Articles | Volume 18, issue 2
https://doi.org/10.5194/os-18-483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-483-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Untangling the mistral and seasonal atmospheric forcing driving deep convection in the Gulf of Lion: 2012–2013
LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS, Palaiseau, France
Yonatan Givon
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
Romain Pennel
LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS, Palaiseau, France
Shira Raveh-Rubin
Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
Philippe Drobinski
LMD/IPSL, École Polytechnique, Institut Polytechnique de Paris, ENS, PSL Research University, Sorbonne Université, CNRS, Palaiseau, France
Related authors
No articles found.
Raphaël Rousseau-Rizzi, Shira Raveh-Rubin, Jennifer L. Catto, Alice Portal, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1079–1101, https://doi.org/10.5194/wcd-5-1079-2024, https://doi.org/10.5194/wcd-5-1079-2024, 2024
Short summary
Short summary
We identify situations when rain and wind, rain and wave, or heat and dust hazards co-occur within Mediterranean cyclones. These hazard combinations are associated with risk to infrastructure, risk of coastal flooding and risk of respiratory issues. The presence of Mediterranean cyclones is associated with increased probability of all three hazard combinations. We identify weather configurations and cyclone structures, particularly those associated with specific co-occurrence combinations.
Alice Portal, Shira Raveh-Rubin, Jennifer L. Catto, Yonatan Givon, and Olivia Martius
Weather Clim. Dynam., 5, 1043–1060, https://doi.org/10.5194/wcd-5-1043-2024, https://doi.org/10.5194/wcd-5-1043-2024, 2024
Short summary
Short summary
Mediterranean cyclones are associated with extended rain, wind, and wave impacts. Although beneficial for regional water resources, their passage may induce extreme weather, which is especially impactful when multiple hazards combine together. Here we show how the passage of Mediterranean cyclones increases the likelihood of rain–wind and wave–wind compounding and how compound–cyclone statistics vary by region and season, depending on the presence of specific airflows around the cyclone.
Sylvain Mailler, Sotirios Mallios, Arineh Cholakian, Vassilis Amiridis, Laurent Menut, and Romain Pennel
Geosci. Model Dev., 17, 5641–5655, https://doi.org/10.5194/gmd-17-5641-2024, https://doi.org/10.5194/gmd-17-5641-2024, 2024
Short summary
Short summary
We propose two explicit expressions to calculate the settling speed of solid atmospheric particles with prolate spheroidal shapes. The first formulation is based on theoretical arguments only, while the second one is based on computational fluid dynamics calculations. We show that the first method is suitable for virtually all atmospheric aerosols, provided their shape can be adequately described as a prolate spheroid, and we provide an implementation of the first method in AerSett v2.0.2.
Laurent Menut, Arineh Cholakian, Romain Pennel, Guillaume Siour, Sylvain Mailler, Myrto Valari, Lya Lugon, and Yann Meurdesoif
Geosci. Model Dev., 17, 5431–5457, https://doi.org/10.5194/gmd-17-5431-2024, https://doi.org/10.5194/gmd-17-5431-2024, 2024
Short summary
Short summary
A new version of the CHIMERE model is presented. This version contains both computational and physico-chemical changes. The computational changes make it easy to choose the variables to be extracted as a result, including values of maximum sub-hourly concentrations. Performance tests show that the model is 1.5 to 2 times faster than the previous version for the same setup. Processes such as turbulence, transport schemes and dry deposition have been modified and updated.
Laurent Menut, Bertrand Bessagnet, Arineh Cholakian, Guillaume Siour, Sylvain Mailler, and Romain Pennel
Geosci. Model Dev., 17, 3645–3665, https://doi.org/10.5194/gmd-17-3645-2024, https://doi.org/10.5194/gmd-17-3645-2024, 2024
Short summary
Short summary
This study is about the modelling of the atmospheric composition in Europe during the summer of 2022, when massive wildfires were observed. It is a sensitivity study dedicated to the relative impacts of two modelling processes that are able to modify the meteorology used for the calculation of the atmospheric chemistry and transport of pollutants.
