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Abstract. The massive Sargassum algae beachings observed
over the past decade are a new natural hazard currently im-
pacting the island states of the Caribbean region (human
health, environmental damages, and economic losses). This
study aims to improve the prediction of the surface current
dynamic leading to beachings in the Lesser Antilles using
clustering analysis methods. The input surface currents were
derived from the Mercator model and the Hybrid Coordinate
Ocean Model (HYCOM) outputs in which we integrated the
windage effect. Past daily observations of Sargassum beach-
ing on Guadeloupe coasts and satellite-based Sargassum off-
shore abundance were also integrated. Four representative
current regimes were identified for both Mercator and HY-
COM data. The analysis of the current sequences leading to
beachings showed that the recurrence of two current regimes
is related to the beaching peaks respectively observed in
March and August. The performance score of the predictive
model showed that the HYCOM data seem more suitable to
assess coastal Sargassum hazard in the Lesser Antilles. For
1 year of tests (i.e., 2021), the decision tree accuracy respec-
tively reached 70.1 % and 58.2 % for HYCOM and Mercator
with a temporal uncertainty range ±3 d around the forecast
date. The present clustering analysis predictive system, re-
quiring lower computational resources compared to conven-
tional forecast models, would help improve this risk manage-
ment in the islands of the region.

1 Introduction

During the periods 2011–2012 and then 2014–2019, massive
Sargassum beachings impacted most coasts of the Lesser An-
tilles (LA), mainly those facing east and southeast (Franks et
al., 2012; Gower et al., 2013; Johnson et al., 2014; Hu et al.,
2016; Wang and Hu, 2016). The LA received large amounts
of algae on the windward Atlantic coastline, while leeward
Caribbean coastal areas remained slightly affected (Maréchal
et al., 2017). These beachings in terms of frequency and in-
tensity can now be considered a new natural hazard for the
Caribbean islands and American coasts.

Indeed, while it has been demonstrated that Sargassum
algae provide ecosystem services, habitats, and shelter for
various organisms in a structurally sterile ocean ecosystem
(Witherington et al., 2012; Bertola et al., 2020), the beach-
ings over the past decade have induced health risks for the
population and have had considerable socioeconomic im-
pacts (Franks et al., 2012). For example, when looking at the
French West Indies, the Guadeloupe archipelago, and Mar-
tinique, the findings are as follows.

1. Apart from 2013, the recent inflow of Sargassum rafts
on the coasts of Guadeloupe and Martinique, although
irregular, has not ceased since 2011, reaching a parox-
ysm in 2015 (Florenne et al., 2016; Berline et al., 2020).
State services estimated that the volumes stranded on
the shores were of the order of 1.5 million m3 from Oc-
tober 2014 to October 2015 in Guadeloupe (Florenne et
al., 2016). Only a third of these could be collected by the
authorities and priority was given to areas at risk, such
as inhabited areas, shores with economic or tourist ac-
tivities, and ecosystems or other environmental niches.
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The particularity and the difficulty lay in the fact that
60 % of this coastline and/or of the volume stranded
remained inaccessible to currently proven techniques
and/or at costs that are currently bearable.

2. There was an impact on human health and ecosystems
because in shallow and small bays, accumulated algae
degrade by fermentation and emit chemical compounds
such as hydrogen sulfide (H2S) and ammonia (NH3)
(Anses, 2017; Van Tussenbroek et al., 2017; Resiere et
al., 2018).

3. A survey conducted by the organizations responsible for
socioeconomic development estimated that the decline
in tourism resulted in an economic loss of USD 5.5 mil-
lion for the first half of 2015 (https://eos.org/features/
Sargassum-watch-warns-of-incoming-seaweed, last
access: 15 January 2022).

The volumes to be collected were considerable compared
to the size of these islands (< 1200 km2 each) and the vulner-
ability of these territories. This new phenomenon has raised
several scientific questions relating to Sargassum rafts, such
as their transports, origins, and the sources of nutrients pro-
moting their growth, especially the physical factors that led
to their occurrence and their development in the tropical and
equatorial Atlantic.

Using large-scale observations with ocean color satellite
remote sensing, historical hydrographic observations, time
series of Sargassum volume collected on ships, multiyear
reanalysis of wind and current, and numerical models, the
roles of both subsurface nutrient supply and surface current
transport were estimated. Several authors have contributed
to the understanding of the mechanisms and physicochem-
ical processes governing the phenomenon (Gower et al.,
2006; Gower and King, 2011; Gower et al., 2013; Maréchal
et al., 2017; Johns et al., 2020). Operational systems have
been developed such as the satellite-based Sargassum Watch
System SaWS (SargassumWatch System, 2021; Hu, 2009;
Hu et al., 2015) and the Sargassum Early Advisory System
(SEAS) (Webster and Linton, 2013). They provide a tempo-
ral and spatial assessment of annual seasonal increases and
decreases in Sargassum algae amount over wide areas of the
tropical Atlantic and Caribbean (Wang and Hu, 2016, 2017;
Wang et al., 2019). Time series from remote sensing were
coupled with spatial distribution models to determine the
mechanisms that aggregate Sargassum algae along a zonal
band in the tropical Atlantic considering possible nutrient
sources promoting the observed annual blooms (Wang et al.,
2018, 2019; Johns et al., 2020; Jouanno et al., 2021).

Tropical Atlantic currents and winds seasonally aggregate
and carry these algae towards the Caribbean (Franks et al.,
2016; Brooks et al., 2018; Cuevas et al., 2018). Modeling
studies mainly focused on the transport properties of Sargas-
sum rafts by offshore currents (Wang and Hu, 2017; Brooks

et al., 2018; Maréchal et al., 2017; Putman et al., 2018, 2020;
Wang et al., 2019; Berline et al., 2020).

Johns et al. (2020) extended this analysis to highlight
anomalous transport due to the 2009–2010 North Atlantic
Oscillation (NAO) anomaly and seasonal aggregation by the
Intertropical Convergence Zone (ITCZ).

A combination of satellite-based alternative floating algae
index (AFAI, Wang and Hu, 2016) fields with Hybrid Coor-
dinate Ocean Model (HYCOM) surface current forecast data
was used by Maréchal et al. (2017) to short-term predict Sar-
gassum beachings for Guadeloupe and the French Antilles
islands. Maréchal et al. (2017) showed that this short-term
prediction system (i.e., detection starting within 50–100 km
of the coasts) worked efficiently during the year 2015 with a
performance percentage of 62 % and a beaching forecast date
uncertainty below 1 d.

Trinanes et al. (2021) presented the Sargassum inunda-
tion reports (SIRs), a product based on satellite observations
to predict Sargassum coastal inundation potential weekly
throughout the Caribbean Sea region, the Gulf of Mexico,
and extending to the east coast of Florida and the Bahamas.
As described by Trinanes et al. (2021), the SIR algorithm
uses the floating algae density values within 50 km of each
coastal pixel to predict three inundation potential levels (low,
medium, and high). This algorithm does not include ocean
currents, winds, and waves, which may modify the move-
ment of Sargassum.

