Articles | Volume 18, issue 4
https://doi.org/10.5194/os-18-915-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-915-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Clustering analysis of the Sargassum transport process: application to beaching prediction in the Lesser Antilles
Didier Bernard
CORRESPONDING AUTHOR
LARGE, University of the French West Indies, 97157 Pointe-à-Pitre,
Guadeloupe, France
Emmanuel Biabiany
LAMIA, University of the French West Indies, 97157 Pointe-à-Pitre,
Guadeloupe, France
Raphaël Cécé
LARGE, University of the French West Indies, 97157 Pointe-à-Pitre,
Guadeloupe, France
Romual Chery
LARGE, University of the French West Indies, 97157 Pointe-à-Pitre,
Guadeloupe, France
Naoufal Sekkat
LARGE, University of the French West Indies, 97157 Pointe-à-Pitre,
Guadeloupe, France
Related authors
Raphaël Cécé, Didier Bernard, Yann Krien, Frédéric Leone, Thomas Candela, Matthieu Péroche, Emmanuel Biabiany, Gael Arnaud, Ali Belmadani, Philippe Palany, and Narcisse Zahibo
Nat. Hazards Earth Syst. Sci., 21, 129–145, https://doi.org/10.5194/nhess-21-129-2021, https://doi.org/10.5194/nhess-21-129-2021, 2021
Short summary
Short summary
The present innovative modeling aims to combine the most realistic simulated strongest gusts driven by tornado-scale vortices within the eyewall and the most realistic complex terrain effects. The present modeling method could be easily extended to other small mountainous islands to improve the understanding of observed past damage and to develop safer urban management and appropriate building standards.
Raphaël Cécé, Didier Bernard, Yann Krien, Frédéric Leone, Thomas Candela, Matthieu Péroche, Emmanuel Biabiany, Gael Arnaud, Ali Belmadani, Philippe Palany, and Narcisse Zahibo
Nat. Hazards Earth Syst. Sci., 21, 129–145, https://doi.org/10.5194/nhess-21-129-2021, https://doi.org/10.5194/nhess-21-129-2021, 2021
Short summary
Short summary
The present innovative modeling aims to combine the most realistic simulated strongest gusts driven by tornado-scale vortices within the eyewall and the most realistic complex terrain effects. The present modeling method could be easily extended to other small mountainous islands to improve the understanding of observed past damage and to develop safer urban management and appropriate building standards.
Cited articles
Amante, C. and Eakins, B. W.: ETOPO1 1 Arc-minute global relief model:
procedures, data sources and analysis, NOAA Technical Memorandum NESDIS
NGDC-24, Marine Geology and Geophysics Division, Boulder, Colorado, 25 pp.,
https://doi.org/10.1594/PANGAEA.769615, 2009.
Anses: Expositions aux émanations d'algues sargasses en
décomposition aux Antilles et en Guyane, Technical report, ANSES,
Maisons-Alfort, France, 162 pp., available at:
https://www.anses.fr/en/system/files/AIR2015SA0225Ra.pdf (last access: 20 October 2021), 2017.
Arnault, S., Thiria, S., Crépon, M., and Kaly, F.: A tropical Atlantic
dynamics analysis by combining machine learning and satellite data, Adv. Space Res., 68, 467–486,
https://doi.org/10.1016/j.asr.2020.09.044 2021.
Baklouti, M., Devenon, J.-L., Bourret, A., Froidefond, J.-M., Ternon, J.-F.,
and Fuda, J.-L.: New insights in the French Guiana continental shelf
circulation and its relation to the North Brazil Current retroflection, J.
Geophys. Res., 112, C02023, https://doi.org/10.1029/2006JC003520, 2007.
Becker, J. J., Sandwell, D. T., Smith, W. H. F., Braud, J., Binder, B.,
Depner, J., Fabre, D., Factor, J., Ingalls, S., Kim, S. H., Ladner, R.,
Marks, K., Nelson, S., Pharaoh, A., Trimmer, R., Von Rosenberg, J., Wallace,
G., and Weatherall, P.: Global Bathymetry and Elevation Data at 30 Arc
Seconds Resolution: SRTM30_PLUS, Mar. Geod., 32, 355–371,
2009.
Berline, L., Ody, A., Jouanno, J., Chevalier, C., André, J.-M., Thibaut,
T., and Ménard, F.: Hindcasting the 2017 dispersal of Sargassum algae in the
Tropical North Atlantic, Mar. Pollut. Bull., 158, 111431,
https://doi.org/10.1016/j.marpolbul.2020.111431, 2020.
Bertola, L. D., Boehm, J. T., Putman, N. F., Xue, A. T., Robinson, J. D.,
Harris, S., Baldwin, C. C., Overcast, I., and Hickerson, M. J.: Asymmetrical
gene flow in five co-distributed syngnathids explained by ocean currents and
rafting propensity, Proc. R. Soc. B., 287, 20200657,
https://doi.org/10.1098/rspb.2020.0657, 2020.
Biabiany, E., Bernard, D., Page, V., and Paugam-Moisy, H.: Design of an
expert distance metric for climate clustering: The case of rainfall in the
Lesser Antilles, Comput. Geosci., 145, 104612,
https://doi.org/10.1016/j.cageo.2020.104612, 2020.
Bo, X., Chunfen, Z., Xinning, D., and Jiayue, W.: The Application of a
Decision Tree and Stochastic Forest Model in Summer Precipitation Prediction
in Chongqing, Atmosphere, 11, 5, https://doi.org/10.3390/atmos11050508,
2020.
Boé, J. and Terray, L.: Weather regimes and downscaling, La Houille
Blanche, 94, 45–51, https://doi.org/10.1051/lhb:2008016, 2008.
Brooks, M. T., Coles, V. J., Hood, R. R., and Gower, J. F.: Factors
controlling the seasonal distribution of pelagic Sargassum, Mar. Ecol. Prog. Ser.,
599, 1–18, https://doi.org/10.3354/meps12646, 2018.
Cassou, C., Terray L., Hurrell, J. W., and Deser, C.: North Atlantic winter
climate regimes: spatial asymmetry, stationarity with time and oceanic
forcing, J. Clim., 17, 1055–1068,
https://doi.org/10.1175/1520-0442(2004)017<1055:NAWCRS>2.0.CO;2, 2004.
Cuevas, E., Uribe-Martínez, A., and Liceaga-Correa, M.: A satellite
remote-sensing multi-index approach to discriminate pelagic Sargassum in the waters
of the Yucatan Peninsula, Mexico, Int. J. Remote Sens., 39, 3608–3627,
https://doi.org/10.1080/01431161.2018.1447162, 2018.
Cummings, J. A.: Operational multivariate ocean data assimilation, Q. J.
Roy. Meteorol. Soc. Pt. C, 131, 3583–3604,
https://doi.org/10.1256/qj.05.105, 2005.
Cummings, J. A. and Smedstad O. M.: Variational Data Assimilation for the
Global Ocean, in: Data Assimilation for Atmospheric,
Oceanic and Hydrologic Applications, Vol. II, edited by: Park, S. and Xu, L., Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-642-35088-7_13, 2013.
Elzinga, C. H. and Studer, M.: Spell Sequences, State Proximities, and
Distance Metrics, Sociol. Method. Res., 44, 3–47,
https://doi.org/10.1177/0049124114540707, 2015.
ERA-5 reanalysis: ERA5 hourly data on pressure levels from 1959 to present,
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=overview,
last access: 17 January 2022.
Fereday, D. R., Knight, J. R., Scaife, A. A., Folland, C. K., and Philipp,
A.: Cluster Analysis of North Atlantic–European Circulation Types and Links
with Tropical Pacific Sea Surface Temperatures, J. Clim., 21,
3687–3703, https://doi.org/10.1175/2007JCLI1875.1, 2008.
