variability in the internal tide energy terms. Georges Bank and the Arabian Sea show the strongest seasonal variability. This study also reveals that sea surface height may not be the most accurate indicator of the true seasonal variability in the internal tides because it is modulated by the seasonal variability in stratification.
Yi Gong, Haibin Song, Zhongxiang Zhao, Yongxian Guan, Kun Zhang, Yunyan Kuang, and Wenhao Fan
Nonlin. Processes Geophys., 28, 445–465, https://doi.org/10.5194/npg-28-445-2021, https://doi.org/10.5194/npg-28-445-2021, 2021
Short summary
Short summary
When the internal solitary wave propagates to the continental shelf and slope, the polarity reverses due to the shallower water depth. In this process, the internal solitary wave dissipates energy and enhances diapycnal mixing, thus affecting the local oceanic environment. In this study, we used reflection seismic data to evaluate the spatial distribution of the diapycnal mixing around the polarity-reversing internal solitary waves.
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, https://doi.org/10.5194/os-17-147-2021, 2021
Short summary
Short summary
Internal tides can have a signature of several centimeters at the ocean surface and need to be corrected from altimeter measurements. We present a detailed validation of several internal-tide models using existing satellite altimeter databases. The analysis focuses on the main diurnal and semidiurnal tidal constituents. Results show the interest of the methodology proposed, the quality of the internal-tide models tested and their positive contribution for estimating an accurate sea level.
Zhongxiang Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-611, https://doi.org/10.5194/essd-2024-611, 2025
Preprint under review for ESSD
Short summary
Short summary
Internal tides are generated by barotropic tidal currents flowing over variable topography. They play an important role in a variety of ocean processes such as diapycnal mixing and tracer transport. A global internal tide model is developed using 30 years of satellite altimetry data and a new mapping technique. It decomposes the internal tide field into 60 plane waves at each point, giving numerous long-range beams that contain key information on their generation, propagation, and dissipation.
Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver
Ocean Sci., 20, 1187–1208, https://doi.org/10.5194/os-20-1187-2024, https://doi.org/10.5194/os-20-1187-2024, 2024
Short summary
Short summary
This study examines the seasonal variability in internal tide sea surface height in a global model simulation. We also compare this with altimetry and the seasonal variability in the internal tide energy terms. Georges Bank and the Arabian Sea show the strongest seasonal variability. This study also reveals that sea surface height may not be the most accurate indicator of the true seasonal variability in the internal tides because it is modulated by the seasonal variability in stratification.
Yi Gong, Haibin Song, Zhongxiang Zhao, Yongxian Guan, Kun Zhang, Yunyan Kuang, and Wenhao Fan
Nonlin. Processes Geophys., 28, 445–465, https://doi.org/10.5194/npg-28-445-2021, https://doi.org/10.5194/npg-28-445-2021, 2021
Short summary
Short summary
When the internal solitary wave propagates to the continental shelf and slope, the polarity reverses due to the shallower water depth. In this process, the internal solitary wave dissipates energy and enhances diapycnal mixing, thus affecting the local oceanic environment. In this study, we used reflection seismic data to evaluate the spatial distribution of the diapycnal mixing around the polarity-reversing internal solitary waves.
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021, https://doi.org/10.5194/os-17-147-2021, 2021
Short summary
Short summary
Internal tides can have a signature of several centimeters at the ocean surface and need to be corrected from altimeter measurements. We present a detailed validation of several internal-tide models using existing satellite altimeter databases. The analysis focuses on the main diurnal and semidiurnal tidal constituents. Results show the interest of the methodology proposed, the quality of the internal-tide models tested and their positive contribution for estimating an accurate sea level.
Cited articles
Arbic, B. K.: Incorporating tides and internal gravity waves within global
ocean general circulation models: A review, Prog. Oceanogr., 206,
102824, https://doi.org/10.1016/j.pocean.2022.102824, 2022. a
Assene, F., Koch-Larrouy, A., Dadou, I., Tchilibou, M., Morvan, G., Chanut, J., Vantrepotte, V., Allain, D., and Tran, T.-K.: Internal tides off the Amazon shelf Part I : importance for the structuring of ocean temperature during two contrasted seasons, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-418, 2023. a
Bendinger, A., Cravatte, S., Gourdeau, L., Brodeau, L., Albert, A., Tchilibou, M., Lyard, F., and Vic, C.: Regional modeling of internal tide dynamics around New Caledonia: energetics and sea surface height signature, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-361, 2023. a
Boyer, T. P., García, H. E., Locarnini, R. A., Zweng, M. M., Mishonov,
A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Paver, C. R., Seidov,
D., and Smolyar, I. V.: World Ocean Atlas 2018, Tech. Rep., NOAA National
Centers for Environmental Information,
https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 1 May 2020), 2018. a
Byun, D.-S. and Hart, D. E.: A monthly tidal envelope classification for
semidiurnal regimes in terms of the relative proportions of the S2,
N2, and M2 constituents, Ocean Sci., 16, 965–977,
https://doi.org/10.5194/os-16-965-2020, 2020. a
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.:
Geographical variability of the first baroclinic Rossby radius of
deformation, J. Phys. Oceanogr., 28, 433–460,
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a
de Lavergne, C., Vic, C., Madec, G., Roquet, F., Waterhouse, A. F., Whalen,
C. B., Cuypers, Y., Bouruet-Aubertot, P., Ferron, B., and Hibiya, T.: A
parameterization of local and remote tidal mixing, J. Adv.
Model. Earth Sy., 12, e2020MS002065, https://doi.org/10.1029/2020MS002065,
2020. a
Doodson, A. T.: The harmonic development of the tide-generating potential,
Proc. Roy. Soc. A, 100, 305–329,
https://doi.org/10.1098/rspa.1921.0088, 1921. a, b, c
Dushaw, B. D., Howe, B. M., Cornuelle, B. D., Worcester, P. F., and Luther,
D. S.: Barotropic and Baroclinic Tides in the Central North Pacific Ocean
Determined from Long-Range Reciprocal Acoustic Transmissions, J.
Phys. Oceanogr., 25, 631–647, 1995. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic
ocean tides, J. Atmos. Ocean. Technol., 19, 183–204,
2002. a
Egbert, G. D. and Erofeeva, S. Y.: An approach to empirical mapping of
incoherent internal tides with altimetry data, Geophys. Res. Lett.,
48, e2021GL095863, https://doi.org/10.1029/2021GL095863, 2021. a
Egbert, G. D. and Ray, R. D.: Significant dissipation of tidal energy in the
deep ocean inferred from satellite altimeter data, Nature, 405, 775–778,
https://doi.org/10.1038/35015531, 2000. a
Egbert, G. D. and Ray, R. D.: Semi-diurnal and diurnal tidal dissipation from
TOPEX/Poseidon altimetry, Geophys. Res. Lett., 30, 1907,
https://doi.org/10.1029/2003GL017676, 2003. a
Fu, L.-L. and Ubelmann, C.: On the transition from profile altimeter to swath
altimeter for observing global ocean surface topography, J.
Atmos. Ocean. Technol., 31, 560–568,
https://doi.org/10.1175/JTECH-D-13-00109.1, 2014. a
Geoffroy, G. and Nycander, J.: Global mapping of the nonstationary semidiurnal
internal tide using Argo data, J. Geophys. Res.-Ocean.,
127, e2021JC018283, https://doi.org/10.1029/2021JC018283, 2022. a
Gill, A. E.: Atmosphere-Ocean Dynamics, Academic Press, ISBN 9780122835223, 662 pp.,
1982. a
Jayne, S. R. and St Laurent, L. C.: Parameterizing tidal dissipation over
rough topography, Geophys. Res. Lett., 28, 811–814,
https://doi.org/10.1029/2000GL012044, 2001. a
Kelly, S. M.: The vertical mode decomposition of surface and internal tides in
the presence of a free surface and arbitrary topography, J. Phys.