Yonatan Givon, Or Hess, Emmanouil Flaounas, Jennifer Louise Catto, Michael Sprenger, and Shira Raveh-Rubin
Weather Clim. Dynam., 5, 133–162, https://doi.org/10.5194/wcd-5-133-2024, https://doi.org/10.5194/wcd-5-133-2024, 2024
Short summary
Short summary
A novel classification of Mediterranean cyclones is presented, enabling a separation between storms driven by different atmospheric processes. The surface impact of each cyclone class differs greatly by precipitation, winds, and temperatures, providing an invaluable tool to study the climatology of different types of Mediterranean storms and enhancing the understanding of their predictability, on both weather and climate scales.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Arineh Cholakian
Geosci. Model Dev., 16, 7509–7526, https://doi.org/10.5194/gmd-16-7509-2023, https://doi.org/10.5194/gmd-16-7509-2023, 2023
Short summary
Short summary
We show that a new advection scheme named PPM + W (piecewise parabolic method + Walcek) offers geoscientific modellers an alternative, high-performance scheme designed for Cartesian-grid advection, with improved performance over the classical PPM scheme. The computational cost of PPM + W is not higher than that of PPM. With improved accuracy and controlled computational cost, this new scheme may find applications in chemistry-transport models, ocean models or atmospheric circulation models.
Laurent Menut, Arineh Cholakian, Guillaume Siour, Rémy Lapere, Romain Pennel, Sylvain Mailler, and Bertrand Bessagnet
Atmos. Chem. Phys., 23, 7281–7296, https://doi.org/10.5194/acp-23-7281-2023, https://doi.org/10.5194/acp-23-7281-2023, 2023
Short summary
Short summary
This study is about the wildfires occurring in France during the summer 2022. We study the forest fires that took place in the Landes during the summer of 2022. We show the direct impact of these fires on the air quality, especially downstream of the smoke plume towards the Paris region. We quantify the impact of these fires on the pollutants peak concentrations and the possible exceedance of thresholds.
Sylvain Mailler, Laurent Menut, Arineh Cholakian, and Romain Pennel
Geosci. Model Dev., 16, 1119–1127, https://doi.org/10.5194/gmd-16-1119-2023, https://doi.org/10.5194/gmd-16-1119-2023, 2023
Short summary
Short summary
Large or even
giantparticles of mineral dust exist in the atmosphere but, so far, solving an non-linear equation was needed to calculate the speed at which they fall in the atmosphere. The model we present, AerSett v1.0 (AERosol SETTling version 1.0), provides a new and simple way of calculating their free-fall velocity in the atmosphere, which will be useful to anyone trying to understand and represent adequately the transport of giant dust particles by the wind.
Daniel A. Knopf, Joseph C. Charnawskas, Peiwen Wang, Benny Wong, Jay M. Tomlin, Kevin A. Jankowski, Matthew Fraund, Daniel P. Veghte, Swarup China, Alexander Laskin, Ryan C. Moffet, Mary K. Gilles, Josephine Y. Aller, Matthew A. Marcus, Shira Raveh-Rubin, and Jian Wang
Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, https://doi.org/10.5194/acp-22-5377-2022, 2022
Short summary
Short summary
Marine boundary layer aerosols collected in the remote region of the eastern North Atlantic induce immersion freezing and deposition ice nucleation under typical mixed-phase and cirrus cloud conditions. Corresponding ice nucleation parameterizations for model applications have been derived. Chemical imaging of ambient aerosol and ice-nucleating particles demonstrates that the latter is dominated by sea salt and organics while also representing a major particle type in the particle population.
Assaf Hochman, Francesco Marra, Gabriele Messori, Joaquim G. Pinto, Shira Raveh-Rubin, Yizhak Yosef, and Georgios Zittis
Earth Syst. Dynam., 13, 749–777, https://doi.org/10.5194/esd-13-749-2022, https://doi.org/10.5194/esd-13-749-2022, 2022
Short summary
Short summary
Gaining a complete understanding of extreme weather, from its physical drivers to its impacts on society, is important in supporting future risk reduction and adaptation measures. Here, we provide a review of the available scientific literature, knowledge gaps and key open questions in the study of extreme weather events over the vulnerable eastern Mediterranean region.
Emmanouil Flaounas, Silvio Davolio, Shira Raveh-Rubin, Florian Pantillon, Mario Marcello Miglietta, Miguel Angel Gaertner, Maria Hatzaki, Victor Homar, Samira Khodayar, Gerasimos Korres, Vassiliki Kotroni, Jonilda Kushta, Marco Reale, and Didier Ricard
Weather Clim. Dynam., 3, 173–208, https://doi.org/10.5194/wcd-3-173-2022, https://doi.org/10.5194/wcd-3-173-2022, 2022
Short summary
Short summary
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics, climatology, prediction (weather and climate scales) and impacts. More than that, the paper focuses on the future directions of research that would advance the broader field of Mediterranean cyclones as a whole. Thereby, we propose interdisciplinary cooperation and additional modelling and forecasting strategies, and we highlight the need for new impact-oriented approaches to climate prediction.
Jay M. Tomlin, Kevin A. Jankowski, Daniel P. Veghte, Swarup China, Peiwen Wang, Matthew Fraund, Johannes Weis, Guangjie Zheng, Yang Wang, Felipe Rivera-Adorno, Shira Raveh-Rubin, Daniel A. Knopf, Jian Wang, Mary K. Gilles, Ryan C. Moffet, and Alexander Laskin
Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, https://doi.org/10.5194/acp-21-18123-2021, 2021
Short summary
Short summary
Analysis of individual atmospheric particles shows that aerosol transported from North America during meteorological dry intrusion episodes may have a substantial impact on the mixing state and particle-type population over the mid-Atlantic, as organic contribution and particle-type diversity are significantly enhanced during these periods. These observations need to be considered in current atmospheric models.
Laurent Menut, Bertrand Bessagnet, Régis Briant, Arineh Cholakian, Florian Couvidat, Sylvain Mailler, Romain Pennel, Guillaume Siour, Paolo Tuccella, Solène Turquety, and Myrto Valari
Geosci. Model Dev., 14, 6781–6811, https://doi.org/10.5194/gmd-14-6781-2021, https://doi.org/10.5194/gmd-14-6781-2021, 2021
Short summary
Short summary
The CHIMERE chemistry-transport model is presented in its new version, V2020r1. Many changes are proposed compared to the previous version. These include online modeling, new parameterizations for aerosols, new emissions schemes, a new parameter file format, the subgrid-scale variability of urban concentrations and new transport schemes.
Yonatan Givon, Douglas Keller Jr., Vered Silverman, Romain Pennel, Philippe Drobinski, and Shira Raveh-Rubin
Weather Clim. Dynam., 2, 609–630, https://doi.org/10.5194/wcd-2-609-2021, https://doi.org/10.5194/wcd-2-609-2021, 2021
Short summary
Short summary
Mistral wind is a renowned phenomenon in the Mediterranean, yet its large-scale controlling mechanisms have not been systematically mapped. Here, using a new mistral database for 1981–2016, the upper-tropospheric flow patterns are classified by a self-organizing map algorithm, resulting in 16 distinct patterns related to Rossby wave life cycles. Each pattern has unique surface impact, having implications to understanding mistral predictability, air–sea interaction and their future projections.
Sylvain Mailler, Romain Pennel, Laurent Menut, and Mathieu Lachâtre
Geosci. Model Dev., 14, 2221–2233, https://doi.org/10.5194/gmd-14-2221-2021, https://doi.org/10.5194/gmd-14-2221-2021, 2021
Short summary
Short summary
Representing the advection of thin polluted plumes in numerical models is a challenging task since these models usually tend to excessively diffuse these plumes in the vertical direction. This numerical diffusion process is the cause of major difficulties in representing such dense and thin polluted plumes in numerical models. We propose here, and test in an academic framework, a novel method to solve this problem through the use of an antidiffusive advection scheme in the vertical direction.