Florenne, T., Guerber, F., and Colas-Belcour, F.: Le phénomène
d'échouages des sargasses dans les Antilles et en Guyane, Ministry of
Overseas, Ministry of the Environment, Energy and the Sea, Ministry of
Agriculture, Agri-Food and Forestry, Paris, France, 406 pp.,
https://agriculture.gouv.fr/sites/minagri/files/cgaaer_15113_2016_rapport.pdf, (last access: 10 April
2021), 2016.
Franks, J. S., Johnson, D. R., Ko, D. S., Sanchez-Rubio, G., Hendon, J. R.,
and Lay, M.: Unprecedented Influx of Pelagic Sargassum along Caribbean Island
Coastlines during Summer 2011, in: Proceedings of the Gulf and Caribbean
Fisheries Institute, 64, 6–8, http://aquaticcommons.org/21307/ (last access: 10 Ocotber 2021), 2012.
Franks, J. S., Johnson D. R., and Ko D. S.: Pelagic Sargassum in the Tropical North
Atlantic, Gulf Caribbean Res., 27, 6–11,
https://doi.org/10.18785/gcr.2701.08, 2016.
Fratantoni, D. M. and Glickson, D. A.: North Brazil Current Ring Generation
and Evolution Observed with SeaWiFS, J. Phys. Oceanogr.,
32, 1058–1074, https://doi.org/10.1175/1520-0485(2002)032<1058:NBCRGA>2.0.CO;2, 2002.
Fratantoni, D. M. and Richardson, P. L.: The Evolution and Demise of North
Brazil Current Rings, J. Phys. Oceanogr., 36, 1241–1264,
https://doi.org/10.1175/JPO2907.1, 2006.
Friedl, M. A. and Brodley, C. E.: Decision tree classification of land
cover from remotely sensed data, Remote Sens. Environ., 61,
399–409,
https://doi.org/10.1016/S0034-4257(97)00049-7, 1997.
Fučkar, N. S., Guemas, V., Johnson, N. C., Massonet, F., and
Doblas-Reyes, F. J.: Clusters of interannual sea ice variability in the
northern hemisphere, Clim. Dynam., 47, 1527–1543,
https://doi.org/10.1007/s00382-015-2917-2, 2016.
Gabadinho, A., Ritschard, G., Müller, N., and Studer, M.: Analyzing and
Visualizing State Sequences in R with TraMineR, J. Stat.
Softw., 40, 1–37, https://doi.org/10.18637/jss.v040.i04, 2011.
Gasparin, F., Guinehut, S., Mao, C., Mirouze, I., Rémy, E., King, R. R.,
Hamon, M., Reid, R., Storto, A., Le Traon, P.-Y., Martin, M. J., and Masina,
S.: Requirements for an Integrated in situ Atlantic Ocean Observing System
From Coordinated Observing System Simulation Experiments, Front.
Mar. Sci., 83, 14 pp., https://doi.org/10.3389/fmars.2019.00083, 2019.
Geisser, S.: Predictive Inference: An Introduction, Chapman & Hall, ISBN
978-0-412-03471-8, 1993.
Gower, J. and King, S.: Distribution of floating Sargassum in the Gulf of Mexico and
the Atlantic Ocean mapped using MERIS, Int. J. Remote
Sens., 32, 1917–1929, https://doi.org/10.1080/01431161003639660, 2011.
Gower, J., Hu, C., Borstad, G., and King, S.: Ocean Color Satellites Show
Extensive Lines of Floating Sargassum in the Gulf of Mexico, IEEE T.
Geosci. Remote Sens., 44, 3619–3625,
https://doi.org/10.1109/TGRS.2006.882258, 2006.
Gower, J., Young, E., and King, S.: Satellite images suggest a new
Sargassum source region in 2011, Remote Sens. Lett., 4, 764–773,
https://doi.org/10.1080/2150704X.2013.796433, 2013.
Harms, S. and Winant, C. D.: Characteristic patterns of the circulation in the Santa Barbara Channel, J. Geophys. Res., 103, 3041–3065, https://doi.org/10.1029/97JC02393, 1998.