Oceanogr., 46, 3777–3788, https://doi.org/10.1175/JPO-D-16-0131.1, 2016. a
Kelly, S. M., Waterhouse, A. F., and Savage, A. C.: Global dynamics of the
stationary M2 mode-1 internal tide, Geophys. Res. Lett., 48,
e2020GL091692, https://doi.org/10.1029/2020GL091692, 2021. a
Köhler, J., Walter, M., Mertens, C., Stiehler, J., Li, Z., Zhao, Z., von
Storch, J.-S., and Rhein, M.: Energy flux observations in an internal tide
beam in the eastern North Atlantic, J. Geophys. Res.-Ocean., 124, 5747–5764, https://doi.org/10.1029/2019JC015156, 2019. a, b
Löb, J., Köhler, J., Mertens, C., Walter, M., Li, Z., von Storch,
J.-S., Zhao, Z., and Rhein, M.: Observations of the low-mode internal tide
and its interaction with mesoscale flow south of the Azores, J.
Geophys. Res.-Ocean., 125, e2019JC015879,
https://doi.org/10.1029/2019JC015879, 2020. a
MacKinnon, J. A., Zhao, Z., Whalen, C. B., Waterhouse, A. F., Trossman, D. S.,
Sun, O. M., Laurent, L. C. S., Simmons, H. L., Polzin, K., Pinkel, R.,
Pickering, A., Norton, N. J., Nash, J. D., Musgrave, R., Merchant, L. M.,
Melet, A. V., Mater, B., Legg, S., Large, W. G., Kunze, E., Klymak, J. M.,
Jochum, M., Jayne, S. R., Hallberg, R. W., Griffies, S. M., Diggs, S.,
Danabasoglu, G., Chassignet, E. P., Buijsman, M. C., Bryan, F. O., Briegleb,
B. P., Barna, A., Arbic, B. K., Ansong, J. K., and Alford, M. H.: Climate
process team on internal wave-driven ocean mixing, Bull. Am. Meteorol. Soc.,
98, 2429–2454, https://doi.org/10.1175/BAMS-D-16-0030.1, 2017. a
Melet, A., Legg, S., and Hallberg, R.: Climatic impacts of parameterized local
and remote tidal mixing, J. Clim., 29, 3473–3500,
https://doi.org/10.1175/JCLI-D-15-0153.1, 2016. a
Morrow, R., Fu, L.-L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E.,
d'Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., Le Traon, P.-Y.,
Pascual, A., Ponte, A., Qiu, B., Rascle, N., Ubelmann, C., Wang, J., and
Zaron, E. D.: Global observations of fine-scale ocean surface topography with
the surface water and ocean topography (SWOT) mission, Front. Mar.
Sci., 6, https://doi.org/10.3389/fmars.2019.00232, 2019. a
Munk, W. H. and Wunsch, C.: Abyssal recipes II: Energetics of tidal and wind
mixing, Deep-Sea Res. Pt. I, 45, 1977–2010, https://doi.org/10.1016/S0967-0637(98)00070-3,
1998. a
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic analysis
including error estimates in MATLAB using T_TIDE, Comput.
Geosci., 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002. a, b
Pollmann, F., Nycander, J., Eden, C., and Olbers, D.: Resolving the horizontal
direction of internal tide generation, J. Fluid Mech., 864,
381–407, https://doi.org/10.1017/jfm.2019.9, 2019. a
Pujol, M.-I., Faugère, Y., Taburet, G., Dupuy, S., Pelloquin, C., Ablain, M.,
and Picot, N.: DUACS DT2014: the new multi-mission altimeter data set
reprocessed over 20 years, Ocean Sci., 12, 1067–1090,
https://doi.org/10.5194/os-12-1067-2016, 2016. a, b
Qiu, B., Chen, S., Klein, P., Wang, J., Torres, H., Fu, L.-L., and Menemenlis,
D.: Seasonality in transition scale from balanced to unbalanced motions in
the world ocean, J. Phys. Oceanogr., 48, 591–605,
https://doi.org/10.1175/JPO-D-17-0169.1, 2018. a
Ray, R. D. and Byrne, D. A.: Bottom pressure tides along a line in the
southeast Atlantic Ocean and comparisons with satellite altimetry, Ocean
Dynam., 60, 1167–1176, https://doi.org/10.1007/s10236-010-0316-0, 2010. a
Ray, R. D. and Susanto, R. D.: Tidal mixing signatures in the Indonesian Seas
from high-resolution sea surface temperature data, Geophys. Res.