Naama Reicher, Carsten Budke, Lukas Eickhoff, Shira Raveh-Rubin, Ifat Kaplan-Ashiri, Thomas Koop, and Yinon Rudich
Atmos. Chem. Phys., 19, 11143–11158, https://doi.org/10.5194/acp-19-11143-2019, https://doi.org/10.5194/acp-19-11143-2019, 2019
Short summary
Short summary
We characterized size-segregated airborne ice-nucleating particles (INPs) during dust storm events in the eastern Mediterranean. We found that particle size can predict its activity, and in general, larger particles are better INPs. The activity of supermicron particles dominated by desert mineral dust was similar between the different dust events regardless of the high variability of the geographic source desert and atmospheric journey.
Cited articles
Arsouze, T., Beuvier, J., Béranger, K., Bourdallé-Badie, R., Deltel, C.,
Drillet, Y., Drobinski, P., Ferry, N., Lebeaupin-Brossier, C., Lyard, F.,
Sevault, F., and Somot, S.: Release note of the high-resolution oceanic
model in the Mediterranean Sea NEMO-MED12 based on NEMO 3.2 version, Tech.
rep., Centre National de Recherches Météorologiques, http://www.umr-cnrm.fr/spip.php?article1197&lang=fr (last access: 24 March 2022), 2012. a
Balmaseda, M. A., Trenberth, K. E., and Källén, E.: Distinctive climate
signals in reanalysis of global ocean heat content, Geophys. Res.
Lett., 40, 1754–1759, https://doi.org/10.1002/grl.50382, 2013. a
Béranger, K., Testor, P., and Crépon, M.: Modelling water mass formation in
the Gulf of Lions (Mediterranean Sea), CIESM Workshop Monographs, Workshop, 27–30 May 2009, Malta, 2009. a
Beuvier, J., Béranger, K., Brossier, C. L., Somot, S., Sevault, F.,
Drillet, Y., Bourdallé-Badie, R., Ferry, N., and Lyard, F.: Spreading
of the Western Mediterranean Deep Water after winter 2005: Time scales and
deep cyclone transport, J. Geophys. Res.-Oceans, 117,
C07022, https://doi.org/10.1029/2011jc007679, 2012. a, b, c, d, e, f
Coppola, L., Prieur, L., Taupier-Letage, I., Estournel, C., Testor, P.,
Lefevre, D., Belamari, S., LeReste, S., and Taillandier, V.: Observation of
oxygen ventilation into deep waters through targeted deployment of multiple
Argo-O2 floats in the north-western Mediterranean Sea in 2013, J.
Geophys. Res.-Oceans, 122, 6325–6341, https://doi.org/10.1002/2016jc012594,
2017. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of
the data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011 (data available at: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, last access: 24 March 2022). a, b
Drobinski, P., Ducrocq, V., Alpert, P., Anagnostou, E., Béranger, K.,
Borga, M., Braud, I., Chanzy, A., Davolio, S., Delrieu, G., Estournel, C.,
Boubrahmi, N. F., Font, J., Grubišić, V., Gualdi, S., Homar, V.,
Ivančan-Picek, B., Kottmeier, C., Kotroni, V., Lagouvardos, K.,
Lionello, P., Llasat, M. C., Ludwig, W., Lutoff, C., Mariotti, A., Richard,
E., Romero, R., Rotunno, R., Roussot, O., Ruin, I., Somot, S.,
Taupier-Letage, I., Tintore, J., Uijlenhoet, R., and Wernli, H.: HyMeX: A
10-Year Multidisciplinary Program on the Mediterranean Water Cycle, B. Am. Meteorol. Soc., 95, 1063–1082,
https://doi.org/10.1175/bams-d-12-00242.1, 2014 (data available at: https://mistrals.sedoo.fr/HyMeX/, last access: 24 March 2022, registration required). a, b, c
Drobinski, P., Anav, A., Lebeaupin Brossier, C., Samson, G., Stéfanon, M., Bastin, S., Baklouti, M., Béranger, K.,