Helber, R. W., Townsend, T. L., Barron, C. N., Dastugue, J. M., and Carnes, M.
R.: Validation Test Report for the Improved Synthetic Ocean Profile (ISOP)
System, Part I: Synthetic Profile Methods and Algorithm, Report, Naval
Research Laboratory, Mississippi, 127 pp.,
https://www7320.nrlssc.navy.mil/pubs/2013/helber1-2013.pdf (last access: 20 November 2021), 2013.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita,M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis,
Q. J. R. Meteorol. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803,
2020.
Hisaki, Y.: Classification of surface current maps, Deep-Sea Res. Pt. I, 73, 117–126, https://doi.org/10.1016/j.dsr.2012.12.001, 2013.
Hu, C.: A novel ocean color index to detect floating algae in the global
oceans, Remote Sens. Environ., 113, 2118–2129,
https://doi.org/10.1016/j.rse.2009.05.012, 2009.
Hu, C., Feng, L., Hardy, R. F., and Hochberg, E. J.: Spectral and spatial
requirements of remote measurements of pelagic Sargassum macroalgae, Remote Sens.
Environ., 167, 229–246, https://doi.org/10.1016/j.rse.2015.05.022, 2015.
Hu, C., Murch, B., Barnes, B., Wang, M., Maréchal, J., Franks, J.,
Johnson, D., Lapointe, B., Goodwin, D., Schell J., and Siuda, A.:
Sargassum Watch Warns of Incoming Seaweed, Eos, 97, 58355,
https://doi.org/10.1029/2016EO058355, 2016.
Huang, M., Liang, X., Zhu, Y., Liu, Y., and Weisberg, R. H.: Eddies connect
the tropical Atlantic Ocean and the Gulf of Mexico, Geophys. Res.
Lett., 48, e2020GL091277, https://doi.org/10.1029/2020GL091277, 2021.
HYCOM GLBy0.08 version: Global Ocean Forecasting System (GOFS) 3.1 output on the GLBy0.08 grid, https://www.hycom.org/data/glby0pt08/expt-93pt0,
last access: 17 January 2022.
Johns, W. E., Townsend, T. L., Fratantoni, D. M., and Douglas Wilson, D. W.: On
the Atlantic inflow to the Caribbean Sea, Deep-Sea Res. Pt. I, 49, 211–243, https://doi.org/10.1016/S0967-0637(01)00041-3, 2002.
Johns, E. M., Lumpkin, R., Putman, N. F., Smith, R. H., Muller-Karger, F.
E., Rueda, D., Hu, C., Wang, M., Brooks, M. T., Gramer, L. J., and Werner F. E.:
The Establishment of a Pelagic Sargassum Population in the Tropical Atlantic:
Biological Consequences of a Basin-Scale Long Distance Dispersal Event,
Prog. Oceanogr., 182, 25 pp.,
https://doi.org/10.1016/j.pocean.2020.102269, 2020.
Johnson, D., Ko, D. S., Franks, J. S., Moreno, P., and Sanchez-Rubio, G.: The
Sargassum invasion of the eastern Caribbean and dynamics of the equatorial North
Atlantic, Gulf Caribbean Fish. Inst. Proceed., 65, 102–103,
2014.
Jouanno, J., Moquet, J.-S., Berline, L., Radenac, M.-H., Santini, W.,
Changeux, T., Thibaut, T., Podlejski W., Ménard, F., Martinez, J.-M.,
Aumont, O., Sheinbaum, J., Filizola N., and Moukandi N'Kaya G. D.: Evolution
of the riverine nutrient export to the Tropical Atlantic over the last 15
years: is there a link with Sargassum proliferation?, Environ. Res. Lett., 16, 8 pp.,
https://doi.org/10.1088/1748-9326/abe11a, 2021.
Kuhn, M. and Johnson, K.: Applied predictive modeling, New York, Springer,
ISBN 978-1-4614-6848-6, https://doi.org/10.1007/978-1-4614-6849-3, 2013.
Kullback, S. and Leibler, R.: On information and sufficiency, Ann.