Lett., 43, 8115–8123, https://doi.org/10.1002/2016GL069485, 2016. a
Ray, R. D. and Zaron, E.: M2 internal tides and their observed wavenumber
spectra from satellite altimetry, J. Phys. Oceanogr., 46,
3–22, https://doi.org/10.1175/JPO-D-15-0065.1, 2016. a
Satellite observations: Global Ocean Along Track L 3 Sea Surface Heights Reprocessed 1993 Ongoing Tailored For Data Assimilation, Coperncius Marine Service [data set], https://doi.org/10.48670/moi-00146, 2020a. a
Satellite observations: Global Ocean Gridded L 4 Sea Surface Heights And Derived Variables Reprocessed 1993 Ongoing, Coperncius Marine Service [data set], https://doi.org/10.48670/moi-00148, 2020b. a
Smith, W. H. F. and Sandwell, D. T.: Global sea floor topography from satellite
altimetry and ship depth soundings, Science, 277, 1956–1962,
https://doi.org/10.1126/science.277.5334.1956, 1997. a
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F.,
Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of
reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224,
https://doi.org/10.5194/os-15-1207-2019, 2019. a
Tchilibou, M., Gourdeau, L., Lyard, F., Morrow, R., Koch Larrouy, A., Allain,
D., and Djath, B.: Internal tides in the Solomon Sea in contrasted ENSO
conditions, Ocean Sci., 16, 615–635, https://doi.org/10.5194/os-16-615-2020, 2020. a
Tchilibou, M., Koch-Larrouy, A., Barbot, S., Lyard, F., Morel, Y., Jouanno, J.,
and Morrow, R.: Internal tides off the Amazon shelf during two contrasted
seasons: interactions with background circulation and SSH imprints, Ocean
Sci., 18, 1591–1618, https://doi.org/10.5194/os-18-1591-2022, 2022. a
Ubelmann, C., Carrere, L., Durand, C., Dibarboure, G., Faugère, Y.,
Ballarotta, M., Briol, F., and Lyard, F.: Simultaneous estimation of ocean
mesoscale and coherent internal tide sea surface height signatures from the
global altimetry record, Ocean Sci., 18, 469–481,
https://doi.org/10.5194/os-18-469-2022, 2022. a
Vic, C., Naveira Garabato, A. C., Green, J. A. M., Spingys, C., Forryan, A.,
Zhao, Z., and Sharples, J.: The lifecycle of semidiurnal internal tides over
the northern Mid-Atlantic Ridge, J. Phys. Oceanogr., 48,
61–80, https://doi.org/10.1175/JPO-D-17-0121.1, 2018. a
Vic, C., Naveira Garabato, A. C., Green, J. A. M., Waterhouse, A. F., Zhao, Z.,
Melet, A., de Lavergne, C., Buijsman, M. C., and Stephenson, G. R.:
Deep-ocean mixing driven by small-scale internal tides, Nat.
Commun., 10, 2099, https://doi.org/10.1038/s41467-019-10149-5, 2019. a
Wang, J., Fu, L.-L., Qiu, B., Menemenlis, D., Farrar, J. T., Chao, Y.,
Thompson, A. F., and Flexas, M. M.: An observing system simulation experiment
for the calibration and validation of the surface water ocean topography sea
surface height measurement using in situ platforms, J. Atmos.
Ocean. Technol., 35, 281–297, https://doi.org/10.1175/JTECH-D-17-0076.1, 2018. a
Wang, J., Fu, L.-L., Haines, B., Lankhorst, M., Lucas, A. J., Farrar, J. T.,
Send, U., Meinig, C., Schofield, O., Ray, R., Archer, M., Aragon, D.,
Bigorre, S., Chao, Y., Kerfoot, J., Pinkel, R., Sandwell, D., and Stalin, S.:
On the development of SWOT in situ calibration/validation for
short-wavelength ocean topography, J. Atmos. Ocean.
