Articles | Volume 19, issue 4
https://doi.org/10.5194/os-19-1067-2023
https://doi.org/10.5194/os-19-1067-2023
Research article
 | 
13 Jul 2023
Research article |  | 13 Jul 2023

Mode-1 N2 internal tides observed by satellite altimetry

Zhongxiang Zhao

Related authors

Seasonal variability in the semidiurnal internal tide – a comparison between sea surface height and energetics
Harpreet Kaur, Maarten C. Buijsman, Zhongxiang Zhao, and Jay F. Shriver
Ocean Sci., 20, 1187–1208, https://doi.org/10.5194/os-20-1187-2024,https://doi.org/10.5194/os-20-1187-2024, 2024
Short summary
Enhanced diapycnal mixing with polarity-reversing internal solitary waves revealed by seismic reflection data
Yi Gong, Haibin Song, Zhongxiang Zhao, Yongxian Guan, Kun Zhang, Yunyan Kuang, and Wenhao Fan
Nonlin. Processes Geophys., 28, 445–465, https://doi.org/10.5194/npg-28-445-2021,https://doi.org/10.5194/npg-28-445-2021, 2021
Short summary
Accuracy assessment of global internal-tide models using satellite altimetry
Loren Carrere, Brian K. Arbic, Brian Dushaw, Gary Egbert, Svetlana Erofeeva, Florent Lyard, Richard D. Ray, Clément Ubelmann, Edward Zaron, Zhongxiang Zhao, Jay F. Shriver, Maarten Cornelis Buijsman, and Nicolas Picot
Ocean Sci., 17, 147–180, https://doi.org/10.5194/os-17-147-2021,https://doi.org/10.5194/os-17-147-2021, 2021
Short summary

Cited articles

Arbic, B. K.: Incorporating tides and internal gravity waves within global ocean general circulation models: A review, Prog. Oceanogr., 206, 102824, https://doi.org/10.1016/j.pocean.2022.102824, 2022. a
Assene, F., Koch-Larrouy, A., Dadou, I., Tchilibou, M., Morvan, G., Chanut, J., Vantrepotte, V., Allain, D., and Tran, T.-K.: Internal tides off the Amazon shelf Part I : importance for the structuring of ocean temperature during two contrasted seasons, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-418, 2023. a
Bendinger, A., Cravatte, S., Gourdeau, L., Brodeau, L., Albert, A., Tchilibou, M., Lyard, F., and Vic, C.: Regional modeling of internal tide dynamics around New Caledonia: energetics and sea surface height signature, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-361, 2023. a
Boyer, T. P., García, H. E., Locarnini, R. A., Zweng, M. M., Mishonov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K., Paver, C. R., Seidov, D., and Smolyar, I. V.: World Ocean Atlas 2018, Tech. Rep., NOAA National Centers for Environmental Information, https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last access: 1 May 2020), 2018. a
Byun, D.-S. and Hart, D. E.: A monthly tidal envelope classification for semidiurnal regimes in terms of the relative proportions of the S2, N2, and M2 constituents, Ocean Sci., 16, 965–977, https://doi.org/10.5194/os-16-965-2020, 2020. a
Download
Short summary
Satellite altimetry provides a unique technique for observing the sea surface height (SSH) signature of internal tides from space. The advances in mapping technique, combined with the accumulation of satellite altimetry data, make it possible to construct empirical models for minor internal tide constituents. This paper demonstrates that N2 internal tides, the fifth largest tidal constituent, are observed using 100 satellite years of SSH data from 1993 to 2019 by a new mapping procedure.