Beuvier, J., Bourdallé-Badie, R., Coquart, L., D'Andrea, F., de Noblet-Ducoudré, N., Diaz, F., Dutay, J.-C., Ethe, C.,
Foujols, M.-A., Khvorostyanov, D., Madec, G., Mancip, M., Masson, S., Menut, L., Palmieri, J., Polcher, J., Turquety, S.,
Valcke, S., and Viovy, N.: Model of the Regional Coupled Earth system (MORCE): Application to process and climate
studies in vulnerable regions, Environ. Modell. Softw., 35, 1–18, https://doi.org/10.1016/j.envsoft.2012.01.017, 2012 (code available at: https://gitlab.in2p3.fr/ipsl/lmd/intro/regipsl/regipsl, last access: 24 March 2022). a
Drobinski, P., Alonzo, B., Basdevant, C., Cocquerez, P., Doerenbecher, A.,
Fourrié, N., and Nuret, M.: Lagrangian dynamics of the mistral during
the HyMeX SOP2, J. Geophys. Res.-Atmos., 122,
1387–1402, https://doi.org/10.1002/2016jd025530, 2017. a
Estournel, C., , Testor, P., Taupier-Letage, I., Bouin, M.-N., Coppola, L.,
Durand, P., Conan, P., Bosse, A., Brilouet, P.-E., Beguery, L., Belamari, S.,
Béranger, K., Beuvier, J., Bourras, D., Canut, G., Doerenbecher, A.,
de Madron, X. D., D'Ortenzio, F., Drobinski, P., Ducrocq, V., Fourrié,
N., Giordani, H., Houpert, L., Labatut, L., Brossier, C. L., Nuret, M.,
Prieur, L., Roussot, O., Seyfried, L., and Somot, S.: HyMeX-SOP2: The
Field Campaign Dedicated to Dense Water Formation in the Northwestern
Mediterranean, Oceanography, 29, 196–206, https://doi.org/10.5670/oceanog.2016.94,
2016a. a
Estournel, C., Testor, P., Damien, P., D'Ortenzio, F.,
Marsaleix, P., Conan, P., Kessouri, F., de Madron, X. D., Coppola, L.,
Lellouche, J.-M., Belamari, S., Mortier, L., Ulses, C., Bouin, M.-N., and
Prieur, L.: High resolution modeling of dense water formation in the
north-western Mediterranean during winter 2012–2013: Processes
and budget, J. Geophys. Res.-Oceans, 121, 5367–5392,
https://doi.org/10.1002/2016jc011935, 2016b. a, b, c, d
Flamant, C.: Alpine lee cyclogenesis influence on air-sea heat exchanges and
marine atmospheric boundary layer thermodynamics over the western
Mediterranean during a Tramontane/Mistral event, J. Geophys.
Res.-Oceans, 108, 8057, https://doi.org/10.1029/2001jc001040, 2003. a
Givon, Y., Keller Jr., D., Silverman, V., Pennel, R., Drobinski, P., and Raveh-Rubin, S.: Large-scale drivers of the mistral wind: link to Rossby wave life cycles and seasonal variability, Weather Clim. Dynam., 2, 609–630, https://doi.org/10.5194/wcd-2-609-2021, 2021. a, b, c, d
Grignon, L., Smeed, D. A., Bryden, H. L., and Schroeder, K.: Importance of the variability of hydrographic preconditioning for deep convection in the Gulf of Lion, NW Mediterranean, Ocean Sci., 6, 573–586, https://doi.org/10.5194/os-6-573-2010, 2010. a, b
Guion, A., Turquety, S., Polcher, J., Pennel, R., Bastin, S., and Arsouze, T.: Droughts and heatwaves in the Western Mediterranean: impact
on vegetation and wildfires using the coupled WRF-ORCHIDEE regional model (RegIPSL), Clim. Dynam., https://doi.org/10.1007/s00382-021-05938-y, online first, 2021. a
Hamon, M., Beuvier, J., Somot, S., Lellouche, J.-M., Greiner, E., Jordà, G., Bouin, M.-N., Arsouze, T., Béranger, K., Sevault, F., Dubois, C., Drevillon, M., and Drillet, Y.: Design and validation of MEDRYS, a Mediterranean Sea reanalysis over the period 1992–2013, Ocean Sci., 12, 577–599, https://doi.org/10.5194/os-12-577-2016, 2016. a, b
Herrmann, M., Sevault, F., Beuvier, J., and Somot, S.: What induced the
exceptional 2005 convection event in the northwestern Mediterranean basin?
Answers from a modeling study, J. Geophys. Res., 115, C12051,
https://doi.org/10.1029/2010jc006162, 2010. a, b, c, d
Houpert, L., de Madron, X. D., Testor, P., Bosse, A.,
D'Ortenzio, F., Bouin, M. N., Dausse, D., Goff, H. L.,
Kunesch, S., Labaste, M., Coppola, L., Mortier, L., and Raimbault, P.:
Observations of open-ocean deep convection in the northwestern Mediterranean
Sea: Seasonal and interannual variability of mixing and deep water masses for
the 2007–2013 Period, J. Geophys. Res.-Oceans, 121,
8139–8171, https://doi.org/10.1002/2016jc011857, 2016. a, b, c
Keller Jr., D.: Code to Analyze and Plot Data for Untangling the mistral and seasonal atmospheric
forcing driving deep convection in the Gulf of Lion: 2012–2013,
GitLab [code], https://gitlab.com/dkllrjr/untangling_deep_conv_2012_2013_code, last access: 5 April 2022. a
Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher,
J., Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic
global vegetation model for studies of the coupled atmosphere-biosphere
system, Global Biogeochem. Cy., 19, GB1015, https://doi.org/10.1029/2003gb002199, 2005. a
Large, W. and Yeager, S.: Diurnal to decadal global forcing for ocean and
sea-ice models: The data sets and flux climatologies, Tech. rep., University Corporation for Atmospheric Research,
https://doi.org/10.5065/D6KK98Q6, 2004. a, b
Large, W. G. and Yeager, S. G.: The global climatology of an interannually
varying air–sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2008. a
Lebeaupin-Brossier, C. and Drobinski, P.: Numerical high-resolution air-sea
coupling over the Gulf of Lions during two tramontane/mistral events, J. Geophys. Res., 114, D10110, https://doi.org/10.1029/2008jd011601, 2009. a
Lebeaupin-Brossier, C., Béranger, K., Deltel, C., and Drobinski, P.: The
Mediterranean response to different space–time resolution
atmospheric forcings using perpetual mode sensitivity simulations, Ocean
Model., 36, 1–25, https://doi.org/10.1016/j.ocemod.2010.10.008, 2011. a, b
Lebeaupin-Brossier, C., Béranger, K., and Drobinski, P.: Sensitivity of
the northwestern Mediterranean Sea coastal and thermohaline circulations
simulated by the ∘-resolution ocean model NEMO-MED12 to
the spatial and temporal resolution of atmospheric forcing, Ocean Model.,
43-44, 94–107, https://doi.org/10.1016/j.ocemod.2011.12.007, 2012. a, b
Lebeaupin-Brossier, C., Léger, F., Giordani, H., Beuvier, J., Bouin,
M.-N., Ducrocq, V., and Fourrié, N.: Dense water formation in the
north-western M editerranean area during HyMeX-SOP2 in ∘
ocean simulations: Ocean-atmosphere coupling impact, J. Geophys.