Technol., 39, 595–617, https://doi.org/10.1175/JTECH-D-21-0039.1, 2022. a
Whalen, C. B., de Lavergne, C., Naveira Garabato, A. C., Klymak, J. M.,
MacKinnon, J. A., and Sheen, K. L.: Internal wave-driven mixing: governing
processes and consequences for climate, Nat. Rev. Earth Environ., 1, 606–621,
https://doi.org/10.1038/s43017-020-0097-z, 2020. a
Wood, F. J.: The strategic role of perigean spring tides: In nautical history
and North American coastal flooding, 1635–1976, Department of Commerce,
National Oceanic and Atmospheric Administration, National Ocean Survey, https://repository.library.noaa.gov/view/noaa/16922/noaa_16922_DS1.pdf
(last access: 5 July 2023), 1978. a
Wunsch, C.: Internal tides in the ocean, Rev. Geophys. Space Phys., 13,
167–182, 1975. a
Zaron, E. D.: Baroclinic tidal sea level from exact-repeating mission
altimetry, J. Phys. Oceanogr., 49, 193–210,
https://doi.org/10.1175/JPO-D-18-0127.1, 2019. a
Zaron, E. D., Capuano, T. A., and Koch-Larrouy, A.: Fortnightly variability of
Chl a in the Indonesian Seas, Ocean Sci., 19, 43–55,
https://doi.org/10.5194/os-19-43-2023, 2023. a
Zhao, Z.: Internal tide radiation from the Luzon Strait, J.
Geophys. Res.-Ocean., 119, 5434–5448, https://doi.org/10.1024/2014JC010014,
2014. a
Zhao, Z.: Internal tide oceanic tomography, Geophys. Res. Lett., 43,
9157–9164, https://doi.org/10.1002/2016GL070567, 2016. a
Zhao, Z.: Southward internal tides in the northeastern South China Sea,
J. Geophys. Res.-Ocean., 125, e2020JC01654,
https://doi.org/10.1029/2020JC016554, 2020. a
Zhao, Z.: Seasonal mode-1 M2 internal tides from satellite altimetry,
J. Phys. Oceanogr., 51, 3015–3035,
https://doi.org/10.1175/JPO-D-21-0001.1, 2021. a, b
Zhao, Z.: Satellite estimates of mode-1 M2 internal tides uisng nonrepeat
altimetry missions, J. Phys. Oceanogr., 52, 3065–3076,
https://doi.org/10.1175/JPO-D-21-0287.1, 2022a. a, b
Zhao, Z.: Development of the yearly mode-1 M2 internal tide model in 2019,
J. Atmos. Ocean. Technol., 39, 463–478,
https://doi.org/10.1175/JTECH-D-21-0116.1, 2022b. a, b, c
Zhao, Z.: The global mode-1 N2 internal tide model, Figshare [data set], https://doi.org/10.6084/m9.figshare.23243633.v1, 2023.
a
Zhao, Z. and Alford, M. H.: New altimetric estimates of mode-1 M2 internal
tides in the central North Pacific Ocean, J. Phys.
Oceanogr., 39, 1669–1684, https://doi.org/10.1175/2009JPO3922.1, 2009. a, b
Zhao, Z., Wang, J., Menemenlis, D., Fu, L.-L., Chen, S., and Qiu, B.:
Decomposition of the multimodal multidirectional M2 internal tide field,
J. Atmos. Ocean. Technol., 36, 1157–1173,
https://doi.org/10.1175/JTECH-D-19-0022.1, 2019. a
Short summary
Satellite altimetry provides a unique technique for observing the sea surface height (SSH) signature of internal tides from space. The advances in mapping technique, combined with the accumulation of satellite altimetry data, make it possible to construct empirical models for minor internal tide constituents. This paper demonstrates that N2 internal tides, the fifth largest tidal constituent, are observed using 100 satellite years of SSH data from 1993 to 2019 by a new mapping procedure.
Satellite altimetry provides a unique technique for observing the sea surface height (SSH)...