In the above works, the implementation of methods based
on several independent datasets has led to the production of
scientific knowledge and even to the development of large-
scale forecasting systems. None of them used predictive
modeling (Geisser, 1993; Kuhn and Johnson, 2013) includ-
ing classifiers (Friedl and Brodley, 1997) to determine the
probability of repeatable patterns in a dataset so as to produce
a decision for risk prevention managers. Predictive modeling
refers to mathematical and computational methods of pre-
dicting future events based on the analysis of the repeatable
patterns in the input dataset (Geisser, 1993; Friedl and Brod-
ley, 1997; Kuhn and Johnson, 2013). Compared to other con-
ventional forecasts, predictive modeling methods require low
computational costs and are characterized by their flexibility
and their intuitive simplicity (Friedl and Brodley, 1997).

In this paper, we propose using clustering and decision tree
classifier methods, combining ocean surface current, wind
reanalysis, and satellite-based Sargassum offshore abun-
dance with past observed beachings to obtain a first predic-
tive model of Sargassum beaching on the Caribbean coasts.
This model will be used with forecast data as input to pro-
duce an operational decision support system.

As ocean data are spatiotemporal fields, machine learning
methods such as K-means (KMS) may be used to obtain a
finite number of possible k-cluster partitions of the surface
currents. These methods have been widely used in weather
forecasting (Michelangeli et al., 1995; Cassou et al., 2004;
Boé and Terray, 2008) but are much less common in phys-
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ical oceanography (Harms and Winant, 1998; Hisaki, 2013;
Arnault, 2021).

We focused on the offshore region covering either side of
the Lesser Antilles between 55–66◦W and 8–17◦ N (Fig. 1a).
Visual analysis of the monthly SaWS maps indicates that
this region remains the primary pathway for Sargassum rafts
from the Atlantic Ocean to the Caribbean Sea. The North
Equatorial Current (NEC), the Guiana Current (GC), the ed-
dies, and the retroflection front of the North Brazil Current
(NBC) are the main contributors of this transport. Putman et
al. (2018) modeled the percentage of Sargassum which fol-
lows these routes. Figure 1b describes the focused area di-
vided into a first subset called LA1 for the Caribbean Sea,
a second one called LA2 between 18 and 14.5◦ N (Guade-
loupe, Dominica, Martinique, Saint Lucia), and a third one
called LA3 south of 14.5◦ N (Saint Vincent, Barbados, and
Trinidad and Tobago).

The questions are as follows. Can dynamic patterns of sur-
face currents in the Lesser Antilles be summarized as a dis-
crete set of cases? What is their temporal recurrence? What
combinations of currents enhance Sargassum raft arrival and
beachings on the Lesser Antilles coasts? What is the contri-
bution of this type of predictive modeling to the prevention
of this new natural hazard?

The overall methodology, database, clustering methods,
and decision tree used in this study are described in Sect. 2.
The obtained current regimes, their relationship to Sargas-
sum hazard, and the decision support system performances
are presented in Sect. 3. These results are discussed in
Sect. 4.

2 Datasets and methods

The overall methodology is presented in Fig. 2. The main
goal of the first step was to use clustering analysis to iden-
tify the main current patterns in the Lesser Antilles during
the period 2019–2020. The 30 d current pattern sequences
leading to beachings were deduced based on beaching obser-
vations in Guadeloupe. An additional clustering analysis was
conducted on these sequences to study the main patterns (or-
ange box in Fig. 2). A decision tree classifier was built with
the following input data: current patterns, 30 d sequences be-
fore beaching, satellite-based Sargassum abundance offshore
of Guadeloupe, and surface currents from HYCOM (HY-
COM GLBy0.08 version) and Mercator (PSY4V3R1 Mer-
cator 1/12◦ 3D analysis). This decision support system was
tested for the year 2021. The performance scores were as-
sessed for each decision day and three temporal uncertainty
ranges around this day: ± 1, ± 2, ± 3 d.

2.1 HYCOM surface current dataset

Daily (12:00 UTC, i.e., Coordinated Universal Time) sur-
face current components from the 41-layer Hybrid Coordi-

nate Ocean Model (HYCOM), at 1/12◦ resolution, global
analysis (HYCOM GLBy0.08 version, available at: https:
//www.hycom.org/data/glby0pt08/expt-93pt0, last access: 17
January 2022), were examined. The HYCOM surface forc-
ing including 10 m wind velocities is extracted from Cli-
mate Forecast System Version 2 (CFSv2). The Navy Coupled
Ocean Data Assimilation (NCODA) system is used to assim-
ilate available observational data: satellite altimeter sea sur-
face height, satellite and in situ sea surface temperature, tem-
perature vertical profiles, and salinity vertical profiles (Cum-
mings, 2005; Cummings and Smedstad, 2013; Helber et al.,
2013). The bathymetry used is the GEBCO8 (Becker et al.,
2009) with 30 arcsec of resolution. The HYCOM GLBy0.08
grid resolution is 0.08 degree in longitude and 0.04◦ in lat-
itude. To perform the present study, the native HYCOM
fields were first interpolated on the Mercator uniform long–
lat 0.08◦ grid with a bilinear method. Putman et al. (2018)
and Johns et al. (2020) used a previous version of HYCOM
including uniform long–lat 0.08◦ scale grid to successfully
simulate Sargassum trajectories.

2.2 Mercator surface current dataset

The daily (12:00 UTC) surface current components from the
50-layer PSY4V3R1 Mercator 1/12◦ 3D analysis system
(Lellouche et al., 2018; Gasparin et al., 2019) were also an-
alyzed (PSY4V3R1 Mercator 1/12◦ 3D analysis. The at-
mospheric surface forcing is extracted from the 3-hourly
ECMWF (European Centre for Medium-Range Weather
Forecasts) IFS (Integrated Forecast System). This version of
the Mercator model includes assimilation of observational
data quite similarly to the HYCOM NCODA system (i.e.,
satellite altimeter sea surface height, satellite and in situ sea
surface temperature, temperature vertical profiles, and salin-
ity vertical profiles). Unlike the HYCOM GLBy0.08 native
grid including higher resolution in latitude (i.e., 0.04◦), the
Mercator native grid is uniform in longitude and latitude
with 0.08◦ horizontal grid resolution. This would suggest
that HYCOM may better reproduce small-scale patterns than
Mercator. Moreover, as described by Lellouche et al. (2018),
the Mercator bathymetry includes GEBCO8 data in regions
shallower than 200 m and the coarse 1 arcmin ETOPO1 data
(Amante and Eakins, 2009) in regions deeper than 300 m.
The complex bathymetry of the Lesser Antilles arc studied
here could be less realistic in the Mercator than in the HY-
COM fields.

2.3 ERA-5 dataset: surface winds

Surface wind influences the transport of floating seaweed
rafts, and a drag or windage coefficient must be added
to the surface currents. Daily 12:00 UTC fields from the
hourly 31 km horizontal resolution ERA-5 reanalysis dataset
(Hersbach et al., 2020) were used (ERA-5 reanalysis,
2022, available at: https://cds.climate.copernicus.eu/cdsapp#
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Figure 1. (a) Main oceanic currents occurring and interacting in the central Atlantic and the Lesser Antilles regions: Caribbean Current (CC),
North Equatorial current (NEC), North Brazil Current (NBC), North Equatorial Counter Current (NECC), South Equatorial Current (SEC).
Lesser Antilles domain (LA): the red rectangle corresponds to the study area (55–66◦W, 8–17◦ N). (b) Spatial subdivision of the study area
into three subareas: LA1 (i.e., Caribbean Sea), LA2 (i.e., northern tropical Atlantic above Barbados, 13.2◦ N), and LA3 (i.e. northern tropical
Atlantic below 13.2◦ N). The yellow circle corresponds to the 100 km offshore Guadeloupe area in which the satellite-based Sargassum
abundance is analyzed.

Figure 2. A schematic showing the overall methodology.

!/dataset/reanalysis-era5-pressure-levels?tab=overview, last
access: 17 January 2022). The wind data were integrated with
Mercator and HYCOM ocean current data following this for-
mula:

us(xt)= um(xt)+Cwuw(xt), (1)

where us represents the oceanic surface currents with
windage, um the oceanic surface current velocity, Cw the
windage, and uw the surface wind velocity. This approach is
consistent with Putman et al. (2018) and Johns et al. (2020).
The value of Cw= 0.01 was used, following Putman et
al. (2018), Johns et al. (2020), and Berline et al. (2020). The

use of other windage values should be investigated in a fur-
ther study.

2.4 Beaching observational data (Guadeloupe)

A referencing database including observed beachings on
Guadeloupe coasts was used in the present study. The
selected time period is the same as the one for sur-
face current data: from 1 January 2019 to 31 Decem-
ber 2020. During this period of 730 d, only 110 d of Sar-
gassum beaching were recorded (i.e., 30 d in 2019 and
80 d in 2020). During the year 2021, 78 d of beaching
were observed in Guadeloupe. These observational data
based on remote sensing and in situ data are archived on-
line by the Regional Directorate for Environment, Develop-
ment and Housing in Guadeloupe (http://www.guadeloupe.
developpement-durable.gouv.fr/sargasses-r999.html, last ac-
cess: 15 February 2022).

2.5 Satellite-based offshore abundance of Sargassum

Sargassum satellite observations were included in the present
decision support system. To quantify the abundance of Sar-
gassum in an area of 100 km radius offshore of Guadeloupe,
the 7 d floating algae (FA) density fields derived from the
alternative floating algae index (Wang and Hu, 2016) were
analyzed. As described by Trinanes et al. (2021), the 7 d FA
density fields are accumulated for 7 d and have a 0.1◦ resolu-
tion. Due to optical complexity in nearshore waters, the FA
density fields are masked with missing values within 30 km
from the shoreline (Trinanes et al., 2021). The cumulative FA
density values were added up in the area 30–100 km offshore
of Guadeloupe (Fig. 1), then averaged over the 2 years 2019
and 2020 for each day.
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2.6 Clustering analysis with expert distance

Unsupervised learning methods such as hierarchical agglom-
erative clustering (HAC) andK-means algorithms were used
in the present study. The Ward method allows identifying ho-
mogeneous subsets of data (Ward, 1963). Besides the mea-
sures and the classes of distance between objects such as the
Euclidean distance forK-means and the Ward method, a new
metric was also added. The expert distance (ED), which inte-
grates image analysis within unsupervised learning methods
(clustering), was used. This method allowed significant im-
provement in clustering analysis dealing with climate data
characterized by high spatiotemporal variability, such as pre-
cipitation (Biabiany et al., 2020). Clustering methods using
Euclidean distance (L2) can lead to group different physical
situations within the same cluster (Biabiany et al., 2020). The
ED metric integrates a set of knowledge about the dynamics
of the data to be partitioned as well as their spatiotemporal
properties.

This ED is based on an empirical spatial subdivision and
the use of Kullback–Leibler divergence in order to quan-
tify the similarity between two fields (Kullback and Leibler,
1951). Figure 3 shows the schematic of the expert distance
process adopted here.

The LA study area was separated into three parts (Figs. 1b,
3) based on the Sargassum rafts transport centers of action
reported in the literature (Franks et al., 2016; Berline et al.,
2020). To the west of LA, the first zone, LA1, is centered on
the Caribbean Sea. To the east, the Atlantic zone was split
into two areas towards 13.5◦ N, just above the island of Bar-
bados. To the southeast is the LA3 zone under the influence
of the North Equatorial Recirculation Region (NERR) and
its retroflection rings, while to the northeast is the LA2 zone,
more representative of the North Equatorial Current. The an-
alyzed daily fields include a total of 14 279 grid points (4282
grid points in LA1, 3407 grid points in LA2, and 4536 grid
points in LA3). The remainder corresponds to areas over land
(e.g., islands).

The clustering results were evaluated using the silhouette
index (Rousseeuw, 1987). The silhouette (SaMk) index de-
fined in Biabiany et al. (2020) was used. This allows express-
ing the quality of a clustering by the average of the quality
of each cluster, which is itself the average of the silhouette
indices s(i) over the cluster elements. This index is defined
as follows:

SaMk=
1
k
×

∑k

j=1

1
|Cj |
×

∑
iεCj

s(i), (2)

where k is the number of clusters, Cj the set of days from
the cluster j , i a day from Cj , and s(i) the silhouette index
(Rousseeuw, 1987) value of day i.

The current pattern clusters obtained are related by a set of
days in common. Match percentages were calculated using

Figure 3. The schematic of the expert distance process.

the following formula:

p(m,h) =
|Cm ∩ Ch |

|Cm ∪ Ch |
=

N(m,h)

|Cm | + |Ch | − N(m,h)
, (3)

where p(m,h) is the percentage of correspondence between
cluster Cm and cluster Ch derived from Mercator and HY-
COM datasets, respectively. N(m, h) is the number of days
shared by these two clusters.

2.7 Clustering analysis on current sequences leading to
beachings

To better understand current dynamics which may lead to
Sargassum beaching in Guadeloupe, we analyzed the 30 d
current sequences before beaching. The 30 d duration corre-
sponds to the empirical transport time of a passive particle
moving from the main entrance location of Sargassum rafts
in the Lesser Antilles area (i.e., in LA3 zone; 8◦ N, −55◦ E)
to Guadeloupe (i.e. LA2 zone). Based on the mean current
magnitude of 0.2 m s−1 (average value over the LA zone in
HYCOM and in Mercator data) and the distance of 500 km
between the main entrance location and the Guadeloupe
coasts, 29 d are obtained for the transport. For simplicity, the
duration of 30 d was selected instead of 29 d. While 110 ob-
served beaching days were registered between January 2019
and December 2020, only 107 sequences were studied here.
This is explained by the fact that beaching days registered
in January 2019 were removed to avoid the sequences miss-
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Figure 4. The schematic of the clustering process used on the ocean
current sequences leading to beachings.

ing data in the December 2018 period. These 107 beaching
sequences were examined with HYCOM fields. Dissimilar-
ities between these sequences were calculated before divid-
ing the sequence dataset into several groups using a hierar-
chical classification (Larmarange et al., 2015). The longest
common subsequence (LCS) method was used to compute
the distances between the sequences (Elzinga and Struder,
2015; Studer and Ritschard, 2016). A dendrogram was cal-
culated using Ward’s algorithm (Ward, 1963). The highest
relative inertia loss criterion allowed determining the opti-
mal number of partitions (TraMiner package; Gabadinho et
al., 2011). The stages of this clustering process are summa-
rized in Fig. 4.

2.8 Decision support system

To determine the probability of Sargassum beaching, a de-
cision tree was built using complementary elements called
“modules” (Fig. 5). Each module generates information
based on input data including surface currents (Mercator and
HYCOM) with windage effects (ERA-5) and past observa-
tions of beachings in Guadeloupe. Thus, for a given day, the
proposed system works as follows.

– Module A takes as input the week number of the se-
lected day and returns the associated daily probability
to reach the maximum offshore abundance of Sargas-
sum (based on observational FA density values during
the 2 years 2019 and 2020).

– Module B assigns a cluster number to the focused day
after the ED clustering of the daily surface currents.
Then, from this day, it builds empirical sequences of
numbers between 1 and 4 (type of cluster) over a pe-
riod of the past 30 d.

– Module C takes as input the daily cluster number pro-
duced by module B and returns the probability (fre-
quency) of beaching associated with the type of clus-
ter. This probability is calculated, by cluster type, from
the beachings observed on the coasts of the Guadeloupe
archipelago. The system has 107 30 d current sequences
before beaching. These sequences start on the day of
beaching on the coasts of Guadeloupe. This set of refer-
enced 30 d current sequences before beaching is called
BASE (Fig. 5b).

– Module D compares the sequence of the given day to the
referenced current sequences before beaching with Jac-
card distance. Module D is interconnected to BASE and
module B. It returns the percentage of correspondence
between them.

In the literature, the average of the different modules
is often used as the decision operator (Bo et al., 2020;
Swain and Hauska, 1977). In the present work, the per-
centage of beaching for a given day was determined us-
ing the percentages provided by modules A, C, and D,
according to the following formula:

P(i)= (A(i)+
C(i)
D(i)

), (4)

where P(i) is the quantity used in the design of the de-
cision rule. This rule is simply the linear combination of
the percentages from modules A, C, and D, calculated
according to

DECISION(i)= P (i) >Mean(P (j)), (5)

where j ∈ R. The set of past days (2019–2020) and
DECISION(i) is a (logical) response of the decision tree
for a given day, i.e., expressed in binary form.

The proposed tree in Fig. 5 was tested for the full year
of 2021 except 31 December 2021, which was not in-
cluded because of missing data, giving a total of 364
tests. The performance assessment of the decision sup-
port system was conducted for each decision day and
three temporal uncertainty ranges around this day: ± 1,
± 2, ± 3 d.
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Figure 5. (a) Scheme of the decision tree classifier to predict Sargassum beaching probability. (b) Combination base of oceanic current
cluster labels obtained by KMS–ED from each beaching day to 1t days before.

3 Results

3.1 Surface current patterns in the focused area

In view of the lack of studies dealing with surface current
patterns in the Lesser Antilles area, a preliminary analysis
is presented here. The deciles of surface current velocities
including windage are presented in Table 1. The maximum
surface velocity reaches 2.49 and 2.57 m s−1, respectively,
for HYCOM and Mercator. For both models 90 % of the ve-
locity values remain below 0.65 m s−1 (the respective 90th
centile values are respectively 0.6515 and 0.6458 m s−1 for
HYCOM and Mercator). The Mercator data have a median
of 0.28 m s−1 and a mean of 0.33 m s−1, while for HYCOM
these values are respectively equal to 0.32 and 0.36 m s−1.
The ratio between the first and the last decile is close to 6.
Figure 6 shows skewed distributions with skewness equal
to 1.31 and 1.21 for HYCOM and Mercator, respectively.
A Gaussian kernel was applied to obtain these distributions.
The distribution mass is concentrated on the left.

To assess the contribution of each of the three regions
(i.e., LA1, LA2, LA3) to the deciles, the relative frequency
against the decile thresholds given in Table 1 is shown in
Fig. 7. Three different shapes can be seen. In the Caribbean
Sea, the LA1 relative frequency distributions from HYCOM
and Mercator are almost horizontal, indicating a quite con-
stant contribution (∼ 3 %) over all velocity classes. In the
Atlantic Ocean (i.e., in the area including LA2 and LA3),
HYCOM and Mercator current speed distributions are quite
similar. The frequency distributions show two opposite be-
haviors for LA2 and LA3. In the Atlantic northern LA part,
the LA2 area, the frequency decreases with current speed.
Current speeds above 0.65 m s−1 are very uncommon. On

Figure 6. Distributions of oceanic surface current magnitudes in-
cluding windage for both models: HYCOM (blue) and Mercator
(red) datasets.

the contrary, in the Atlantic southern LA part, the LA3 area,
a frequency increase is observed with maximum frequency
linked to current speeds above 0.65 m s−1. These three sig-
nificant specific current speed distributions associated with
LA1, LA2, and LA3 confirm the need to separate these three
areas in the ED metric clustering process.

The differences between HYCOM and Mercator current
vectors were also examined for each grid point (Fig. 8).
Globally, at open sea, the current speed differences are rela-
tively small and remain below 0.15 m s−1. These differences
between HYCOM and Mercator increase close to the islands
with an average value of 0.3 m s−1. In the southern part of
the LA arc, around Trinidad and Tobago, Mercator current
magnitudes are globally higher than HYCOM current mag-
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Table 1. Boundaries of the histogram classes used to quantify surface current velocity data with sigma as the standard deviation.

Deciles (Di) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Max Mean σ

Mercator (m s−1) 0.11 0.16 0.20 0.24 0.28 0.32 0.39 0.48 0.65 2.57 0.33 0.22
HYCOM (m s−1) 0.13 0.18 0.23 0.28 0.32 0.38 0.44 0.52 0.65 2.49 0.36 0.21

Figure 7. Relative frequency distribution of current speeds for the
three offshore subregions around the Lesser Antilles (2019–2020):
LA1 (blue), LA2 (red), LA3 (yellow). (a) Mercator with ERA-5
windage and (b) HYCOM with ERA-5 windage.

nitudes. Thus, Mercator surface currents might induce higher
Sargassum influx from the western central Atlantic to the
Caribbean Sea in this area.

At each grid point, the angular deviations found between
the medians of the surface current velocity vector directions
can be divided into three magnitude groups of 45◦ intervals.
The current direction differences between 0 and 45◦ are the
most frequent group in the region, while those between 45
and 90◦ remain localized downstream of the islands. Finally,
those above 90◦ occur exclusively around Trinidad.

3.2 Clustering analysis

To identify surface current patterns in the region and then
those that lead the transport of Sargassum rafts to the LA
islands coasts, clustering of the gridded data according to
Eq. (1) was performed.

3.2.1 Clustering assessment

One of the known uncertainties in theK-means method is in-
duced by the selected number of clusters. To find an optimal
number of clusters and identify the best partition (Biabiany et
al., 2020), the silhouette index (SaMk) evolution against the
number of clusters, k, is shown in Fig. 9. The silhouette in-
dices obtained by the KMS–ED method are in general above
0.2 for any k < 15 and remain higher than those obtained by
the KMS–L2, HAC–L2, and HAC–ED methods. These val-
ues indicate that the quality of the clusters is much better
with the KMS–ED method. The inflection point of the KMS–
ED curve occurs for the same number of clusters, k = 4, for
both Mercator and HYCOM data. This highlights four repre-
sentative current regimes in the studied region, respectively
named MC1, MC2, MC3, and MC4 for Mercator and HC1,
HC2, HC3, and HC4 for HYCOM.

3.2.2 Visual analysis of current regimes

The four types of surface current circulation, obtained in in-
tensity and direction, are shown in Figs. 10 and 11, respec-
tively, for the Mercator and HYCOM analysis. The paragon
which is the closest day to the centroid was chosen to rep-
resent each type of cluster. The four clusters may be distin-
guished by the NBC expansion and by the induced retroflec-
tion ring locations. The surface current velocities and their
associated streamlines are driven by the following structures:

– those which enter through the Caribbean Sea from the
south, remaining almost parallel to the continental shelf
(they occur in the LA3 and LA1 regions);

– those due to the propagation of the eddy dynamic char-
acteristics related to the retroflection rings of the NBC
(they come from the south of the LA3 region, along the
Atlantic side of the Lesser Antilles arc, before passing
through the Caribbean Sea towards 12–14◦ N); and

– those generally coming from the northeast of the LA1
and LA2 regions, representing the southern limit of the
subtropical gyre, which cuts the Lesser Antilles at about
15◦ N (they keep their initial direction and are sheared
by the southeast currents).

The number of days corresponding to each cluster is given
in Table 2. MC1, HC2, and HC3 are the most common along
the studied period. Each of them represents almost 30 % of
the daily output. However, none of the four clusters really
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Figure 8. Comparison between Mercator and HYCOM surface currents from 2019 to 2020 on the same 0.08◦ grid: (a) median of magnitude
absolute differences (Mercator–HYCOM) (m s−1), (b) median of magnitude relative differences (Mercator–HYCOM) (m s−1), and (c) mode
of current direction differences (Mercator–HYCOM) (degrees).

Figure 9. Evolution of the SaMk silhouette index (by method) as a function of the number of clusters k for Mercator (a) and HYCOM (b):
HAC method (black), KMS method (red), L2 metric (solid line), and ED metric (dashed line).
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Table 2. Number of days corresponding to each cluster for MER-
CATOR and HYCOM datasets.

Datasets C1 C2 C3 C4

Mercator
224 158 174 175

(30.7 %) (21.6 %) (23.8 %) (23.9 %)

HYCOM
142 219 213 157

(19. 4 %) (29.9 %) (29.1 %) (21.5 %)

Table 3. Correspondence table between the four clusters generated
with MERCATOR and HYCOM datasets. The percentage expresses
the proportion of common days between two clusters; (−) indicates
0 %.

HYCOM

C1 C2 C3 C4

Mercator

C1 8.3 % 9.6 % 7.1 % 50.6 %
C2 60.4 % (−) 12.4 % 1.3 %
C3 0.3 % 4.8 % 56.7 % 4.7 %
C4 (−) 69.8 % 0.8 % 3.1 %

stand out. For both analyses, the differences between cluster
occurrences stay lower than 10 %.

3.2.3 Matching days between clusters

The clusters found are also related by a set of days in com-
mon. Match percentages were calculated using Eq. (3). Ta-
ble 3 shows the results of the match percentages (Eq. 3).
MC4–HC2 is the cluster pair with the highest match score
(69.8 %). It is followed by the pair MC2–HC1 (60.4 %), then
MC3–HC3 (56.7 %) and MC1–HC4 (50,6 %). The cluster
numbering does not take into account these match percent-
ages (e.g., MC1 and MC2 main patterns respectively differ
from HC1 and HC2 patterns).

3.2.4 Distribution and comparison of intensities

Deciles were used to study and analyze the velocity distri-
butions characterizing each cluster. Evolutions of the relative
frequency of Us(x,y, t) as a function of the deciles (Table 1)
are shown in Figs. 12 and 13. For the entire analysis, the val-
ues of the deciles remain fixed and constant, and the curves
are plotted for the three regions described in Fig. 1.

For both models, globally, three main patterns are identi-
fied. The first pattern includes the following clusters: MC1,
MC3, HC1, and HC3. This pattern is characterized by an in-
crease in the relative frequency curve in the LA1 and LA3
regions and its decrease in the LA2 region. The elements
of these clusters include strong current velocities above the
median of 0.28 m s−1. The second pattern includes MC2
and HC2 clusters, which are characterized by a decrease in
the relative frequency for the three regions (i.e., LA1, LA2,

LA3). The last pattern includes MC4 and HC4 clusters and
corresponds to three concave curves with maximums located
at different velocity thresholds depending on the region un-
der study.

To examine possible relationships for a given region be-
tween the two variables, decile speed thresholds, and iden-
tified clusters, contingency tables were constructed (not
shown) and the chi-squared test was performed. For the three
areas, the p value was much lower than 0.01. The chi-squared
test results indicated that for the LA1, LA2, and LA3 regions,
the speed distribution depends on the identified cluster.

3.2.5 Seasonality

The monthly distribution of each cluster is plotted (Figs. 14
and 15). Differences are relatively clear for both model anal-
yses with a marked seasonal variation. The MC3 and HC3
regimes are observed during the first half of the year with
a maximum in March, followed by MC2 and HC1 from
April to July. The last two regimes are observed from Au-
gust to December. The pair MC4–HC2 reaches a maximum
in September, while MC1 and HC4 persist until February of
the following year.