Res.-Oceans, 122, 5749–5773, https://doi.org/10.1002/2016jc012526, 2017. a
Léger, F., Brossier, C. L., Giordani, H., Arsouze, T., Beuvier, J.,
Bouin, M.-N., Bresson, É., Ducrocq, V., Fourrié, N., and Nuret,
M.: Dense water formation in the north-western Mediterranean area during
HyMeX-SOP2 in ∘ ocean simulations: Sensitivity to initial
conditions, J. Geophys. Res.-Oceans, 121, 5549–5569,
https://doi.org/10.1002/2015jc011542, 2016. a
L'Hévéder, B., Li, L., Sevault, F., and Somot, S.: Interannual
variability of deep convection in the Northwestern Mediterranean simulated
with a coupled AORCM, Clim. Dynam., 41, 937–960,
https://doi.org/10.1007/s00382-012-1527-5, 2012. a
Ludwig, W., Dumont, E., Meybeck, M., and Heussner, S.: River discharges of
water and nutrients to the Mediterranean and Black Sea: Major drivers for
ecosystem changes during past and future decades?, Prog. Oceanogr.,
80, 199–217, https://doi.org/10.1016/j.pocean.2009.02.001, 2009. a
Madec, G., Chartier, M., and Crépon, M.: The effect of thermohaline
forcing variability on deep water formation in the western Mediterranean Sea:
a high-resolution three-dimensional numerical study, Dynam. Atmos. Oceans, 15, 301–332, https://doi.org/10.1016/0377-0265(91)90024-a,
1991a. a
Madec, G., Delecluse, P., Crepon, M., and Chartier, M.: A Three-Dimensional
Numerical Study of Deep-Water Formation in the Northwestern Mediterranean
Sea, J. Phys. Oceanogr., 21, 1349–1371,
https://doi.org/10.1175/1520-0485(1991)021<1349:atdnso>2.0.co;2, 1991b. a
Madec, G., Lott, F., Delecluse, P., and Crépon, M.: Large-Scale
Preconditioning of Deep-Water Formation in the Northwestern Mediterranean
Sea, J. Phys. Oceanogr., 26, 1393–1408, https://doi.org/10.1175/1520-0485(1996)026<1393:LSPODW>2.0.CO;2, 1996. a
MEDOC: Observation of Formation of Deep Water in the Mediterranean Sea, 1969,
Nature, 227, 1037–1040, https://doi.org/10.1038/2271037a0, 1970. a, b, c
Mertens, C. and Schott, F.: Interannual Variability of Deep-Water Formation in
the Northwestern Mediterranean, J. Phys. Oceanogr., 28,
1410–1424, https://doi.org/10.1175/1520-0485(1998)028<1410:ivodwf>2.0.co;2, 1998. a, b
Millot, C. and Taupier-Letage, I.: Circulation in the Mediterranean Sea, in:
The Mediterranean Sea, edited by: Saliot, A., 29–66, Springer Berlin Heidelberg,
https://doi.org/10.1007/b107143, 2005. a
Noh, Y., Cheon, W. G., and Raasch, S.: The Role of Preconditioning in the
Evolution of Open-Ocean Deep Convection, J. Phys. Oceanogr.,
33, 1145–1166, https://doi.org/10.1175/1520-0485(2003)033<1145:tropit>2.0.co;2, 2003. a
Robinson, A., Leslie, W., Theocharis, A., and Lascaratos, A.: Mediterranean Sea
Circulation, in: Encyclopedia of Ocean Sciences, edited by: Steele, J. H., 1689–1705, Elsevier,
https://doi.org/10.1006/rwos.2001.0376, 2001. a
Ruti, P. M., Somot, S., Giorgi, F., Dubois, C., Flaounas, E., Obermann, A.,
Dell'Aquila, A., Pisacane, G., Harzallah, A., Lombardi, E., Ahrens, B.,
Akhtar, N., Alias, A., Arsouze, T., Aznar, R., Bastin, S., Bartholy, J.,
Béranger, K., Beuvier, J., Bouffies-Cloché, S., Brauch, J.,
Cabos, W., Calmanti, S., Calvet, J.-C., Carillo, A., Conte, D., Coppola, E.,
Djurdjevic, V., Drobinski, P., Elizalde-Arellano, A., Gaertner, M.,
Galàn, P., Gallardo, C., Gualdi, S., Goncalves, M., Jorba, O.,
Jordà, G., L'Heveder, B., Lebeaupin-Brossier, C., Li, L., Liguori, G.,
Lionello, P., Maciàs, D., Nabat, P., Önol, B., Raikovic, B., Ramage,
K., Sevault, F., Sannino, G., Struglia, M. V., Sanna, A., Torma, C., and
Vervatis, V.: Med-CORDEX Initiative for Mediterranean Climate Studies,
B. Am. Meteorol. Soc., 97, 1187–1208,
https://doi.org/10.1175/bams-d-14-00176.1, 2016. a
Schott, F., Visbeck, M., Send, U., Fischer, J., Stramma, L., and Desaubies, Y.:
Observations of Deep Convection in the Gulf of Lions, Northern Mediterranean,
during the Winter of 1991/92, J. Phys. Oceanogr., 26, 505–524,
https://doi.org/10.1175/1520-0485(1996)026<0505:oodcit>2.0.co;2, 1996. a
Send, U. and Testor, P.: Direct Observations Reveal the Deep Circulation of the
Western Mediterranean Sea, J. Geophys. Res.-Oceans, 122,
10091–10098, https://doi.org/10.1002/2016jc012679, 2017. a
Severin, T., Kessouri, F., Rembauville, M., Sánchez-Pérez, E. D.,
Oriol, L., Caparros, J., Pujo-Pay, M., Ghiglione, J.-F.,
D'Ortenzio, F., Taillandier, V., Mayot, N., Madron, X.
D. D., Ulses, C., Estournel, C., and Conan, P.: Open-ocean convection
process: A driver of the winter nutrient supply and the spring phytoplankton
distribution in the Northwestern Mediterranean Sea, J. Geophys.
Res.-Oceans, 122, 4587–4601, https://doi.org/10.1002/2016jc012664, 2017. a, b
Skamarock, W., Klemp, J., Dudhia, J., Gill, D., Barker, D., Wang, W., Huang,
X.-Y., and Duda, M.: A Description of the Advanced Research WRF Version 3,
Tech. rep., University Corporation for Atmospheric Research, https://doi.org/10.5065/D68S4MVH, 2008. a
Somot, S.: Modélisation Climatique du Bassin Méditerranéen: Variabilité
et Scénarios de Changement Climatique, PhD thesis, Université Toulouse III, https://tel.archives-ouvertes.fr/tel-00165252 (last access: 24 March 2022),
2005. a
Somot, S., Houpert, L., Sevault, F., Testor, P., Bosse, A., Taupier-Letage, I.,
Bouin, M.-N., Waldman, R., Cassou, C., Sanchez-Gomez, E., de Madron, X. D.,
Adloff, F., Nabat, P., and Herrmann, M.: Characterizing, modelling and
understanding the climate variability of the deep water formation in the
North-Western Mediterranean Sea, Clim. Dynam., 51, 1179–1210,
https://doi.org/10.1007/s00382-016-3295-0, 2016. a, b, c, d, e, f, g, h, i
Song, X. and Yu, L.: Air-sea heat flux climatologies in the Mediterranean Sea:
Surface energy balance and its consistency with ocean heat storage, J. Geophys. Res.-Oceans, 122, 4068–4087, https://doi.org/10.1002/2016jc012254,
2017. a
Taupier-Letage, I.: CTD SOP2, Provence – Tethys 2, SEDOO OMP [data set],
https://doi.org/10.6096/MISTRALS-HYMEX.950, 2013 (https://mistrals.sedoo.fr/HyMeX/, last access: 24 March 2022, registration required). a, b
Testor, P. and Gascard, J.-C.: Large-Scale Spreading of Deep Waters in the
Western Mediterranean Sea by Submesoscale Coherent Eddies, J.
Phys. Oceanogr., 33, 75–87,
https://doi.org/10.1175/1520-0485(2003)033<0075:lssodw>2.0.co;2, 2003. a
The Lab Sea Group: The Labrador Sea Deep Convection Experiment, B.
Am. Meteorol. Soc., 79, 2033–2058,
https://doi.org/10.1175/1520-0477(1998)079<2033:tlsdce>2.0.co;2, 1998. a
Turner, J. S.: Buoyancy Effects in Fluids, Cambridge University Press, https://doi.org/10.1017/CBO9780511608827, 1973. a
Waldman, R., Brüggemann, N., Bosse, A., Spall, M., Somot, S., and Sevault, F.:
Overturning the Mediterranean Thermohaline Circulation, Geophys. Res.
Lett., 45, 8407–8415, https://doi.org/10.1029/2018gl078502, 2018. a
Short summary
The mistral winds are believed to be the primary source of cooling of the Gulf of Lion, leading to deep convection in the region, a process that mixes the ocean column from the seafloor to the sea surface. However, we have found that seasonal atmospheric changes also significantly cool the Gulf of Lion waters to cause deep convection, rather than mistral winds being the sole source, contributing roughly two-thirds of the required cooling, with the mistral winds contributing the final third.
The mistral winds are believed to be the primary source of cooling of the Gulf of Lion, leading...