Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1431-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1431-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Major sources of North Atlantic Deep Water in the subpolar North Atlantic from Lagrangian analyses in an eddy-rich ocean model
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Patricia V. K. Handmann
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Arne Biastoch
GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany
Christian-Albrechts-Universität zu Kiel, Kiel, Germany
Related authors
No articles found.
Léo C. Aroucha, Joke F. Lübbecke, Peter Brandt, Franziska U. Schwarzkopf, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-3320, https://doi.org/10.5194/egusphere-2024-3320, 2024
Short summary
Short summary
The West African coastal region sustains highly productive fisheries and marine ecosystems influenced by sea surface temperature. We use oceanic models to show that the freshwater input from land to ocean strengthens a surface northward (southward) coastal current north (south) of the Congo river mouth, promoting a transfer of cooler (warmer) waters to north (south) of the Congo discharge location. We highlight the significant impact of river discharge on ocean temperatures and circulation.
Hendrik Grosselindemann, Frederic S. Castruccio, Gokhan Danabasoglu, and Arne Biastoch
EGUsphere, https://doi.org/10.5194/egusphere-2024-2288, https://doi.org/10.5194/egusphere-2024-2288, 2024
Short summary
Short summary
This study investigates Agulhas Leakage and examines its role in the global ocean circulation. It utilises a high-resolution earth system model and a pre-industrial climate to look at the response of Agulhas Leakage to the wind field and the Atlantic Meridional Overturning Circulation (AMOC) as well as its evolution under climate change. Agulhas Leakage influences the stability of the AMOC whose possible collapse would impact the global climate on the Northern Hemisphere.
Kristin Burmeister, Franziska U. Schwarzkopf, Willi Rath, Arne Biastoch, Peter Brandt, Joke F. Lübbecke, and Mark Inall
Ocean Sci., 20, 307–339, https://doi.org/10.5194/os-20-307-2024, https://doi.org/10.5194/os-20-307-2024, 2024
Short summary
Short summary
We apply two different forcing products to a high-resolution ocean model to investigate their impact on the simulated upper-current field in the tropical Atlantic. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current fields. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations.
Torge Martin and Arne Biastoch
Ocean Sci., 19, 141–167, https://doi.org/10.5194/os-19-141-2023, https://doi.org/10.5194/os-19-141-2023, 2023
Short summary
Short summary
How is the ocean affected by continued Greenland Ice Sheet mass loss? We show in a systematic set of model experiments that atmospheric feedback needs to be accounted for as the large-scale ocean circulation is more than twice as sensitive to the meltwater otherwise. Coastal winds, boundary currents, and ocean eddies play a key role in redistributing the meltwater. Eddy paramterization helps the coarse simulation to perform better in the Labrador Sea but not in the North Atlantic Current region.
Alan D. Fox, Patricia Handmann, Christina Schmidt, Neil Fraser, Siren Rühs, Alejandra Sanchez-Franks, Torge Martin, Marilena Oltmanns, Clare Johnson, Willi Rath, N. Penny Holliday, Arne Biastoch, Stuart A. Cunningham, and Igor Yashayaev
Ocean Sci., 18, 1507–1533, https://doi.org/10.5194/os-18-1507-2022, https://doi.org/10.5194/os-18-1507-2022, 2022
Short summary
Short summary
Observations of the eastern subpolar North Atlantic in the 2010s show exceptional freshening and cooling of the upper ocean, peaking in 2016 with the lowest salinities recorded for 120 years. Using results from a high-resolution ocean model, supported by observations, we propose that the leading cause is reduced surface cooling over the preceding decade in the Labrador Sea, leading to increased outflow of less dense water and so to freshening and cooling of the eastern subpolar North Atlantic.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Jens Zinke, Takaaki K. Watanabe, Siren Rühs, Miriam Pfeiffer, Stefan Grab, Dieter Garbe-Schönberg, and Arne Biastoch
Clim. Past, 18, 1453–1474, https://doi.org/10.5194/cp-18-1453-2022, https://doi.org/10.5194/cp-18-1453-2022, 2022
Short summary
Short summary
Salinity is an important and integrative measure of changes to the water cycle steered by changes to the balance between rainfall and evaporation and by vertical and horizontal movements of water parcels by ocean currents. However, salinity measurements in our oceans are extremely sparse. To fill this gap, we have developed a 334-year coral record of seawater oxygen isotopes that reflects salinity changes in the globally important Agulhas Current system and reveals its main oceanic drivers.
Ioana Ivanciu, Katja Matthes, Arne Biastoch, Sebastian Wahl, and Jan Harlaß
Weather Clim. Dynam., 3, 139–171, https://doi.org/10.5194/wcd-3-139-2022, https://doi.org/10.5194/wcd-3-139-2022, 2022
Short summary
Short summary
Greenhouse gas concentrations continue to increase, while the Antarctic ozone hole is expected to recover during the twenty-first century. We separate the effects of ozone recovery and of greenhouse gases on the Southern Hemisphere atmospheric and oceanic circulation, and we find that ozone recovery is generally reducing the impact of greenhouse gases, with the exception of certain regions of the stratosphere during spring, where the two effects reinforce each other.
Jannes Koelling, Dariia Atamanchuk, Johannes Karstensen, Patricia Handmann, and Douglas W. R. Wallace
Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, https://doi.org/10.5194/bg-19-437-2022, 2022
Short summary
Short summary
In this study, we investigate oxygen variability in the deep western boundary current in the Labrador Sea from multiyear moored records. We estimate that about half of the oxygen taken up in the interior Labrador Sea by air–sea gas exchange during deep water formation is exported southward the same year. Our results underline the complexity of the oxygen uptake and export in the Labrador Sea and highlight the important role this region plays in supplying oxygen to the deep ocean.
Arne Biastoch, Franziska U. Schwarzkopf, Klaus Getzlaff, Siren Rühs, Torge Martin, Markus Scheinert, Tobias Schulzki, Patricia Handmann, Rebecca Hummels, and Claus W. Böning
Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, https://doi.org/10.5194/os-17-1177-2021, 2021
Short summary
Short summary
The Atlantic Meridional Overturning Circulation (AMOC) quantifies the impact of the ocean on climate and climate change. Here we show that a high-resolution ocean model is able to realistically simulate ocean currents. While the mean representation of the AMOC depends on choices made for the model and on the atmospheric forcing, the temporal variability is quite robust. Comparing the ocean model with ocean observations, we able to identify that the AMOC has declined over the past two decades.
Christina Schmidt, Franziska U. Schwarzkopf, Siren Rühs, and Arne Biastoch
Ocean Sci., 17, 1067–1080, https://doi.org/10.5194/os-17-1067-2021, https://doi.org/10.5194/os-17-1067-2021, 2021
Short summary
Short summary
We estimate Agulhas leakage, water flowing from the Indian Ocean to the South Atlantic, in an ocean model with two different tools. The mean transport, variability and trend of Agulhas leakage is simulated comparably with both tools, emphasising the robustness of our method. If the experiments are designed differently, the mean transport of Agulhas leakage is altered, but not the trend. Agulhas leakage waters cool and become less salty south of Africa resulting in a density increase.
Ioana Ivanciu, Katja Matthes, Sebastian Wahl, Jan Harlaß, and Arne Biastoch
Atmos. Chem. Phys., 21, 5777–5806, https://doi.org/10.5194/acp-21-5777-2021, https://doi.org/10.5194/acp-21-5777-2021, 2021
Short summary
Short summary
The Antarctic ozone hole has driven substantial dynamical changes in the Southern Hemisphere atmosphere over the past decades. This study separates the historical impacts of ozone depletion from those of rising levels of greenhouse gases and investigates how these impacts are captured in two types of climate models: one using interactive atmospheric chemistry and one prescribing the CMIP6 ozone field. The effects of ozone depletion are more pronounced in the model with interactive chemistry.
Josefine Maas, Susann Tegtmeier, Yue Jia, Birgit Quack, Jonathan V. Durgadoo, and Arne Biastoch
Atmos. Chem. Phys., 21, 4103–4121, https://doi.org/10.5194/acp-21-4103-2021, https://doi.org/10.5194/acp-21-4103-2021, 2021
Short summary
Short summary
Cooling-water disinfection at coastal power plants is a known source of atmospheric bromoform. A large source of anthropogenic bromoform is the industrial regions in East Asia. In current bottom-up flux estimates, these anthropogenic emissions are missing, underestimating the global air–sea flux of bromoform. With transport simulations, we show that by including anthropogenic bromoform from cooling-water treatment, the bottom-up flux estimates significantly improve in East and Southeast Asia.
Katja Matthes, Arne Biastoch, Sebastian Wahl, Jan Harlaß, Torge Martin, Tim Brücher, Annika Drews, Dana Ehlert, Klaus Getzlaff, Fritz Krüger, Willi Rath, Markus Scheinert, Franziska U. Schwarzkopf, Tobias Bayr, Hauke Schmidt, and Wonsun Park
Geosci. Model Dev., 13, 2533–2568, https://doi.org/10.5194/gmd-13-2533-2020, https://doi.org/10.5194/gmd-13-2533-2020, 2020
Short summary
Short summary
A new Earth system model, the Flexible Ocean and Climate Infrastructure (FOCI), is introduced, consisting of a high-top atmosphere, an ocean model, sea-ice and land surface model components. A unique feature of FOCI is the ability to explicitly resolve small-scale oceanic features, for example, the Agulhas Current and the Gulf Stream. It allows to study the evolution of the climate system on regional and seasonal to (multi)decadal scales and bridges the gap to coarse-resolution climate models.
Nele Tim, Eduardo Zorita, Kay-Christian Emeis, Franziska U. Schwarzkopf, Arne Biastoch, and Birgit Hünicke
Earth Syst. Dynam., 10, 847–858, https://doi.org/10.5194/esd-10-847-2019, https://doi.org/10.5194/esd-10-847-2019, 2019
Short summary
Short summary
Our study reveals that the latitudinal position and intensity of Southern Hemisphere trades and westerlies are correlated. In the last decades the westerlies have shifted poleward and intensified. Furthermore, the latitudinal shifts and intensity of the trades and westerlies impact the sea surface temperatures around southern Africa and in the South Benguela upwelling region. The future development of wind stress depends on the strength of greenhouse gas forcing.
Franziska U. Schwarzkopf, Arne Biastoch, Claus W. Böning, Jérôme Chanut, Jonathan V. Durgadoo, Klaus Getzlaff, Jan Harlaß, Jan K. Rieck, Christina Roth, Markus M. Scheinert, and René Schubert
Geosci. Model Dev., 12, 3329–3355, https://doi.org/10.5194/gmd-12-3329-2019, https://doi.org/10.5194/gmd-12-3329-2019, 2019
Short summary
Short summary
A family of nested global ocean general circulation model configurations, the INALT family, has been established with resolutions of 1/10°, 1/20° and 1/60° in the South Atlantic and western Indian oceans, covering the greater Agulhas Current (AC) system. The INALT family provides a consistent set of configurations that allows to address eddy dynamics in the AC system and their impact on the large-scale ocean circulation.
Josefine Maas, Susann Tegtmeier, Birgit Quack, Arne Biastoch, Jonathan V. Durgadoo, Siren Rühs, Stephan Gollasch, and Matej David
Ocean Sci., 15, 891–904, https://doi.org/10.5194/os-15-891-2019, https://doi.org/10.5194/os-15-891-2019, 2019
Short summary
Short summary
In a large-scale analysis, the spread of disinfection by-products from oxidative ballast water treatment is investigated, with a focus on Southeast Asia where major ports are located. Halogenated compounds such as bromoform (CHBr3) are produced in the ballast water and, once emitted into the environment, can participate in ozone depletion. Anthropogenic bromoform is rapidly emitted into the atmosphere and can locally double around large ports. A large-scale impact cannot be found.
Siren Rühs, Franziska U. Schwarzkopf, Sabrina Speich, and Arne Biastoch
Ocean Sci., 15, 489–512, https://doi.org/10.5194/os-15-489-2019, https://doi.org/10.5194/os-15-489-2019, 2019
Short summary
Short summary
We revisit the sources for the upper limb of the overturning circulation in the South Atlantic by tracking fluid particles in a high-resolution ocean model. Our results suggest that the upper limb’s transport is dominantly supplied by waters with Indian Ocean origin, but the contribution of waters with Pacific origin is substantially larger than previously estimated with coarse-resolution models. Yet, a large part of upper limb waters obtains thermohaline properties within the South Atlantic.
D. Le Bars, J. V. Durgadoo, H. A. Dijkstra, A. Biastoch, and W. P. M. De Ruijter
Ocean Sci., 10, 601–609, https://doi.org/10.5194/os-10-601-2014, https://doi.org/10.5194/os-10-601-2014, 2014
Cited articles
Bacon, S. et al.: RSS Discovery Cruise 332, 21 August–25 September 2008, Arctic Gateway
(WOCE AR7), http://nora.nerc.ac.uk/id/eprint/265429 (last access: 14 September 2022), 2010. a
Beismann, J.-O. and Barnier, B.: Variability of the meridional overturning
circulation of the North Atlantic: sensitivity to overflows of dense water
masses, Ocean Dynam., 54, 92–106, 2004. a
Berx, B., Hansen, B., Østerhus, S., Larsen, K. M., Sherwin, T., and Jochumsen, K.: Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe–Shetland Channel, Ocean Sci., 9, 639–654, https://doi.org/10.5194/os-9-639-2013, 2013. a
Biastoch, A., Schwarzkopf, F. U., Getzlaff, K., Rühs, S., Martin, T., Scheinert, M., Schulzki, T., Handmann, P., Hummels, R., and Böning, C. W.: Regional imprints of changes in the Atlantic Meridional Overturning Circulation in the eddy-rich ocean model VIKING20X, Ocean Sci., 17, 1177–1211, https://doi.org/10.5194/os-17-1177-2021, 2021. a, b, c, d, e, f, g
Bower, A. S. and Furey, H.: Iceland-Scotland Overflow Water transport
variability through the Charlie-Gibbs Fracture Zone and the impact of the
North Atlantic Current, J. Geophys. Res.-Oceans, 122, 6989–7012, 2017. a
Bower, A. S., Lozier, M. S., Gary, S. F., and Böning, C. W.: Interior
pathways of the North Atlantic meridional overturning circulation, