Articles | Volume 18, issue 3
https://doi.org/10.5194/os-18-693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-693-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Influence of cyclonic and anticyclonic eddies on plankton in the southeastern Mediterranean Sea during late summertime
Natalia Belkin
CORRESPONDING AUTHOR
Israel Oceanographic and Limnological Research, Haifa, Israel
Tamar Guy-Haim
Israel Oceanographic and Limnological Research, Haifa, Israel
Maxim Rubin-Blum
Israel Oceanographic and Limnological Research, Haifa, Israel
Ayah Lazar
Israel Oceanographic and Limnological Research, Haifa, Israel
Guy Sisma-Ventura
Israel Oceanographic and Limnological Research, Haifa, Israel
Rainer Kiko
Sorbonne Université, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
Arseniy R. Morov
Israel Oceanographic and Limnological Research, Haifa, Israel
Tal Ozer
Israel Oceanographic and Limnological Research, Haifa, Israel
Isaac Gertman
Israel Oceanographic and Limnological Research, Haifa, Israel
Barak Herut
Israel Oceanographic and Limnological Research, Haifa, Israel
Eyal Rahav
CORRESPONDING AUTHOR
Israel Oceanographic and Limnological Research, Haifa, Israel
Related authors
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020, https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Short summary
The availability of nutrients in oligotrophic marine ecosystems is limited. Following jellyfish blooms, large die-off events result in the release of high amounts of nutrients to the water column and sediment. Our study assessed the decomposition effects of an infamous invasive jellyfish in the ultra-oligotrophic Eastern Mediterranean Sea. We found that jellyfish decomposition favored heterotrophic bacteria and altered biogeochemical fluxes, further impoverishing this nutrient-poor ecosystem.
Yawouvi Dodji Soviadan, Miriam Beck, Joelle Habib, Alberto Baudena, Laetitia Drago, Alexandre Accardo, Remi Laxenaire, Sabrina Speich, Peter Brandt, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-3302, https://doi.org/10.5194/egusphere-2024-3302, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Key parameters representing the gravity flux in global models are the sinking speed and the vertical attenuation of the exported material. We calculate for the first time, these parameters in situ for 6 intermittent blooms followed by export events using high-resolution (3 days) time series of 0–1000 m depth profiles from imaging sensor mounted on an Argo float. We show that sinking speed depends not only on size but also on the morphology of the particles, density being an important property.
Joelle Habib, Lars Stemmann, Alexandre Accardo, Alberto Baudena, Franz Philip Tuchen, Peter Brandt, and Rainer Kiko
EGUsphere, https://doi.org/10.5194/egusphere-2024-3365, https://doi.org/10.5194/egusphere-2024-3365, 2024
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
This study investigates how carbon moves from the ocean surface to the depths in the equatorial Atlantic, contributing to long-term carbon storage. Using an Argo float equipped with a camera, we captured two periods with major carbon export events. By identifying particle types and their sinking behaviors, we found that smaller, compact particles are key drivers of carbon transport. Our findings underscore the value of using imaging tools on autonomous platforms in tracking carbon sequestration.
Alexandre Accardo, Rémi Laxenaire, Alberto Baudena, Sabrina Speich, Rainer Kiko, and Lars Stemmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-1558, https://doi.org/10.5194/egusphere-2024-1558, 2024
Short summary
Short summary
The open ocean helps mitigate climate change by storing CO2 through the biological carbon pump (BCP). The BCP involves processes like phytoplankton capturing CO2 and sequestering it in the deep ocean via marine snow production. We found significant marine snow accumulation from the surface to 600 meters deep in frontal regions between eddies. We suggest that the coupling of hydrodynamics at eddy edges and biological activity (via planktonic organisms) may enhanced this process.
Mathilde Dugenne, Marco Corrales-Ugalde, Jessica Y. Luo, Rainer Kiko, Todd D. O'Brien, Jean-Olivier Irisson, Fabien Lombard, Lars Stemmann, Charles Stock, Clarissa R. Anderson, Marcel Babin, Nagib Bhairy, Sophie Bonnet, Francois Carlotti, Astrid Cornils, E. Taylor Crockford, Patrick Daniel, Corinne Desnos, Laetitia Drago, Amanda Elineau, Alexis Fischer, Nina Grandrémy, Pierre-Luc Grondin, Lionel Guidi, Cecile Guieu, Helena Hauss, Kendra Hayashi, Jenny A. Huggett, Laetitia Jalabert, Lee Karp-Boss, Kasia M. Kenitz, Raphael M. Kudela, Magali Lescot, Claudie Marec, Andrew McDonnell, Zoe Mériguet, Barbara Niehoff, Margaux Noyon, Thelma Panaïotis, Emily Peacock, Marc Picheral, Emilie Riquier, Collin Roesler, Jean-Baptiste Romagnan, Heidi M. Sosik, Gretchen Spencer, Jan Taucher, Chloé Tilliette, and Marion Vilain
Earth Syst. Sci. Data, 16, 2971–2999, https://doi.org/10.5194/essd-16-2971-2024, https://doi.org/10.5194/essd-16-2971-2024, 2024
Short summary
Short summary
Plankton and particles influence carbon cycling and energy flow in marine ecosystems. We used three types of novel plankton imaging systems to obtain size measurements from a range of plankton and particle sizes and across all major oceans. Data were compiled and cross-calibrated from many thousands of images, showing seasonal and spatial changes in particle size structure in different ocean basins. These datasets form the first release of the Pelagic Size Structure database (PSSdb).
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Nir Haim, Vika Grigorieva, Rotem Soffer, Boaz Mayzel, Timor Katz, Ronen Alkalay, Eli Biton, Ayah Lazar, Hezi Gildor, Ilana Berman-Frank, Yishai Weinstein, Barak Herut, and Yaron Toledo
Earth Syst. Sci. Data, 16, 2659–2668, https://doi.org/10.5194/essd-16-2659-2024, https://doi.org/10.5194/essd-16-2659-2024, 2024
Short summary
Short summary
This paper outlines the process of creating an open-access surface wave dataset, drawing from deep-sea research station observations located 50 km off the coast of Israel. The discussion covers the wave monitoring procedure, from instrument configuration to wave field retrieval, and aspects of quality assurance. The dataset presented spans over 5 years, offering uncommon in situ wave measurements in the deep sea, and addresses the existing gap in wave information within the region.
Maxim Rubin-Blum, Eyal Rahav, Guy Sisma-Ventura, Yana Yudkovski, Zoya Harbozov, Or Bialik, Oded Ezra, Anneleen Foubert, Barak Herut, and Yizhaq Makovsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-1285, https://doi.org/10.5194/egusphere-2024-1285, 2024
Short summary
Short summary
Geochemical cycles and biodiversity are altered at transition zones of chemosynthetic ecosystems, chemotones. We asked if burrowing alters the functionality of these habitats. We surveyed the seafloor, analyzed sediment properties, and explored microbial communities in ghost shrimp burrows. We made an exciting discovery of chemosynthetic biofilms, linking them to macromolecule turnover and nutrient cycling, using metagenomics. This phenomenon may play an important role in biogeochemical cycles.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Patricia Ayón Dejo, Elda Luz Pinedo Arteaga, Anna Schukat, Jan Taucher, Rainer Kiko, Helena Hauss, Sabrina Dorschner, Wilhelm Hagen, Mariona Segura-Noguera, and Silke Lischka
Biogeosciences, 20, 945–969, https://doi.org/10.5194/bg-20-945-2023, https://doi.org/10.5194/bg-20-945-2023, 2023
Short summary
Short summary
Ocean upwelling regions are highly productive. With ocean warming, severe changes in upwelling frequency and/or intensity and expansion of accompanying oxygen minimum zones are projected. In a field experiment off Peru, we investigated how different upwelling intensities affect the pelagic food web and found failed reproduction of dominant zooplankton. The changes projected could severely impact the reproductive success of zooplankton communities and the pelagic food web in upwelling regions.
Rainer Kiko, Marc Picheral, David Antoine, Marcel Babin, Léo Berline, Tristan Biard, Emmanuel Boss, Peter Brandt, Francois Carlotti, Svenja Christiansen, Laurent Coppola, Leandro de la Cruz, Emilie Diamond-Riquier, Xavier Durrieu de Madron, Amanda Elineau, Gabriel Gorsky, Lionel Guidi, Helena Hauss, Jean-Olivier Irisson, Lee Karp-Boss, Johannes Karstensen, Dong-gyun Kim, Rachel M. Lekanoff, Fabien Lombard, Rubens M. Lopes, Claudie Marec, Andrew M. P. McDonnell, Daniela Niemeyer, Margaux Noyon, Stephanie H. O'Daly, Mark D. Ohman, Jessica L. Pretty, Andreas Rogge, Sarah Searson, Masashi Shibata, Yuji Tanaka, Toste Tanhua, Jan Taucher, Emilia Trudnowska, Jessica S. Turner, Anya Waite, and Lars Stemmann
Earth Syst. Sci. Data, 14, 4315–4337, https://doi.org/10.5194/essd-14-4315-2022, https://doi.org/10.5194/essd-14-4315-2022, 2022
Short summary
Short summary
The term
marine particlescomprises detrital aggregates; fecal pellets; bacterioplankton, phytoplankton and zooplankton; and even fish. Here, we present a global dataset that contains 8805 vertical particle size distribution profiles obtained with Underwater Vision Profiler 5 (UVP5) camera systems. These data are valuable to the scientific community, as they can be used to constrain important biogeochemical processes in the ocean, such as the flux of carbon to the deep sea.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Angeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed Aïssa Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci., 18, 997–1053, https://doi.org/10.5194/os-18-997-2022, https://doi.org/10.5194/os-18-997-2022, 2022
Short summary
Short summary
This description and mapping of coastal sea level monitoring networks in the Mediterranean and Black seas reveals the existence of 240 presently operational tide gauges. Information is provided about the type of sensor, time sampling, data availability, and ancillary measurements. An assessment of the fit-for-purpose status of the network is also included, along with recommendations to mitigate existing bottlenecks and improve the network, in a context of sea level rise and increasing extremes.
Hanni Vigderovich, Werner Eckert, Michal Elul, Maxim Rubin-Blum, Marcus Elvert, and Orit Sivan
Biogeosciences, 19, 2313–2331, https://doi.org/10.5194/bg-19-2313-2022, https://doi.org/10.5194/bg-19-2313-2022, 2022
Short summary
Short summary
Anaerobic oxidation of methane (AOM) is one of the major processes limiting the release of the greenhouse gas methane from natural environments. Here we show that significant AOM exists in the methane zone of lake sediments in natural conditions and even after long-term (ca. 18 months) anaerobic slurry incubations with two stages. Methanogens were most likely responsible for oxidizing the methane, and humic substances and iron oxides are likely electron acceptors to support this oxidation.
Alexandre Barboni, Ayah Lazar, Alexandre Stegner, and Evangelos Moschos
Ocean Sci., 17, 1231–1250, https://doi.org/10.5194/os-17-1231-2021, https://doi.org/10.5194/os-17-1231-2021, 2021
Short summary
Short summary
Mesoscale eddies are an important part of the turbulent motion in the oceans, constituting coherent structures that can live for years and store physical property anomalies. Analysis of anticyclone (clockwise-rotating eddies) tracks in the eastern Levantine Basin revealed statistical patterns over 19 years of data, in particular the presence of an anticyclone attractor above the Eratosthenes Seamount, with a strong heat content signature.
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Tamar Guy-Haim, Maxim Rubin-Blum, Eyal Rahav, Natalia Belkin, Jacob Silverman, and Guy Sisma-Ventura
Biogeosciences, 17, 5489–5511, https://doi.org/10.5194/bg-17-5489-2020, https://doi.org/10.5194/bg-17-5489-2020, 2020
Short summary
Short summary
The availability of nutrients in oligotrophic marine ecosystems is limited. Following jellyfish blooms, large die-off events result in the release of high amounts of nutrients to the water column and sediment. Our study assessed the decomposition effects of an infamous invasive jellyfish in the ultra-oligotrophic Eastern Mediterranean Sea. We found that jellyfish decomposition favored heterotrophic bacteria and altered biogeochemical fluxes, further impoverishing this nutrient-poor ecosystem.
Henk-Jan Hoving, Svenja Christiansen, Eduard Fabrizius, Helena Hauss, Rainer Kiko, Peter Linke, Philipp Neitzel, Uwe Piatkowski, and Arne Körtzinger
Ocean Sci., 15, 1327–1340, https://doi.org/10.5194/os-15-1327-2019, https://doi.org/10.5194/os-15-1327-2019, 2019
Short summary
Short summary
The pelagic in situ observation system (PELAGIOS) is a towed observation system with HD video camera and environmental sensors. It is used for pelagic video transects down to 3000 m. The system enables the visualization and exploration of pelagic organisms (> 1 cm), in particular delicate gelatinous fauna, which cannot be captured by nets. The video and hydrographic data give insight into the biodiversity, abundance, and distribution of oceanic pelagic organisms from the surface to the deep sea.
Hanni Vigderovich, Lewen Liang, Barak Herut, Fengping Wang, Eyal Wurgaft, Maxim Rubin-Blum, and Orit Sivan
Biogeosciences, 16, 3165–3181, https://doi.org/10.5194/bg-16-3165-2019, https://doi.org/10.5194/bg-16-3165-2019, 2019
Short summary
Short summary
Microbial iron reduction participates in important biogeochemical cycles. In the last decade iron reduction has been observed in many aquatic sediments below its classical zone, in the methane production zone, suggesting a link between the two cycles. Here we present evidence for microbial iron reduction in the methanogenic depth of the oligotrophic SE Mediterranean continental shelf using mainly geochemical and microbial sedimentary profiles and suggest possible mechanisms for this process.
Soeren Thomsen, Johannes Karstensen, Rainer Kiko, Gerd Krahmann, Marcus Dengler, and Anja Engel
Biogeosciences, 16, 979–998, https://doi.org/10.5194/bg-16-979-2019, https://doi.org/10.5194/bg-16-979-2019, 2019
Short summary
Short summary
Physical and biogeochemical observations from an autonomous underwater vehicle in combination with ship-based measurements are used to investigate remote and local drivers of the oxygen and nutrient variability off Mauritania. Beside the transport of oxygen and nutrients characteristics from remote areas towards Mauritania also local remineralization of organic material close to the seabed seems to be important for the distribution of oxygen and nutrients.
Pavel Kishcha, Rachel T. Pinker, Isaac Gertman, Boris Starobinets, and Pinhas Alpert
Nat. Hazards Earth Syst. Sci., 18, 3007–3018, https://doi.org/10.5194/nhess-18-3007-2018, https://doi.org/10.5194/nhess-18-3007-2018, 2018
Short summary
Short summary
Increasing warming of steadily shrinking Dead Sea surface water was observed during the period of 2000–2016. We found that a positive feedback loop between the steady shrinking of the Dead Sea and positive sea surface temperature (SST) trends causes the acceleration of Dead Sea shrinking. Our findings imply the following essential point: any meteorological, hydrological or geophysical process causing steady shrinking of the Dead Sea will contribute to positive trends in SST.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Ilana Berman-Frank, Dina Spungin, Eyal Rahav, France Van Wambeke, Kendra Turk-Kubo, and Thierry Moutin
Biogeosciences, 13, 3793–3805, https://doi.org/10.5194/bg-13-3793-2016, https://doi.org/10.5194/bg-13-3793-2016, 2016
Short summary
Short summary
In the marine environment, sticky sugar-containing gels, termed transparent exopolymeric particles (TEP), are produced from biological sources and physical and chemical processes. These compounds are essential vectors enhancing downward flow of organic matter and its storage at depth. Spatial and temporal dynamics of TEPs were followed for 23 days during the VAHINE mesocosm experiment that investigated the fate of nitrogen and carbon derived from organisms fixing atmospheric N2 (diazotrophs).
Carolin R. Löscher, Hermann W. Bange, Ruth A. Schmitz, Cameron M. Callbeck, Anja Engel, Helena Hauss, Torsten Kanzow, Rainer Kiko, Gaute Lavik, Alexandra Loginova, Frank Melzner, Judith Meyer, Sven C. Neulinger, Markus Pahlow, Ulf Riebesell, Harald Schunck, Sören Thomsen, and Hannes Wagner
Biogeosciences, 13, 3585–3606, https://doi.org/10.5194/bg-13-3585-2016, https://doi.org/10.5194/bg-13-3585-2016, 2016
Short summary
Short summary
The ocean loses oxygen due to climate change. Addressing this issue in tropical ocean regions (off Peru and Mauritania), we aimed to understand the effects of oxygen depletion on various aspects of marine biogeochemistry, including primary production and export production, the nitrogen cycle, greenhouse gas production, organic matter fluxes and remineralization, and the role of zooplankton and viruses.
Sophie Bonnet, Hugo Berthelot, Kendra Turk-Kubo, Sarah Fawcett, Eyal Rahav, Stéphane L'Helguen, and Ilana Berman-Frank
Biogeosciences, 13, 2653–2673, https://doi.org/10.5194/bg-13-2653-2016, https://doi.org/10.5194/bg-13-2653-2016, 2016
Short summary
Short summary
N2 fixation rates were measured daily in ~ 50 m3 mesocosms deployed in New Caledonia to investigate the high-frequency dynamics of diazotrophy and the fate of diazotroph-derived nitrogen (DDN) oligotrophic ecosystems. ~ 10 % of UCYN-C from the water column were exported daily to the traps, representing as much as 22.4 ± 5.5 % of the total POC exported at the height of the UCYN-C bloom. 16 ± 6 % of the DDN was released to the dissolved pool and 21 ± 4 % was transferred to non-diazotrophic plankton.
Rainer Kiko, Helena Hauss, Friedrich Buchholz, and Frank Melzner
Biogeosciences, 13, 2241–2255, https://doi.org/10.5194/bg-13-2241-2016, https://doi.org/10.5194/bg-13-2241-2016, 2016
Short summary
Short summary
The diel vertical migration of zooplankton and nekton results in an active export of carbon and nitrogen from the oceans surface layer. In vast areas of the ocean the daytime distribution depth of migrating organisms corresponds to the core of an oxygen minimum zone (OMZ). We show that exposure to OMZ conditions can result in a strong depression of respiration and ammonium excretion in zooplankton, a fact that needs to be considered when calculating carbon and nitrogen fluxes in OMZ regions.
Helena Hauss, Svenja Christiansen, Florian Schütte, Rainer Kiko, Miryam Edvam Lima, Elizandro Rodrigues, Johannes Karstensen, Carolin R. Löscher, Arne Körtzinger, and Björn Fiedler
Biogeosciences, 13, 1977–1989, https://doi.org/10.5194/bg-13-1977-2016, https://doi.org/10.5194/bg-13-1977-2016, 2016
Short summary
Short summary
In a low-oxygen eddy in the tropical Atlantic, total zooplankton biomass was increased. Larger plankton avoided the oxygen minimum zone (OMZ, < 20 µmol O2 kg−1). We identified four strategies by different plankton groups: (i) shallow OMZ avoidance and compression at surface, (ii) migration to shallow OMZ core during daytime, migration to surface at nighttime, (iii) residing in shallow OMZ day and night and (iv) migration through the shallow OMZ from oxygenated depths to surface and back.
J. Meyer, C. R. Löscher, S. C. Neulinger, A. F. Reichel, A. Loginova, C. Borchard, R. A. Schmitz, H. Hauss, R. Kiko, and U. Riebesell
Biogeosciences, 13, 781–794, https://doi.org/10.5194/bg-13-781-2016, https://doi.org/10.5194/bg-13-781-2016, 2016
A. N. Loginova, C. Borchard, J. Meyer, H. Hauss, R. Kiko, and A. Engel
Biogeosciences, 12, 6897–6914, https://doi.org/10.5194/bg-12-6897-2015, https://doi.org/10.5194/bg-12-6897-2015, 2015
A. Engel, C. Borchard, A. Loginova, J. Meyer, H. Hauss, and R. Kiko
Biogeosciences, 12, 5647–5665, https://doi.org/10.5194/bg-12-5647-2015, https://doi.org/10.5194/bg-12-5647-2015, 2015
E. Rahav, B. Herut, M. R. Mulholland, B. Voß, D. Stazic, C. Steglich, W. R. Hess, and I. Berman-Frank
Biogeosciences Discuss., https://doi.org/10.5194/bgd-10-10327-2013, https://doi.org/10.5194/bgd-10-10327-2013, 2013
Revised manuscript has not been submitted
S. Efrati, Y. Lehahn, E. Rahav, N. Kress, B. Herut, I. Gertman, R. Goldman, T. Ozer, M. Lazar, and E. Heifetz
Biogeosciences, 10, 3349–3357, https://doi.org/10.5194/bg-10-3349-2013, https://doi.org/10.5194/bg-10-3349-2013, 2013
E. Rahav, B. Herut, A. Levi, M. R. Mulholland, and I. Berman-Frank
Ocean Sci., 9, 489–498, https://doi.org/10.5194/os-9-489-2013, https://doi.org/10.5194/os-9-489-2013, 2013
Cited articles
Agostini, V. N. and Bakun, A.:
“Ocean triads” in the Mediterranean Sea: Physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus), Fish. Oceanogr., 11, 129–142, https://doi.org/10.1046/j.1365-2419.2002.00201.x, 2002.
Alcaraz, M., Calbet, A., Estrada, M., Marrasé, C., Saiz, E., and Trepat, I.:
Physical control of zooplankton communities in the Catalan Sea, Prog. Oceanogr., 74, 294–312, https://doi.org/10.1016/j.pocean.2007.04.003, 2007.
Allen, C. B., Kanda, J., and Laws, E. A.:
New production and photosynthetic rates within and outside a cyclonic mesoscale eddy in the North Pacific subtropical gyre, Deep-Res. Pt. I, 43, 917–936, https://doi.org/10.1016/0967-0637(96)00022-2 1996.
Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W., and Huse, S. M.:
A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA Genes, PLoS One, 4, 1–9, https://doi.org/10.1371/journal.pone.0006372, 2009.
Andersen, K. S., Kirkegaard, R. H., Karst, S. M., and Albertsen, M.:
ampvis2: an R package to analyse and visualise 16S rRNA amplicon data, BioRxiv, 10–11, https://doi.org/10.1101/299537, 2018.
Anderson, S. R. and Harvey, E. L.:
Temporal variability and ecological interactions of parasitic marine Syndiniales in coastal protist communities, mSphere, 5, 1–16, https://doi.org/10.1128/msphere.00209-20, 2020.
Andrade, J. M. and Estévez-Pérez, M. G.:
Statistical comparison of the slopes of two regression lines: A tutorial, Anal. Chim. Acta, 838, 1–12, https://doi.org/10.1016/j.aca.2014.04.057, 2014.
Ansotegui, A., Sarobe, A., María Trigueros, J., Urrutxurtu, I., and Orive, E.:
Size distribution of algal pigments and phytoplankton assemblages in a coastal-estuarine environment: Contribution of small eukaryotic algae, J. Plankton Res., 25, 341–355, https://doi.org/10.1093/plankt/25.4.341, 2003.
Apprill, A., Mcnally, S., Parsons, R., and Weber, L.:
Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton, Aquat. Microb. Ecol., 75, 129–137, https://doi.org/10.3354/ame01753, 2015.
Arrigo, K.:
Marine microorganisms and global nutrient cycles, Nature, 437, 349–355, 2005.
Bakun, A.:
Linking climate to population variability in marine ecosystems characterized by non-simple dynamics: Conceptual templates and schematic constructs, J. Marine Syst., 79, 361–373, https://doi.org/10.1016/j.jmarsys.2008.12.008, 2010.
Berman-Frank, I. and Rahav, E.: Nitrogen fixation as a source for new production in the Mediterranean Sea: A review, in: Life in the Mediterranean Sea: A Look at Habitat Changes, edited by: Stambler, N., Nova Science Publishers, NY, 199–226, ISBN 978-1-61209-644-5, 2012.
Berman, T., Townsend, D., and Elsayed, S.:
Optical transparency, chlorophyll and primary productivity in the eastern Mediterranean near the Israeli coast, Oceanol. Acta, 7, 367–372, 1984.
Billen, G., Servais, P., and Becquevort, S.:
Dynamics of bacterioplankton in oligotrophic and eutrophic aquatic environments: bottom-up or top-down control?, Hydrobiologia, 207, 37–42, https://doi.org/10.1007/BF00041438, 1990.
Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C. C., Al-Ghalith, G. A., Alexander, H., Alm, E. J., Arumugam, M., Asnicar, F., Bai, Y., Bisanz, J. E., Bittinger, K., Brejnrod, A., Brislawn, C. J., Brown, C. T., Callahan, B. J., Caraballo-Rodríguez, A. M., Chase, J., Cope, E. K., Da Silva, R., Diener, C., Dorrestein, P. C., Douglas, G. M., Durall, D. M., Duvallet, C., Edwardson, C. F., Ernst, M., Estaki, M., Fouquier, J., Gauglitz, J. M., Gibbons, S. M., Gibson, D. L., Gonzalez, A., Gorlick, K., Guo, J., Hillmann, B., Holmes, S., Holste, H., Huttenhower, C., Huttley, G. A., Janssen, S., Jarmusch, A. K., Jiang, L., Kaehler, B. D., Kang, K. Bin, Keefe, C. R., Keim, P., Kelley, S. T., Knights, D., Koester, I., Kosciolek, T., Kreps, J., Langille, M. G. I., Lee, J., Ley, R., Liu, Y. X., Loftfield, E., Lozupone, C., Maher, M., Marotz, C., Martin, B. D., McDonald, D., McIver, L. J., Melnik, A. V., Metcalf, J. L., Morgan, S. C., Morton, J. T., Naimey, A. T., Navas-Molina, J. A., Nothias, L. F., Orchanian, S. B., Pearson, T., Peoples, S. L., Petras, D., Preuss, M. L., Pruesse, E., Rasmussen, L. B., Rivers, A., Robeson, M. S., Rosenthal, P., Segata, N., Shaffer, M., Shiffer, A., Sinha, R., Song, S. J., Spear, J. R., Swafford, A. D., Thompson, L. R., Torres, P. J., Trinh, P., Tripathi, A., Turnbaugh, P. J., Ul-Hasan, S., van der Hooft, J. J. J., Vargas, F., Vázquez-Baeza, Y., Vogtmann, E., von Hippel, M., et al.:
Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2, Nat. Biotechnol., 37, 852–857, https://doi.org/10.1038/s41587-019-0209-9, 2019.
Bonnet, D. and Frid, C.:
Seven copepod species considered as indicators of water-mass influence and changes: Results from a Northumberland coastal station, ICES J. Mar. Sci., 61, 485–491, https://doi.org/10.1016/j.icesjms.2004.03.005, 2004.
Calbet, A., Alcaraz, M., Saiz, E., Estrada, M., and Trepat, I.:
Planktonic herbivorous food webs in the catalan sea (NW Mediterranean): Temporal variability and comparison of indices of phyto-zooplankton coupling based on state variables and rate processes, J. Plankton Res., 18, 2329–2347, https://doi.org/10.1093/plankt/18.12.2329, 1996.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., and Holmes, S. P.:
DADA2: High-resolution sample inference from Illumina amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Campbell, L. and Vaulot, D.:
Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (station ALOHA), Deep-Res. Pt. I, 40, 2043–2060, https://doi.org/10.1016/0967-0637(93)90044-4, 1993.
Christaki, U.:
Nanoflagellate predation on auto- and heterotrophic picoplankton in the oligotrophic Mediterranean Sea, J. Plankton Res., 23, 1297–1310, https://doi.org/10.1093/plankt/23.11.1297, 2001.
Christaki, U., Van Wambeke, F., Lefevre, D., Lagaria, A., Prieur, L., Pujo-Pay, M., Grattepanche, J.-D., Colombet, J., Psarra, S., Dolan, J. R., Sime-Ngando, T., Conan, P., Weinbauer, M. G., and Moutin, T.:
Microbial food webs and metabolic state across oligotrophic waters of the Mediterranean Sea during summer, Biogeosciences, 8, 1839–1852, https://doi.org/10.5194/bg-8-1839-2011, 2011.
Christou, E. D.:
Interannual variability of copepods in a Mediterranean coastal area (Saronikos Gulf, Aegean Sea), J. Marine Syst., 15, 523–532, https://doi.org/10.1016/S0924-7963(97)00080-8, 1998.
Church, M. J., Mahaffey, C., Letelier, R. M., Lukas, R., Zehr, J. P., and Karl, D. M.:
Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre, Global Biogeochem. Cy., 23, GB2020, https://doi.org/10.1029/2008GB003418, 2009.
Clarke, L. J., Bestley, S., Bissett, A., and Deagle, B. E.:
A globally distributed Syndiniales parasite dominates the Southern Ocean micro-eukaryote community near the sea-ice edge, ISME J., 13, 734–737, https://doi.org/10.1038/s41396-018-0306-7, 2019.
Coats, D. W. and Park, M. G.:
Parasitism of photosynthetic dinoflagellates by three strains of Amoebophrya (Dinophyta): Parasite survival, infectivity, generation time, and host specificity, J. Phycol., 38, 520–528, https://doi.org/10.1046/j.1529-8817.2002.01200.x, 2002.
Cole, J., Findlay, S., and Pace, M.:
Bacterial production in fresh and saltwater ecosystems – A cross-system overview, Mar. Ecol. Prog. Ser., 43, 1–10, 1988.
Colgan, D. J., Hutchings, P. A., and Braune, M.:
A multigene framework for polychaete phylogenetic studies, Org. Divers. Evol., 6, 220–235, https://doi.org/10.1016/j.ode.2005.11.002, 2006.
Condie, S. and Condie, R.:
Retention of plankton within ocean eddies, Global Ecol. Biogeogr., 25, 1264–1277, https://doi.org/10.1111/geb.12485, 2016.
Dishon, G., Dubinsky, Z., Caras, T., Rahav, E., Bar-Zeev, E., Tzubery, Y., and Iluz, D.:
Optical habitats of ultraphytoplankton groups in the Gulf of Eilat (Aqaba), Northern Red Sea, Int. J. Remote Sens., 33, 2683–2705, https://doi.org/10.1080/01431161.2011.619209, 2012.
Djaoudi, K., Van Wambeke, F., Coppola, L., D'Ortenzio, F., Helias-Nunige, S., Raimbault, P., Taillandier, V., Testor, P., Wagener, T., and Pulido-Villena, E.:
Sensitive Determination of the Dissolved Phosphate Pool for an Improved Resolution of Its Vertical Variability in the Surface Layer: New Views in the P-Depleted Mediterranean Sea, Front. Mar. Sci., 5, 1–11, https://doi.org/10.3389/fmars.2018.00234, 2018.
Dolan, J. R. and Marrasé, C.:
Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, N. W. Mediterranean, June 1993, Deep-Res. Pt. I, 42, 1965–1987, https://doi.org/10.1016/0967-0637(95)00092-5, 1995.
Dolan, J. R., Claustre, H., Carlotti, F., Plounevez, S., and Moutin, T.:
Microzooplankton diversity: Relationships of tintinnid ciliates with resources, competitors and predators from the Atlantic Coast of Morocco to the Eastern Mediterranean, Deep-Res. Pt. I Oceanogr. Res. Pap., 49, 1217–1232, https://doi.org/10.1016/S0967-0637(02)00021-3, 2002.
Duarte, C. M., Duarte, C. M., Regaudie-de-gioux, A., and Agust, S.:
The oligotrophic ocean is heterotrophic, Ann. Rev. Mar. Sci., 5, 551–569, https://doi.org/10.1146/annurev-marine-121211-172337, 2013.
Ducklow, H. W. and Carlson, C. A.: Oceanic bacterial production, in:
Advances in Microbial Ecology, edited by: Marshall, K. C., Springer, Boston, MA, 113–181, https://doi.org/10.1007/978-1-4684-7609-5_3, 1992.
Dufois, F., Hardman-Mountford, N. J., Greenwood, J., Richardson, A. J., Feng, M., and Matear, R. J.:
Anticyclonic eddies are more productive than cyclonic eddies in subtropical gyres because of winter mixing, Sci. Adv., 2, 1–7, https://doi.org/10.1126/sciadv.1600282, 2016.
Dyhrman, S. T., Jenkins, B. D., Rynearson, T. A., Saito, M. A., Mercier, M. L., Alexander, H., Whitney, L. P., Drzewianowski, A., Bulygin, V. V, Bertrand, E. M., Wu, Z., Benitez-nelson, C., and Heithoff, A.:
The Transcriptome and Proteome of the Diatom Thalassiosira pseudonana Reveal a Diverse Phosphorus Stress Response, PLoS One, 7, e33768, https://doi.org/10.1371/journal.pone.0033768, 2012.
Efrati, S., Lehahn, Y., Rahav, E., Kress, N., Herut, B., Gertman, I., Goldman, R., Ozer, T., Lazar, M., and Heifetz, E.:
Intrusion of coastal waters into the pelagic eastern Mediterranean: in situ and satellite-based characterization, Biogeosciences, 10, 3349–3357, https://doi.org/10.5194/bg-10-3349-2013, 2013.
Falkowski, P. G., Ziemann, D., Kolber, Z., and Bienfang, P. K.:
Role of eddy pumping in enhancing primary production in the ocean, Nature, 352, 55–58, https://doi.org/10.1038/352055a0, 1991.
Falkowski, P. G., Laws, E. A., Barber, R. T., and Murray, J. W.:
Phytoplankton and Their Role in Primary, New, and Export Production, in Ocean Biogeochemistry, pp. 99–121, Springer Berlin Heidelberg, Berlin, Heidelberg., 2003.
Feliú, G., Pagano, M., Hidalgo, P., and Carlotti, F.:
Structure and function of epipelagic mesozooplankton and their response to dust deposition events during the spring PEACETIME cruise in the Mediterranean Sea, Biogeosciences, 17, 5417–5441, https://doi.org/10.5194/bg-17-5417-2020, 2020.
Fong, A. A., Karl, D. M., Lukas, R., Letelier, R. M., Zehr, J. P., and Church, M. J.:
Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pac, ISME J., 2, 663–676, https://doi.org/10.1038/ismej.2008.22, 2008.
Frangoulis, C., Christou, E. D., and Hecq, J. H.:
Comparison of marine copepod outfluxes: Nature, rate, fate and role in the carbon and nitrogen cycles., 2004.
Gasol, J. M., Del Giorgio, P. A., and Duarte, C. M.:
Biomass distribution in marine planktonic communities, Limnol. Oceanogr., 42, 1353–1363, https://doi.org/10.4319/lo.1997.42.6.1353, 1997.
Gaube, P., McGillicuddy, D. J., Chelton, D. B., Behrenfeld, M. J., and Strutton, P. G.:
Regional variations in the influence of mesoscale eddies on near-surface chlorophyll, J. Geophys. Res. Ocean., 119, 8195–8220, https://doi.org/10.1002/2014JC010111, 2014.
Geider, R. J. and La Roche, J.:
Redfield revisited: Variability of in marine microalgae and its biochemical basis, Eur. J. Phycol., 37, 1–17, https://doi.org/10.1017/S0967026201003456, 2002.
Gershwin, L. ann, Richardson, A. J., Winkel, K. D., Fenner, P. J., Lippmann, J., Hore, R., Avila-Soria, G., Brewer, D., Kloser, R. J., Steven, A., and Condie, S.:
Biology and Ecology of Irukandji Jellyfish (Cnidaria: Cubozoa), 1st ed., Elsevier Ltd., 2013.
Goldthwait, S. A. and Steinberg, D. K.:
Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea, Deep-Res. Pt. II, 55, 1360–1377, https://doi.org/10.1016/j.dsr2.2008.01.003, 2008.
Griffin, S. L. and Rippingale, R. J.:
Zooplankton grazing dynamics: Top-down control of phytoplankton and its relationship to an estuarine habitat, Hydrol. Process., 15, 2453–2464, https://doi.org/10.1002/hyp.293, 2001.
Groom, S., Herut, B., Brenner, S., Zodiatis, G., Psarra, S., Kress, N., Krom, M. D., Law, C. S., and Drakopoulos, P.:
Satellite-derived spatial and temporal biological variability in the Cyprus Eddy, Deep-Res. Pt. II, 52, 2990–3010, https://doi.org/10.1016/j.dsr2.2005.08.019, 2005.
Guillou, L., Viprey, M., Chambouvet, A., Welsh, R. M., Kirkham, A. R., Massana, R., Scanlan, D. J., and Worden, A. Z.:
Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata), Environ. Microb., 10, 3349–3365, https://doi.org/10.1111/j.1462-2920.2008.01731.x, 2008.
Guixa-Boixereu, N., Vaqué, D., Gasol, J. M., and Pedrós-Alió, C.:
Distribution of viruses and their potential effect on bacterioplankton in an oligotrophic marine system, Aquat. Microb. Ecol., 19, 205–213, https://doi.org/10.3354/ame019205, 1999a.
Guixa-Boixereu, N., Lysnes, K., Guixa-boixereu, R. I. A., and Lysnes, K.:
Viral lysis and bacterivory during a phytoplankton bloom in a coastal water microcosm, Appl. Environ. Microb., 65, 1949–1958, 1999b.
Gundersen, K., Heldal, M., Norland, S., Purdie, D. A., and Knap, A. H.:
Elemental C, N, and P cell content of individual bacteria collected at the Bermuda Atlantic Time-series Study (BATS) site, Limnol. Oceanogr., 47, 1525–1530, https://doi.org/10.4319/lo.2002.47.5.1525, 2002.
Guy-Haim, T.: Mixed zooplankton net samples from cyclonic eddy, anti-cyclonic eddy and background stations in the Israeli Mediterranean Sea, in: NCBI BioProject no. 667077, https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA667077 (last access: May 2022), 2020.
Harris, R., Wiebe, P., Lenz, J., Skjoldal, H., and Huntley, M.: ICES Zooplankton Methodology Manual, 1st edn., edited by: Harris, R., Wiebe, P., Lenz, J., Skjoldal, H., and Huntley, M., Academic Press, San Diego, ISBN 9780123276452, 2000.
Hazan, O., Silverman, J., Sisma-Ventura, G., Ozer, T., Gertman, I., Shoham-Frider, E., Kress, N., and Rahav, E.:
Mesopelagic prokaryotes alter surface phytoplankton production during simulated deep mixing experiments in Eastern Mediterranean Sea waters, Front. Mar. Sci., 5, https://doi.org/10.3389/fmars.2018.00001, 2018.
Heller, P., Casaletto, J., Ruiz, G., and Geller, J.:
Data Descriptor: A database of metazoan cytochrome c oxidase subunit I gene sequences derived from GenBank with CO-ARBitrator, Sci. Data, 5, 1–7, https://doi.org/10.1038/sdata.2018.156, 2018.
Hernández-León, S., Almeida, C., Gómez, M., Torres, S., Montero, I., and Portillo-Hahnefeld, A.:
Zooplankton biomass and indices of feeding and metabolism in island-generated eddies around Gran Canaria, J. Marine Syst., 30, 51–66, https://doi.org/10.1016/S0924-7963(01)00037-9, 2001.
Herut, B., Collier, R., and Krom, M. D.:
The role of dust in supplying nitrogen and phosphorus to the southeast Mediterranean, Limnol. Oceanogr., 47, 870–878, https://doi.org/10.4319/lo.2002.47.3.0870, 2002.
Herut, B., Zohary, T., Krom, M. D. D., Mantoura, R. F. C., Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T., and Frede Thingstad, T.:
Response of East Mediterranean surface water to Saharan dust: On-board microcosm experiment and field observations, Deep-Res. Pt. II, 52, 3024–3040, https://doi.org/10.1016/j.dsr2.2005.09.003, 2005.
Holliday, D., Beckley, L. E., and Olivar, M. P.:
Incorporation of larval fishes into a developing anti-cyclonic eddy of the Leeuwin Current off south-western Australia, J. Plankton Res., 33, 1696–1708, https://doi.org/10.1093/plankt/fbr064, 2011.
Houlbrèque, F., Delesalle, B., Blanchot, J., Montel, Y., and Ferrier-Pagès, C.:
Picoplankton removal by the coral reef community of La Prévoyante, Mayotte Island, Aquat. Microb. Ecol., 44, 59–70, https://doi.org/10.3354/ame044059, 2006.
Huggett, J. A.:
Mesoscale distribution and community composition of zooplankton in the Mozambique Channel, Deep-Res. Pt. II, 100, 119–135, https://doi.org/10.1016/j.dsr2.2013.10.021, 2014.
Ignatiades, L., Psarra, S., Zervakis, V., Pagou, K., Souvermezoglou, E., Assimakopoulou, G., and Gotsis-Skretas, O.:
Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean), J. Marine Syst., 36, 11–28, https://doi.org/10.1016/S0924-7963(02)00132-X, 2002.
Ikeda, T.:
Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature, Mar. Biol., 85, 1–11, https://doi.org/10.1007/BF00396409, 1985.
Ikeda, T., Torres, J. J., Hernandez-Leon, S., and Geiger, S. P.:
Metabolism, in: ICES zooplankton methodology manual, edited by: Harris, R., pp. 455–532, Academic Press, London, 2000.
Ioannou, A., Stegner, A., Tuel, A., LeVu, B., Dumas, F., and Speich, S.:
Cyclostrophic Corrections of AVISO/DUACS Surface Velocities and Its Application to Mesoscale Eddies in the Mediterranean Sea, J. Geophys. Res.-Oceans, 124, 8913–8932, https://doi.org/10.1029/2019JC015031, 2019.
Isari, S., Somarakis, S., Christou, E. D., and Fragopoulu, N.:
Summer mesozooplankton assemblages in the north-eastern Aegean Sea: The influence of Black Sea water and an associated anticyclonic eddy, J. Mar. Biol. Assoc. UK, 91, 51–63, https://doi.org/10.1017/S0025315410000123, 2011.
Isla, J. A., Ceballos, S., Huskin, I., Anadón, R., and Álvarez-Marqués, F.:
Mesozooplankton distribution, metabolism and grazing in an anticyclonic slope water oceanic eddy (SWODDY) in the Bay of Biscay, Mar. Biol., 145, 1201–1212, https://doi.org/10.1007/s00227-004-1408-5, 2004.
Jeffrey, S. W., Mantoura, R. F. C., and Wright, S. W. (Eds.):
Phytoplankton pigments in oceanography: guidlines to modern methods, 1st edn., UNESCO, Paris, 1997.
Kirchman, D. L. (Ed.):
Processes in microbial ecology, 1st edn., Oxford University Press, Oxford, 2012.
Koblentz-Mishke, O. J., Volrovinsky, V. V., and Kabanova, J. G.:
Plankton primary production of the world ocean, in: Scientific exploration of the South Pacific, edited by: Wooster, W. S., National Academy of Sciences, Washington, DC, pp. 183–193, 1970.
Koppelmann, R., Böttger-Schnack, R., Möbius, J., and Weikert, H.: Trophic relationships of zooplankton in the eastern Mediterranean based on stable isotope measurements, J. Plankton Res., 31, 669–686, https://doi.org/10.1093/plankt/fbp013, 2009.
Kress, N., Frede Thingstad, T., Pitta, P., Psarra, S., Tanaka, T., Zohary, T., Groom, S., Herut, B., Fauzi, R., Polychronaki, T., Rassoulzadegan, F., and Spyres, G.:
Effect of P and N addition to oligotrophic Eastern Mediterranean waters influenced by near-shore waters: A microcosm experiment, Deep-Res. Pt. II, 52, 3054–3073, https://doi.org/10.1016/j.dsr2.2005.08.013, 2005.
Kress, N., Gertman, I., and Herut, B.:
Temporal evolution of physical and chemical characteristics of the water column in the Easternmost Levantine Basin (Eastern Mediterranean Sea) from 2002 to 2010, J. Marine Syst., 135, 6–13, https://doi.org/10.1016/j.jmarsys.2013.11.016, 2014.
Krom, M. D., Woodward, E. M. S., Herut, B., Kress, N., Carbo, P., Mantoura, R. F. C., Spyres, G., Thingsted, T. F., Wassmann, P., Wexels-Riser, C., Kitidis, V., Law, C., and Zodiatis, G.:
Nutrient cycling in the south east Levantine basin of the eastern Mediterranean: Results from a phosphorus starved system, Deep-Res. Pt. II, 52, 2879–2896, https://doi.org/10.1016/j.dsr2.2005.08.009, 2005.
Kruk, C. and Segura, A. M.:
The habitat template of phytoplankton morphology-based functional groups, Hydrobiologia, 698, 191–202, https://doi.org/10.1007/s10750-012-1072-6, 2012.
Landry, M. R., Brown, S. L., Rii, Y. M., Selph, K. E., Bidigare, R. R., Yang, E. J., and Simmons, M. P.:
Depth-stratified phytoplankton dynamics in Cyclone Opal, a subtropical mesoscale eddy, Deep-Res. Pt. II, 55, 1348–1359, https://doi.org/10.1016/j.dsr2.2008.02.001, 2008a.
Landry, M. R., Decima, M., Simmons, M. P., Hannides, C. C. S., and Daniels, E.:
Mesozooplankton biomass and grazing responses to Cyclone Opal, a subtropical mesoscale eddy, Deep-Res. Pt. II, 55, 1378–1388, https://doi.org/10.1016/j.dsr2.2008.01.005, 2008b.
Lavaniegos, B. E. and Hereu, C. M.:
Seasonal variation in hyperiid amphipod abundance and diversity and influence of mesoscale structures off Baja California, Mar. Ecol. Prog. Ser., 394, 137–152, https://doi.org/10.3354/meps08285, 2009.
Laws, E. A.:
Evaluation of In Situ Phytoplankton Growth Rates: A Synthesis of Data from Varied Approaches, Annu. Rev. Mar. Sci., 5, 247–268, https://doi.org/10.1146/annurev-marine-121211-172258, 2013.
Le Vu, B., Stegner, A., and Arsouze, T.:
Angular momentum eddy detection and tracking algorithm (AMEDA) and its application to coastal eddy formation, J. Atmos. Ocean. Tech., 35, 739–762, https://doi.org/10.1175/JTECH-D-17-0010.1, 2018.
Limer, B. D., Bloomberg, J., and Holstein, D. M.:
The Influence of Eddies on Coral Larval Retention in the Flower Garden Banks, Front. Mar. Sci., 7, 1–16, https://doi.org/10.3389/fmars.2020.00372, 2020.
Lin, S., Litaker, R. W., and Sunda, W. G.:
Phosphorus physiological ecology and molecular mechanisms in marine phytoplankton, J. Phycol., 52, 10–36, https://doi.org/10.1111/jpy.12365, 2016.
Ling, S. D. and Johnson, C. R.:
Population dynamics of an ecologically important range-extender: Kelp beds versus sea urchin barrens, Mar. Ecol. Prog. Ser., 374, 113–125, https://doi.org/10.3354/meps07729, 2009.
Liu, H., Zhu, M., Guo, S., Zhao, X., and Sun, X.:
Effects of an anticyclonic eddy on the distribution and community structure of zooplankton in the South China Sea northern slope, J. Marine Syst., 205, 103311, https://doi.org/10.1016/j.jmarsys.2020.103311, 2020.
Logerwell, E. A. and Smith, P. E.:
Mesoscale eddies and survival of late stage Pacific sardine (Sardinops sagax) larvae, Fish. Oceanogr., 10, 13–25, https://doi.org/10.1046/j.1365-2419.2001.00152.x, 2001.
Lomas, M. W., Bates, N. R., Johnson, R. J., Knap, A. H., Steinberg, D. K., and Carlson, C. A.:
Two decades and counting: 24-years of sustained open ocean biogeochemical measurements in the Sargasso Sea, Deep-Res. Pt. II, 93, 16–32, https://doi.org/10.1016/j.dsr2.2013.01.008, 2013.
López-Sandoval, D. C., Fernández, A., and Marañón, E.:
Dissolved and particulate primary production along a longitudinal gradient in the Mediterranean Sea, Biogeosciences, 8, 815–825, https://doi.org/10.5194/bg-8-815-2011, 2011.
Love, M. I., Huber, W., and Anders, S.:
Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15, 1–21, https://doi.org/10.1186/s13059-014-0550-8, 2014.
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.:
River discharges of water and nutrients to the Mediterranean and Black Sea: Major drivers for ecosystem changes during past and future decades?, Prog. Oceanogr., 80, 199–217, https://doi.org/10.1016/j.pocean.2009.02.001, 2009.
Luna, G. M., Bianchelli, S., Decembrini, F., De Domenico, E., Danovaro, R., and Dell'Anno, A.:
The dark portion of the Mediterranean Sea is a bioreactor of organic matter cycling, Global Biogeochem. Cy., 26, 1–14, https://doi.org/10.1029/2011GB004168, 2012.
Mackas, D. L., Tsurumi, M., Galbraith, M. D., and Yelland, D. R.:
Zooplankton distribution and dynamics in a North Pacific Eddy of coastal origin: II. Mechanisms of eddy colonization by and retention of offshore species, Deep-Res. Pt. II, 52, 1011–1035, https://doi.org/10.1016/j.dsr2.2005.02.008, 2005.
Marañón, E., Cermeño, P., and Pérez, V.:
Continuity in the photosynthetic production of dissolved organic carbon from eutrophic to oligotrophic waters, Mar. Ecol. Prog. Ser., 299, 7–17, https://doi.org/10.3354/meps299007, 2005.
Marañón, E., Van Wambeke, F., Uitz, J., Boss, E. S., Dimier, C., Dinasquet, J., Engel, A., Haëntjens, N., Pérez-Lorenzo, M., Taillandier, V., and Zäncker, B.:
Deep maxima of phytoplankton biomass, primary production and bacterial production in the Mediterranean Sea, Biogeosciences, 18, 1749–1767, https://doi.org/10.5194/bg-18-1749-2021, 2021.
Matis, P. A., Figueira, W. F., Suthers, I. M., Humphries, J., Miskiewicz, A., Coleman, R. A., Kelaher, B. P., and Taylor, M. D.:
Cyclonic entrainment? The ichthyoplankton attributes of three major water mass types generated by the separation of the East Australian Current, ICES J. Mar. Sci., 71, 1696–1705, https://doi.org/10.1093/icesjms/fsu062, 2014.
Mazzocchi, M. G., Christou, E. D., Fragopoulu, N., and Siokou-frangou, I.:
Mesozooplankton distribution from Sicily to Cyprus (Eastern Mediterranean): I. General aspects, Oceanol. Acta, 20, 521–535, 1997.
McManus, G. B., Liu, W., Cole, R. A., Biemesderfer, D., and Mydosh, J. L.:
Strombidium rassoulzadegani: A model species for chloroplast retention in Oligotrich Ciliates, Front. Mar. Sci., 5, 1–11, https://doi.org/10.3389/fmars.2018.00205, 2018.
McMurdie, P. J. and Holmes, S.:
Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data, PLoS One, 8, e61217, https://doi.org/10.1371/journal.pone.0061217, 2013.
Menna, M., Poulain, P.-M., Zodiatis, G., and Gertman, I.:
On the surface circulation of the Levantine sub-basin derived from Lagrangian drifters and satellite altimetry data, Deep-Res. Pt. I, 65, 46–58, https://doi.org/10.1016/j.dsr.2012.02.008, 2012.
Mével, G., Vernet, M., Goutx, M., and Ghiglione, J. F.:
Seasonal to hour variation scales in abundance and production of total and particle-attached bacteria in the open NW Mediterranean Sea (0–1000 m), Biogeosciences, 5, 1573–1586, https://doi.org/10.5194/bg-5-1573-2008, 2008.
Miller, I., Sweatman, H., Cheal, A., Emslie, M., Johns, K., Jonker, M., and Osborne, K.:
Origins and implications of a primary crown-of-thorns starfish outbreak in the southern great barrier reef, J. Mar. Biol., 2015, 1–10, https://doi.org/10.1155/2015/809624, 2015.
Mkhinini, N., Santi Coimbra, A. L., Stegner, A., Arsouze, T., Taupier-Letage, I., and Beranger, K.:
Long-lived mesoscale eddies in the eastern Mediterranean Sea: Analysis of 20 years of AVISO geostrophic velocities, J. Geophys. Res.-Oceans, 119, 8603–8626, https://doi.org/10.1002/2014JC010176, 2014.
Moore, C. M., Mills, M. M., Arrigo, K. R., Berman-Frank, I., Bopp, L., Boyd, P. W., Galbraith, E. D., Geider, R. J., Guieu, C., Jaccard, S. L., Jickells, T. D., La Roche, J., Lenton, T. M., Mahowald, N. M., Maranon, E., Marinov, I., Moore, J. K., Nakatsuka, T., Oschlies, A., Saito, M. A., Thingstad, T. F., Tsuda, A., and Ulloa, O.:
Processes and patterns of oceanic nutrient limitation, Nat. Geosci, 6, 701–710, https://doi.org/10.1038/ngeo1765, 2013.
Motoda, S.: Devices of simple plankton apparatus, Mem. Fac. Fish. Hokkaido University, 7, 73–94, 1959.
Mullaney, T. J. and Suthers, I. M.:
Entrainment and retention of the coastal larval fish assemblage by a short-lived, submesoscale, frontal eddy of the East Australian Current, Limnol. Oceanogr., 58, 1546–1556, https://doi.org/10.4319/lo.2013.58.5.1546, 2013.
Nival, P., Nival, S., and Thiriot, A.:
Influence des conditions hivernales sur les productions phyto- et zooplanctoniques en Mediterranee Nord-Occidentale. V. Biomasse et production zooplanctonique – relations phyto-zooplancton, Mar. Biol., 31, 249–270, https://doi.org/10.1007/BF00387153, 1975.
Olli, K., Wassmann, P., Reigstad, M., Ratkova, T. N., Arashkevich, E., Pasternak, A., Matrai, P. A., Knulst, J., Tranvik, L., Klais, R., and Jacobsen, A.:
The fate of production in the central Arctic Ocean – top-down regulation by zooplankton expatriates?, Prog. Oceanogr., 72, 84–113, https://doi.org/10.1016/j.pocean.2006.08.002, 2007.
Ozer, T., Gertman, I., Kress, N., Silverman, J., and Herut, B.:
Interannual thermohaline (1979–2014) and nutrient (2002–2014) dynamics in the Levantine surface and intermediate water masses, SE Mediterranean Sea, Global Planet. Change, 151, 60–67, https://doi.org/10.1016/j.gloplacha.2016.04.001, 2017.
Palomera, I., Olivar, M. P., Salat, J., Sabatés, A., Coll, M., García, A., and Morales-Nin, B.:
Small pelagic fish in the NW Mediterranean Sea: An ecological review, Prog. Oceanogr., 74, 377–396, https://doi.org/10.1016/j.pocean.2007.04.012, 2007.
Pancucci-Papadopoulou, M.-A., Siokou-Frangou, L., Theocharis, A., and Georgopoulos, D.:
Zooplankton vertical distribution in relation to the hydrology in the NW Levantine, Oceanol. Acta, 15, 365–381, 1992.
Parada, A. E., Needham, D. M., and Fuhrman, J. A.:
Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples, Environ. Microb., 18, 1403–1414, https://doi.org/10.1111/1462-2920.13023, 2016.
Pasternak, A., Wassmann, P., and Riser, C. W.:
Does mesozooplankton respond to episodic P inputs in the Eastern Mediterranean?, Deep-Res. Pt. II, 52, 2975–2989, https://doi.org/10.1016/j.dsr2.2005.09.002, 2005.
Pinca, S. and Dallot, S.:
Meso- and macrozooplankton composition patterns related to hydrodynamic structures in the Ligurian Sea (Trophos-2 experiment, April–June 1986), Mar. Ecol. Prog. Ser., 126, 49–65, https://doi.org/10.3354/meps126049, 1995.
Pinca, S. and Dallot, S.:
Zooplankton community structure in the Western Mediterranean sea related to mesoscale hydrodynamics, Hydrobiologia, 356, 127–142, https://doi.org/10.1023/a:1003151609682, 1997.
Pitta, P., Giannakourou, A., and Christaki, U.:
Planktonic ciliates in the oligotrophic Mediterranean Sea: Longitudinal trends of standing stocks, distributions and analysis of food vacuole contents, Aquat. Microb. Ecol., 24, 297–311, https://doi.org/10.3354/ame024297, 2001.
Pitta, P., Nejstgaard, J. C., Tsagaraki, T. M., Zervoudaki, S., Egge, J. K., Frangoulis, C., Lagaria, A., Magiopoulos, I., Psarra, S., Sandaa, R.-A., Skjoldal, E. F., Tanaka, T., Thyrhaug, R., and Thingstad, T. F.:
Confirming the “Rapid phosphorus transfer from microorganisms to mesozooplankton in the Eastern Mediterranean Sea” scenario through a mesocosm experiment, J. Plankton Res., 38, 502–521, https://doi.org/10.1093/plankt/fbw010, 2016.
Pitta, P., Kanakidou, M., Mihalopoulos, N., Christodoulaki, S., Dimitriou, P. D., Frangoulis, C., Giannakourou, A., Kagiorgi, M., Lagaria, A., Nikolaou, P., Papageorgiou, N., Psarra, S., Santi, I., Tsapakis, M., Tsiola, A., Violaki, K., and Petihakis, G.:
Saharan dust deposition effects on the microbial food web in the Eastern Mediterranean: A study based on a mesocosm experiment, Front. Mar. Sci., 4, 1–19, https://doi.org/10.3389/fmars.2017.00117, 2017.
Psarra, S., Tselepides, A., and Ignatiades, L.:
Primary productivity in the oligotrophic Cretan Sea (NE Mediterranean): seasonal and interannual variability, Prog. Oceanogr., 46, 187–204, 2000.
Pujo-Pay, M., Conan, P., Oriol, L., Cornet-Barthaux, V., Falco, C., Ghiglione, J.-F., Goyet, C., Moutin, T., and Prieur, L.:
Integrated survey of elemental stoichiometry (C, N, P) from the western to eastern Mediterranean Sea, Biogeosciences, 8, 883–899, https://doi.org/10.5194/bg-8-883-2011, 2011.
Pulido-Villena, E., Ghiglione, J. F., Ortega-Retuerta, E., Van-Wambeke, F., and Zohary, T.:
Heterotrophic bacteria in the pelagic realm of the Mediterranean Sea, in: Life in the Mediterranean Sea: A Look at Habitat Changes, edited by: Stambler, N., pp. 227–265, Nova Science Publishers, NY, 2012.
R Core Team: R: A Language and Environment for Statistical Computing, Vienna, Austria, https://www.R-project.org/ (last access: May 2022), 2018.
Rabi, C., Rilov, G., Morov, A. R., and Guy-Haim, T.:
First record of the red sea gastropod nerita sanguinolenta menke, 1829 (Gastropoda: Cycloneritida: Neritidae) from the israeli mediterranean coast, BioInvasions Rec., 9, 496–503, https://doi.org/10.3391/bir.2020.9.3.06, 2020.
Rahav, E., Herut, B., Stambler, N., Bar-Zeev, E., Mulholland, M. R., and Berman-Frank, I.:
Uncoupling between dinitrogen fixation and primary productivity in the eastern Mediterranean Sea, J. Geophys. Res.-Biogeo., 118, 195–202, https://doi.org/10.1002/jgrg.20023, 2013.
Rahav, E., Silverman, J., Raveh, O., Hazan, O., Rubin-Blum, M., Zeri, C., Gogou, A., Kralj, M., Pavlidou, A., and Kress, N.:
The deep water of Eastern Mediterranean Sea is a hotspot for bacterial activity, Deep-Res. Pt. II, 164, 135–143, https://doi.org/10.1016/j.dsr2.2019.03.004, 2019.
Rahav, E., Herut, B., Spungin, D., Levi, A., Mulholland, M. R., and Berman-Frank, I.:
Heterotrophic bacteria outcompete diazotrophs for orthophosphate in the Mediterranean Sea, Limnol. Oceanogr., 9999, 1–13, https://doi.org/10.1002/lno.11983, 2021.
Rakhesh, M., Raman, A. V., Kalavati, C., Subramanian, B. R., Sharma, V. S., Sunitha Babu, E., and Sateesh, N.:
Zooplankton community structure across an eddy-generated upwelling band close to a tropical bay-mangrove ecosystem, Mar. Biol., 154, 953–972, https://doi.org/10.1007/s00227-008-0991-2, 2008.
Reich, T., Ben-Ezra, T., Belkin, N., Tsemel, A., Aharonovich, D., Roth-rosenberg, D., Givati, S., Bialik, M., Herut, B., Berman-frank, I., Frada, M., Krom, M. D., Lehahn, Y., Rahav, E., and Sher, D.: A year in the life of the Eastern Mediterranean : Monthly dynamics of phytoplankton and bacterioplankton in an ultra-oligotrophic sea, Deep-Sea Res. Pt. I, 182, 103720, https://doi.org/10.1016/j.dsr.2022.103720, 2022.
Riandey, V., Champalbert, G., Carlotti, F., Taupier-Letage, I., and Thibault-Botha, D.:
Zooplankton distribution related to the hydrodynamic features in the Algerian Basin (western Mediterranean Sea) in summer 1997, Deep-Res. Pt. I Oceanogr. Res. Pap., 52, 2029–2048, https://doi.org/10.1016/j.dsr.2005.06.004, 2005.
Ridame, C., Le Moal, M., Guieu, C., Ternon, E., Biegala, I. C., L'Helguen, S., and Pujo-Pay, M.:
Nutrient control of N2 fixation in the oligotrophic Mediterranean Sea and the impact of Saharan dust events, Biogeosciences, 8, 2773–2783, https://doi.org/10.5194/bg-8-2773-2011, 2011.
Robinson, A. R. and Golnaraghi, M.:
The physical and dynamical oceanography of the Eastern Mediterranean Sea, in: Ocean Processes in Climate Dynamics: Global and Mediterranean Examples, edited by: Malanotte-Rizzoli, P. and Robinson, A. R., pp. 255–306, Springer Netherlands, Dordrecht, 1994.
Sala, M. M., Peters, F., Gasol, J. M., Pedrós-Alió, C., Marrasé, C., and Vaqué, D.:
Seasonal and spatial variations in the nutrient limitation of bacterioplankton growth in the northwestern Mediterranean, Aquat. Microb. Ecol., 27, 47–56, https://doi.org/10.3354/ame027047, 2002.
Santi, I., Kasapidis, P., Psarra, S., Assimakopoulou, G., Pavlidou, A., Protopapa, M., Tsiola, A., Zeri, C., and Pitta, P.:
Composition and distribution patterns of eukaryotic microbial plankton in the ultra-oligotrophic Eastern Mediterranean Sea, Aquat. Microb. Ecol., 84, 155–173, 2020.
Sathyendranath, S. and Platt, T.:
Spectral effects in bio-optical control on the ocean system, Oceanologia, 49, 5–39, 2007.
Seguin, G., Errhif, A., and Dallot, S.:
Diversity and structure of pelagic copepod populations in the frontal zone of the eastern Alboran sea, Hydrobiologia, 292–293, 369–377, https://doi.org/10.1007/BF00229962, 1994.
Sherr, E. B. and Sherr, B. F.:
Heterotrophic dinoflagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea, Mar. Ecol. Prog. Ser., 352, 187–197, https://doi.org/10.3354/meps07161, 2007.
Simon, M., Alldredge, A., and Azam, F.:
Protein-content and protein-synthesis rates of planktonic marine-bacteria, Mar. Ecol. Prog. Ser., 51, 201–213, 1989.
Siokou-Frangou, I.:
Epipelagic mesozooplankton and copepod grazing along an east–west transect in the Mediterranean Sea, Mar. Biol., 144, 1111–1126, 2004.
Siokou-Frangou, I., Christou, E. D., Gotsis-Scretas, O., Kontoyiannis, H., Krasakopoulou, E., Pagou, K., Pavlidou, A., Souvermezoglou, E., and Theocharis, A.:
Impact of physical processes upon chemical and biological properties in the Rhodes gyre area, in: International Conference: Progress in Oceanography of the Mediterranean Sea, Rome, November, pp. 17–19., 1997.
Siokou-Frangou, I., Bianchi, M., Christaki, U., Christou, E. D., Giannakourou, A., Gotsis, O., Ignatiades, L., Pagou, K., Pitta, P., Psarra, S., Souvermezoglou, E., Van Wambeke, F., and Zervakis, V.:
Carbon flow in the planktonic food web along a gradient of oligotrophy in the Aegean Sea (Mediterranean Sea), J. Marine Syst., 33–34, 335–353, https://doi.org/10.1016/S0924-7963(02)00065-9, 2002.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera d'Alcalá, M., Vaqué, D., and Zingone, A.:
Plankton in the open Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586, https://doi.org/10.5194/bg-7-1543-2010, 2010.
Sisma-Ventura, G. and Rahav, E.:
DOP Stimulates Heterotrophic Bacterial Production in the Oligotrophic Southeastern Mediterranean Coastal Waters, Front. Microbiol., 10, 1913, https://doi.org/10.3389/fmicb.2019.01913, 2019.
Smith, D. C., Smith, D. C., Azam, F., and Azam, F.:
A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine, Marine Microbial Food Webs, 6, 107–114, 1992.
Stambler, N.:
Underwater light field of the Mediterranean Sea, in: Life in the Mediterranean Sea: A Look at Habitat Changes, edited by: Stambler, N., Nova Science Publishers, NY, 175–198, ISBN 978-1-61209-644-5, 2012.
Steemann-Nielsen, E.:
The use of radioactive carbon (14C) for measuring organic production in the sea, Journal of the International Council for the Exploration of the Sea,, 18, 117–140, 1952.
Stergiou, K. I., Christou, E. D., and Petrakis, G.:
Modelling and forecasting monthly fisheries catches: Comparison of regression, univariate and multivariate time series methods, Fish. Res., 29, 55–95, https://doi.org/10.1016/S0165-7836(96)00482-1, 1997.
Strzelecki, J., Koslow, J. A., and Waite, A.:
Comparison of mesozooplankton communities from a pair of warm- and cold-core eddies off the coast of Western Australia, Deep-Res. Pt. II, 54, 1103–1112, https://doi.org/10.1016/j.dsr2.2007.02.004, 2007.
Suzuki, N., Ogane, K., Aita, Y., Kato, M., Sakai, S., Kurihara, T., Matsuoka, A., Ohtsuka, S., Go, A., Nakaguchi, K., Yamaguchi, S., Takahashi, T., and Tuji, A.:
Distribution patterns of the radiolarian nuclei and symbionts using DAPI-fuorescence, Bull. Natl. Mus. Nat. Sci. Ser. B, 35, 169–182, 2009.
Tanaka, T., Thingstad, T. F., Christaki, U., Colombet, J., Cornet-Barthaux, V., Courties, C., Grattepanche, J.-D., Lagaria, A., Nedoma, J., Oriol, L., Psarra, S., Pujo-Pay, M., and Van Wambeke, F.:
Lack of P-limitation of phytoplankton and heterotrophic prokaryotes in surface waters of three anticyclonic eddies in the stratified Mediterranean Sea, Biogeosciences, 8, 525–538, https://doi.org/10.5194/bg-8-525-2011, 2011.
Thingstad, T. F., Krom, M. D., Mantoura, R. F. C., Flaten, G. a F., Groom, S., Herut, B., Kress, N., Law, C. S., Pasternak, a, Pitta, P., Psarra, S., Rassoulzadegan, F., Tanaka, T., Tselepides, A., Wassmann, P., Woodward, E. M. S., Riser, C. W., Zodiatis, G., and Zohary, T.:
Nature of phosphorus limitation in the ultraoligotrophic eastern Mediterranean, Science, 309, 1068–71, https://doi.org/10.1126/science.1112632, 2005.
Tsiola, A., Tsagaraki, T. M., Giannakourou, A., Nikolioudakis, N., Yücel, N., Herut, B., and Pitta, P.:
Bacterial growth and mortality after deposition of Saharan dust and mixed aerosols in the Eastern Mediterranean Sea: a mesocosm experiment, Front. Mar. Sci., 3, 1–13, https://doi.org/10.3389/fmars.2016.00281, 2017.
Vaillancourt, R. D., Marra, J., Seki, M. P., Parsons, M. L., and Bidigare, R. R.:
Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean, Deep-Res. Pt. I, 50, 829–847, https://doi.org/10.1016/S0967-0637(03)00059-1, 2003.
Van-Ruth, P., Redondo Rodriguez, A., Davies, C., and Richardson, A. J.:
Indicators of depth layers important to phytoplankton production, Deep-Sea Res. Pt. II, 157–158, 36–45, 2020.
Van Wambeke, F., Christaki, U., Giannakourou, A., Moutin, T., Souvermezoglou, E., and Giannokourou, A.:
Longitudinal and vertical trends of bacterial limitation by phosphorus and carbon in the Mediterranean Sea, Microb. Ecol., 43, 119–133, 2002.
Waite, A. M., Thompson, P. A., Pesant, S., Feng, M., Beckley, L. E., Domingues, C. M., Gaughan, D., Hanson, C. E., Holl, C. M., Koslow, T., Meuleners, M., Montoya, J. P., Moore, T., Muhling, B. A., Paterson, H., Rennie, S., Strzelecki, J., and Twomey, L.:
The Leeuwin Current and its eddies: An introductory overview, Deep-Res. Pt. II, 54, 789–796, https://doi.org/10.1016/j.dsr2.2006.12.008, 2007.
Welschmeyer, N. A.:
Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments, Limnol. Oceanogr., 39, 1985–1992, 1994.
Wickham, H.:
Ggplot2, WIREs Comput. Stat., 3, 180–185, https://doi.org/10.1002/wics.147, 2011.
Zhou, M., Carlotti, F., and Zhu, Y.:
A size-spectrum zooplankton closure model for ecosystem modelling, J. Plankton Res., 32, 1147–1165, https://doi.org/10.1093/plankt/fbq054, 2010.
Zohary, T. and Robarts, R. R. D.:
Experimental study of microbial P limitation in the eastern Mediterranean, Limnol. Oceanogr., 43, 387–395, https://doi.org/10.4319/lo.1998.43.3.0387, 1998.
Zohary, T., Herut, B., Krom, M. D., Fauzi C. Mantoura, R., Pitta, P., Psarra, S., Rassoulzadegan, F., Stambler, N., Tanaka, T., Frede Thingstad, T., and Malcolm S. Woodward, E.:
P-limited bacteria but N and P co-limited phytoplankton in the Eastern Mediterranean – A microcosm experiment, Deep-Res. Pt. II, 52, 3011–3023, https://doi.org/10.1016/j.dsr2.2005.08.011, 2005.
Short summary
We studied how distinct water circulations that elevate (cyclone) or descend (anticyclone) water from the upper ocean affect the biomass, activity and diversity of planktonic microorganisms in the impoverished eastern Mediterranean. We show that cyclonic and anticyclonic eddies differ in their community composition and production. Moreover, the anticyclone may be a potential bio-invasion and dispersal vector, while the cyclone may serve as a thermal refugee for native species.
We studied how distinct water circulations that elevate (cyclone) or descend (anticyclone) water...