Mathemat. Stat., 22, 79–86,
https://doi.org/10.1214/aoms/1177729694, 1951.
Larmarange, J., Mossong, J., Bärnighausen T., and Newell M. L.:
Participation Dynamics in Population-Based Longitudinal HIV Surveillance in
Rural South Africa, PLOS ONE, 10, 16 pp.,
https://doi.org/10.1371/journal.pone.0123345, 2015.
Lellouche, J.-M., Greiner, E., Le Galloudec, O., Garric, G., Regnier, C.,
Drevillon, M., Benkiran, M., Testut, C.-E., Bourdalle-Badie, R., Gasparin,
F., Hernandez, O., Levier, B., Drillet, Y., Remy, E., and Le Traon, P.-Y.:
Recent updates to the Copernicus Marine Service global ocean monitoring and
forecasting real-time high-resolution system, Ocean Sci.,
14, 1093–1126, https://doi.org/10.5194/os-14-1093-2018, 2018.
Lumpkin, R. and Garzoli S. L.: Near-surface circulation in the tropical
Atlantic Ocean, Deep-Sea Res. Pt. I, 52, 495–518,
https://doi.org/10.1016/j.dsr.2004.09.001, 2005.
Maréchal, J.-P., Hellio, C., and Hu, C.: A simple, fast, and reliable method
to predict Sargassum washing ashore in the Lesser Antilles, Remote Sens. Appl. Soc.
Environ., 5, 54–63, https://doi.org/10.1016/j.rsase.2017.01.001, 2017.
Maximenko, N., Hafner, J., and Niiler, P. : Pathways of marine debris derived from trajectories of Lagrangian drifters, Mar. Pollut. Bull., 65, 51–62, https://doi.org/10.1016/j.marpolbul.2011.04.016, 2012.
Michelangeli, P., Vautard, R., and Legras, B.: Weather regime occurrence and
quasi stationarity, J. Atmos. Sci., 52, 1237–1256, 1995.
Miron, P., Olascoaga, M. J., Beron-Vera, F. J., Putman, N. F., Triñanes,
J., Lumpkin, R., and Goni, G. J.: Clustering of marine-debris- and
Sargassum-like drifters explained by inertial particle dynamics, Geophys. Res. Lett.,
47, e2020GL089874, https://doi.org/10.1029/2020GL089874, 2020.
Pham, B. T., Phong, T. V., Nguyen-Thoi, T., Parial, K., Singh S. K., Ly,
H.-B., Nguyen, K. T., Ho, L. S., Van Le, H., and Prakash, I.: Ensemble
modeling of landslide susceptibility using random subspace learner and
different decision tree classifiers, Geocarto Int., 37, 735–757,
https://doi.org/10.1080/10106049.2020.1737972, 2020.
Putman, N. F., Goni, G. J., Gramer, L. J., Hu, C., Johns, E. M., Trinanes,
J., and Wang, M.: Simulating transport pathways of pelagic Sargassum from the
equatorial Atlantic into the Caribbean Sea, Prog. Oceanogr., 165, 205–214,
https://doi.org/10.1016/j.pocean.2018.06.009, 2018.
Putman, N. F., Lumpkin, R., Olascoaga, M. J., Trinanes, J., and Goni, G. J.:
Improving transport predictions of pelagic Sargassum, J. Exp. Mar.
Biol. Ecol., 529, 151398, https://doi.org/10.1016/j.jembe.2020.151398, 2020.
Resiere, D., Valentino, R., Nevière R., Banydeen, R., Gueye, P.,
Florentin, J., Cabié, A., Lebrun, T., Mégarbane B., Guerrier G., and
Mehdaoui, H.: Sargassum seaweed on Caribbean islands: an international public health
concern, Lancet, 392, 2691,
https://doi.org/10.1016/S0140-6736(18)32777-6, 2018.
Rousseeuw, P. J.: Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis, J. Comput. Appl.
Mathemat., 20, 53–65, https://doi.org/10.1016/0377-0427(87)90125-7, 1987.
SargassumWatch System (SAWS): Sargassum Outlook Bulletin, University of South
Florida, https://optics.marine.usf.edu/projects/SaWS.html, last
access: 15 June 2021
Studer, M. and Ritschard, G.: What matters in differences between life
trajectories: a comparative review of sequence dissimilarity measures,
J. Roy. Stat. Soc. Ser. A, 179, 481–511,
https://doi.org/10.1111/rssa.12125, 2016.
Swain, P. H. and Hauska, H.: The decision tree classifier: Design and
potential, IEEE Trans. Geosci. Elect., 15, 142–147,
https://doi.org/10.1109/TGE.1977.6498972, 1977.
Trinanes, J., Putman, N. F., Goni, G., Hu, C., and Wang, M.: Monitoring pelagic
Sargassum inundation potential for coastal communities, J.
Operat. Oceanogr., 14, 1–12, https://doi.org/10.1080/1755876X.2021.1902682,
2021.
Van Tussenbroek, B. I., Hernández Arana, H. A.,
Rodríguez-Martínez, R. E., Espinoza-Avalos, J., Canizales-Flores,
H. M., González-Godoy, C. E., Barba-Santos, M. G., Vega-Zepeda, A., and
Collado-Vides, L.: Severe impacts of brown tides caused by Sargassum spp. on
near-shore Caribbean seagrass communities, Mar. Pollut. Bull., 122, 272–281.
https://https://doi.org/10.1016/j.marpolbul.2017.06.057, 2017.
Wang, M. and Hu, C.: Mapping and quantifying Sargassum distribution and coverage in
the central West Atlantic using MODIS observations, Remote Sens. Environ.,
183, 350–367, https://doi.org/10.1016/j.rse.2016.04.019, 2016.
Wang, M. and Hu, C.: Predicting Sargassum blooms in the Caribbean Sea from MODIS
observations, Geophys. Res. Lett., 44, 3265–3273,
https://doi.org/10.1002/2017GL072932, 2017.
Wang, M., Hu, C., Cannizzaro, J., English, D., Han, X., Naar, D., Lapointe, B., Brewton, R., and Hernandez, F.: Remote sensing of Sargassum biomass,
nutrients, and pigments, Geophys. Res.
Lett., 45, 12359–12367, https://doi.org/10.1029/2018GL078858, 2018.
Wang, M., Hu, C., Barnes, B. B., Mitchum, G., Lapointe, B., and Montoya, J. P.:
The great Atlantic Sargassum belt, Science, 365, 83–87,
https://doi.org/10.1126/science.aaw7912, 2019.
Ward Jr., J. H.: Hierarchical Grouping to Optimize an Objective Function,
J. Am. Stat. Assoc., 58, 236–244,
https://doi.org/10.1080/01621459.1963.10500845, 1963.
Webster, R. K. and Linton, T.: Development and implementation of Sargassum Early
Advisory System (SEAS), Shore & Beach, 81, 1–6,
http://www.sargassoseacommission.org/storage/Webster_et_linon_2013_1.pdf (last access: 15 February 2022), 2013.
Witherington, B., Hirama S., and Hardy, R.: Youngsea turtles of the pelagic
Sargassum-dominated drift community: habitat use, population density, and threats,
Mar. Ecol. Prog. Ser., 463, 1–22, https://doi.org/10.3354/meps09970, 2012.
Zhao, Q., Basher, Z., and Costello, M. J.: Mapping near surface global
marine ecosystems through cluster analysis of environmental data, Ecol.
Res., 35, 327–342, https://doi.org/10.1111/1440-1703.12060, 2020.
Short summary
The massive Sargassum algae beachings observed over the past decade are a new natural hazard currently impacting the island states of the Caribbean region. This study aims to improve the prediction of the surface current dynamic leading to beachings in the Lesser Antilles using clustering analysis methods. The present clustering analysis predictive system would help improve this risk management in the islands of the region.
The massive Sargassum algae beachings observed over the past decade are a new natural hazard...