3.3 Links with Sargassum beachings

As with many floating objects, before coming ashore on
the coasts of the LA, Sargassum algae accumulate on the
ocean surface in large amounts and form slicks, or filamen-
tary structures, interspersed with void areas, under the in-
fluence of currents. These dynamic structures regularly ob-
served from satellites, aircraft, and ships have a certain iner-
tia (Maximenko et al., 2012; Miron et al., 2020).

Beyond biological production, it is therefore the specific
dynamic conditions of the surface currents and the surface
winds which may lead to massive Sargassum beachings on
Caribbean coastal areas.

The monthly evolution of observed stranding days on the
Guadeloupe coasts and the monthly evolution of Sargas-
sum abundance in the area 30–100 km offshore of Guade-
loupe were also analyzed for the focused period 2019–2020
(Figs. 14 and 15). During these 2 years, the amount of Sar-
gassum likely to enhance the beaching risk in Guadeloupe
increased significantly from February to May, then decreased
from May to November.

Two beaching peak values are found: one in March and
the second in August. The beaching dates and the cluster oc-
currence dates are also compared in Table 4. The MC3–HC3
pair gather the greatest number of similarities, followed by
the MC1 and HC2 clusters.

These pairs of clusters would be favorable to the transport
of these algae toward the coasts of the Lesser Antilles islands.
MC2 and HC1 are the two clusters with the smallest number
of beaching days.
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Figure 10. Representative elements of the clusters from Mercator current data combined with ERA-5 windage (KMS–ED method with
k = 4): MC1 (day 2 October 2020) (a), MC2 (day 27 April 2019) (b), MC3 (day 16 April 2020) (c), MC4 (day 12 October 2020) (d).

Table 4. Distribution of observed Sargassum beaching days
(Guadeloupe coasts) in Mercator and HYCOM clusters.

Datasets C1 C2 C3 C4

Mercator 33 15 34 28
HYCOM 14 35 40 21

3.4 Current sequences leading to beachings

The HAC analysis on the current regime sequences lead-
ing to observed beaching days allowed distributing the 107
sequences into four classes, respectively called Seq1, Seq2,
Seq3, and Seq4. This analysis integrated only the HYCOM
surface current data, which have a greater resolution than
Mercator. During the focused period (i.e., 2019–2020), Seq4
(39.3 %) and Seq2 (37.4 %) have the greatest occurrence (Ta-
ble 5). Seq1 and Seq3 have a respective occurrence of 16.8 %
and 6.5 %. Figure 16 shows that Seq2, Seq3, and Seq4 are
characterized by the respective modal current regimes HC3,
HC1, and HC2. For the Seq1 sequences, there is no clear
prevalent current regime. The monthly distribution of the

Table 5. Distribution of sequence clusters, with n corresponding to
the number of sequences in each cluster and % corresponding to the
ratio of the number of sequences to the total.

30 d current Seq1 Seq2 Seq3 Seq4
sequence before
beaching (HYCOM)

n 18 40 7 42
% 16.8 37.4 6.5 39.3

main sequence classes, Seq2 and Seq4, highlights a signif-
icant seasonal splitting (Fig. 17). The Seq2 sequences oc-
curred from December to June, while the Seq4 ones occurred
from July to November. These two distributions also seem to
be significantly correlated with the monthly occurrences of
observed beachings. While the first beaching peak occurring
in March is linked to the Seq2 maximum occurrences, the
second beaching peak occurring in August is linked to the
Seq4 maximum occurrences.
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Figure 11. Representative elements of the clusters from HYCOM current data combined with ERA-5 windage (KMS–ED method with
k = 4): HC1 (day 29 April 2019) (a), HC2 (day 6 January 2020) (b), HC3 (day 4 May 2020) (c), HC4 (day 11 November 2019) (d). The
HYCOM cluster numbering differs from the Mercator cluster numbering.

Figure 12. Relative frequency distribution of current speeds for the three offshore subregions: MC1 (a), MC2 (b), MC3 (c), and MC4 (d).
The representative elements were obtained after KMS–ED clustering for Mercator.

Ocean Sci., 18, 915–935, 2022 https://doi.org/10.5194/os-18-915-2022



D. Bernard et al.: Clustering analysis of the Sargassum transport process 927

Figure 13. Relative frequency distribution of current speeds for the three offshore subregions: HC1 (a), HC2 (b), HC3 (c), and HC4 (d). The
representative elements were obtained after KMS–ED clustering for HYCOM.

Figure 14. Monthly distribution of cluster occurrence from Mercator outputs from 2019 to 2020 in the Lesser Antilles (55–66◦W, 8–17◦ N):
MC1 (a), MC2 (b), MC3 (c), and MC4 (d). The red line shows the monthly distribution of Sargassum beachings on the coasts of Guadeloupe
during the same period. The blue line indicates the monthly evolution of Sargassum abundance in the area 30–100 km offshore of Guadeloupe
normalized on the maximum value.

3.5 Decision support system results

The behavior of each module is presented in Fig. 18. Glob-
ally, module A probabilities based on Sargassum offshore
abundance probability seem to be the most correlated with
the DSS decision. However, during the months with low Sar-
gassum offshore abundance (i.e., from September to Decem-

ber) modules C and D, related to current patterns, are the
main contributors to the decision. Module D, based on the
comparison between past observed sequences and the se-
quence corresponding to the forecast day, remains with high
probabilities above 0.5. These probabilities can reach 0.95,
indicating strong similarities between the sequences. Mod-
ule C, associated with the percentages of beaching per clus-
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Figure 15. Monthly distribution of cluster occurrence from HYCOM outputs from 2019 to 2020 in the Lesser Antilles (55–66◦W, 8–17◦ N):
HC1 (a), HC2 (b), HC3 (c), and HC4 (d). The red line shows the monthly distribution of Sargassum beachings on the coasts of Guadeloupe
during the same period. The blue line indicates the monthly evolution of Sargassum abundance in the area 30–100 km offshore of Guadeloupe
normalized on the maximum value.

Figure 16. Distribution of HYCOM current regime clusters (i.e., HC1 in blue, HC2 in green, HC3 in orange, HC4 in red) in the 30 d sequence
types (i.e., Seq1, Seq2, Seq3, Seq4).

ter, shows empirical probabilities close to 0.3, indicating that
one-third of the days in the concerned clusters are beaching
days.

Table 6 presents the performance results of the predictive
model (i.e., clustering+ decision tree) for Mercator and HY-
COM. “True positive and negative” respectively refer to the

number of observed beaching and non-beaching days pre-
dicted by the decision system. “Recall” refers to the ratio in
percentage between these respective numbers of days and the
total number of tests (i.e., 364 d). “Accuracy” corresponds to
the number of days with a true prediction, and its ratio in per-
centage was computed over the total number of tested days.
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Figure 17. Monthly distribution of the main observed current se-
quences leading to beaching: Seq2 (blue) and Seq4 (green). The red
line represents the distribution of the observed beaching days.

Overall, the use of HYCOM data allows improving the pre-
diction of beaching and non-beaching days (Table 6). With
forecast date uncertainty below 1 d, the HYCOM DSS has
an accuracy of 54.1 % (i.e., beaching and non-beaching days)
and predicts 59.0 % of the observed beachings (i.e., true pos-
itive) in the year 2021. At the same date precision, the Mer-
cator DSS has an accuracy of 50.6 % and predicts 55.1 %
of the observed beaching days. The performance differences
between the two datasets tend to increase with the temporal
uncertainty ranges around the forecast date. With a temporal
uncertainty range ± 3 d, the HYCOM DSS reaches an accu-
racy of 70.1 % and predicts 73.1 % of the observed beachings
in the year 2021. At the same date precision, the Mercator
DSS presents an accuracy of 58.2 % and predicts 65.4 % of
the observed beachings.

4 Discussion

4.1 Performance indices and clustering quality

The performance of the clustering and the quality of the clus-
ters were assessed using the silhouette coefficient. The evo-
lution of this coefficient (Fig. 9) clearly shows that, on the
one hand, the methods based on the HAC algorithm produce
lower values than those obtained by the KMS algorithms. On
the other hand, for ED, silhouette indices are largely above
those found by the L2 distance as written by Biabiany et
al. (2020). This silhouette coefficient evolution allows us to
keep four representative types of current regimes in this part
of the Caribbean region. However, due to the lack of works
for this region, comparisons between the present results and
other studies were very limited. In other studies, authors have
proposed a similar number of dominant regimes on a large
scale in the tropical Pacific (Fereday et al., 2008), for the de-
termination of robust modes of Northern Hemisphere sea ice
variability (Fučkar et al., 2016), and for ocean mapping from
environmental data (Zhao et al., 2020).

In our case, the velocity distributions show four singu-
lar profiles, confirming the good performance of the clus-

tering. Each cluster also had distinct monthly distributions.
This analysis allowed better understanding the variability of
the surface current circulations in this region.

4.2 Surface current analysis

In terms of spatial distribution, clusters show notable differ-
ences for both types of model analysis, and three variability
factors can be identified.

The first one is the seasonal evolution of the NBC
retroflection front (Lumpkin and Garzoli, 2005; Baklouti et
al., 2007). The NBC feeds the Guiana Current (GC) but
also separates sharply, near 6–8◦ N, from the South Ameri-
can coastline and retroflects to feed, this time, the eastward
NECC. Isolated large rings move northwestward toward the
Caribbean Sea on a course parallel to the South American
coastline, then interact with the Lesser Antilles (Fratantoni et
al., 2002, 2006). These two dynamic structures, GC and NBC
rings, significantly contribute to the transfer of South At-
lantic surface water to the Caribbean. These dynamic struc-
tures were found in the four identified clusters and seem to
work year-round with intensity variations.

Another part of this variability is caused by the rings of
the NBC that move northwestward from the equatorial At-
lantic and interact with the steep topography of the Lesser
Antilles arc. MC2 and HC1 are two typical cases. Interac-
tions with the island chain cause significant disturbances of
the inflow through the southern passages with a blocking.
This provides a meridional transport of surface water north-
ward along the LA arc (Fratantoni and Richardson, 2006;
Huang et al., 2021). The Lesser Antilles arc clearly divert-
ing the initially northwestward drift of the NBC rings to a
more northward course parallel to the island arc. Johns et
al. (2002) have shown that the crossing of the Atlantic inflow
to the Caribbean Sea through the passages of the Windward
Islands (i.e., Lesser Antilles south islands from Trinidad to
Martinique) has a highly asymmetric seasonal cycle, with a
maximum in June and a minimum in September–October.
The annual distribution of MC2 and HC3 clusters is close to
that found by Johns et al. (2002).

The last identified factor is related to the North Atlantic
gyre and the associated North Equatorial Current. As the sea-
sons change from winter to summer, the gyre shifts south
by a few degrees in latitude. In this part of the study area,
several clusters show lower current speeds, and areas with
large angular deviations in direction have also been identi-
fied. In the LA2 area, under the influence of the northeast
trade winds (i.e., Atlantic area between 14.5 and 18◦ N), the
relative frequencies of above-average speeds are the lowest.
The wind current shear zones are also the most extensive.
The wind-driven flow occurs from the subtropical gyre lo-
cation to 15◦ N near the island of Martinique (Johns et al.,
2002). Passages through the leeward islands have a maxi-
mum inflow in September and a minimum one in June.
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Figure 18. Decision support system (DSS) results: probability of beaching obtained per module. Daily probability to reach the maximum
Sargassum abundance in the area 30–100 km offshore of Guadeloupe for module A (blue line), beaching frequency per cluster for module C
(orange line), match percentage for module D (yellow line), and DSS decision (black line). Days of observed beaching on Guadeloupe coasts
(red dots): HYCOM (a) and Mercator (b).

Table 6. Decision tree performance scores: “true positive and negative” respectively refer to the number of observed beaching and non-
beaching days predicted by the decision system, “recall” refers to the ratio in percentage between these respective numbers of days and the
total number of tests (i.e., 364 d), and “accuracy” corresponds to the number of days with a true prediction and its ratio in percentage over
the total number of tested days.

Time range Datasets True positive True negative Accuracy
around date (d) (recall %) (recall %) (ratio %)

0
HYCOM 46 (59.0 %) 151 (52.8 %) 197 (54.1 %)
Mercator 43 (55.1 %) 141 (49.3 %) 184 (50.6 %)

±1
HYCOM 52 (66.7 %) 175 (61.2 %) 227 (62.4 %)
Mercator 47 (60.3 %) 151 (52.8 %) 198 (54.4 %)

±2
HYCOM 55 (70.5 %) 189 (66.1 %) 244 (67.0 %)
Mercator 51 (65.4 %) 155 (54.2 %) 206 (56.6 %)

±3
HYCOM 57 (73.1 %) 198 (69.2 %) 255 (70.1 %)
Mercator 51 (65.4 %) 161 (56.3 %) 212 (58.2 %)

The comparison between the large-scale meteorological
situations corresponding to the paragons showed that the
main differences between the current regime clusters are re-
lated to the location and the extension of the high-pressure
centers, the positioning of the ITCZ, and the intensity of the
Caribbean low-level jet.

4.3 Sargassum beachings

All clusters contain beaching days in relative abundance:
12 % to 36 % of beaching days for the 2 years 2019 and
2020. The first peak of beachings, in March, seems to be
linked to the maximum frequency of MC3 and HC3 clusters.
The second peak of observed beachings occurs in August and
seems to be associated with the MC1, HC2, and HC4 clus-
ters. Johns et al. (2020) found that windage forcing induced

by the wind convergence accumulates Sargassum rafts within
the ITCZ between April and September. This accumulation
would contribute to the observed beaching peak in August.
The clustering analysis of the beaching current sequences
confirmed that the recurrence of HC3 (between December
and June) and HC2 (between July and November) would in-
duce large beachings on the Guadeloupe coasts during these
respective periods. The HC2 current regime is characterized
by the prevalence of the North Atlantic gyre with weak ve-
locities in the western central Atlantic and zonal streamlines.
As for the HC3 current regime, it is characterized by a strong
Guiana Current with high velocities in the LA3 region and
meridional streamlines almost parallel to the Lesser Antilles
arc.
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4.4 Predictive model performance

A machine-learning-based method for predicting Sargassum
beaching was proposed and was built from a decision tree.
This method has already been used for other parameters and
it allows improving both the prediction accuracy and the fully
black-box effect of the neural network. Compared to usual
parametric statistical methods, it can effectively overcome
the multicollinearity of explanatory variables (e.g., ocean
current and surface wind). Depending on the temporal un-
certainty ranges, the accuracy of the present decision tree is
between 54.1 % and 70.1 % for HYCOM against 50.6 % and
58.2 % for Mercator (Table 6). The best performance scores
are reached with the largest temporal uncertainty range± 3 d.
Similar performance scores were found for decision trees
predicting summer rainfall in Chongqing (China) (Bo et al.,
2020) and the landslide hazard in the Yen Bai Province (Viet-
nam) (Pham et al., 2020).

During the year of testing (i.e., 2021) only 78 beach-
ing days were observed. Despite this large difference be-
tween beaching and non-beaching occurrences, the predic-
tive model produces quite symmetric performances for both
true positives and true negatives (Table 6). This fact high-
lights the good ability of the model to handle the different
chosen datasets. This stability of the decision support sys-
tem tends to increase with the temporal uncertainty range.
For HYCOM, this asymmetric performance difference drops
below 4 % at ± 3 d precision.

Several ways to improve the predictive model were identi-
fied. The lack of observational data in time (i.e., only 2 years)
may weaken the final decision and induce overfitting. The
tree could also be improved by weighting and prioritizing the
different modules so as to increase their relevance. Improve-
ment of the results can be found by optimizing the proposed
decision calculation rule (Eq. 4) to better integrate the char-
acteristics of the observed phenomenon. The daily probabil-
ity of Sargassum offshore abundance produced by module
A would also be improved with better-quality Sargassum re-
mote sensing observations, particularly the FA density data
gap within 30 km of the coasts. The present study does not
take into account the effects of other factors (e.g., presence
of nutrients, sinking of algae, and waves) which would allow
a more realistic understanding of the Sargassum beachings.

5 Conclusions

For a decade, the Caribbean countries, particularly the LA,
have suffered from the impacts induced by the massive and
regular arrival of Sargassum on their coastal areas. This study
presents the application of a clustering approach to deter-
mine the types of surface current circulations integrating the
additional wind drift and their possible links to the Sargas-
sum beachings observed on the LA coasts. The Guadeloupe
archipelago was chosen as a beaching observational site for

the period 2019–2020. This analysis was performed using
the most recent versions of ocean current analysis, Mercator
and HYCOM. The surface wind speed data from the ERA-5
model were also used. The clustering of the spatiotemporal
surface current fields including windage was produced using
the K-means algorithm combined with the expert distance
metric. The silhouette index was used to determine the opti-
mal number of clusters.

For this region (8–17◦ N, 66–55◦W) divided into three
subregions, we identify four coherent patterns from datasets.
They contain the current structures related to the Guiana cur-
rents, the branches of the subtropical Atlantic gyre, and the
front and the retroflection rings related to the NBC.

The finer resolution of HYCOM analysis provided more
detailed information on surface current velocities near the is-
lands than Mercator fields (i.e., mean local velocity differ-
ence of 0.3 m s−1). Offshore, these differences remain very
small.

Links between clusters and observed beachings in Guade-
loupe were studied considering windage, paragon velocity
distributions, and monthly abundance maps. The surface cur-
rent circulations characterizing the MC3–HC3 and MC4–
HC2 cluster pairs seemed the most favorable for the transport
and the beaching of Sargassum on the Lesser Antilles coasts.

The clustering analysis of the beaching current sequences
based on HYCOM fields confirmed that the recurrence of
HC3 (Seq2, between December and June) and HC2 (Seq4,
between July and November) would induce large beachings
on the Guadeloupe coasts during these respective periods.
While the HC2 current regime is characterized by the preva-
lence of the North Atlantic gyre with weak zonal velocities,
the HC3 current regime is marked by the influence of the
NBC, the induced retroflection rings, and a strong Guiana
Current, leading to higher meridional velocities in the LA3
region.

Machine learning algorithms (KMS, ED, decision tree
classifier) were applied to estimate the probability of Sar-
gassum beachings in Guadeloupe based on surface current
forecasts, current regime sequences, and several combina-
tions of probabilities. The performance score of this predic-
tive model showed that HYCOM seems more suitable to re-
produce small-scale current patterns inducing (or not) beach-
ings in the Lesser Antilles. For 1 year of tests (i.e., 2021),
the decision tree accuracy respectively reached 70.1 % and
58.2 % for HYCOM and Mercator with a temporal uncer-
tainty range ± 3 d around the forecast date. This accuracy
could be improved by weighting and prioritizing the different
modules. The daily probability of Sargassum offshore abun-
dance used in the decision tree would also be improved with
better-quality Sargassum remote sensing observations, par-
ticularly the FA density data gap within 30 km of the coasts.

Due to the very recent availability of the selected HY-
COM new-generation version, the present study was con-
ducted only for 2 years (i.e., 2019–2020). The studied period
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could be extended to more years to integrate the interannual
variability of the surface currents.

Nevertheless, the obtained results are very encouraging
and open new possibilities for the forecasting of this natu-
ral hazard type. Machine learning methods developed in this
analysis proved to be useful in the prevention of a natural risk
depending on physical multifactorial combinations.

The present clustering analysis predictive system could
be applied to other islands of the Lesser Antilles, chang-
ing the observational beaching site. The association of clus-
tering methods and decision trees requiring low computa-
tional costs may enhance existing operational systems to help
decision makers in Sargassum risk management. Maréchal
et al. (2017) restrained the starting point of their opera-
tional short-term forecast system within 50–100 km of the
LA coasts in order to reduce prediction errors. This geo-
graphical limit would correspond to a forecast period of 1 d
before beaching. The present regional information on cur-
rent dynamics leading to the arrival of Sargassum near the
islands would be useful to extend this limit. In this way, it
could be easier to anticipate the implementation of the re-
sources needed to collect the Sargassum algae on the shore-
lines. Like the Sargassum inundation reports (Trinanes et
al., 2021), the present small-scale Sargassum beaching pre-
dictive model may contribute to region-wide efforts to help
coastal communities manage this hazard.
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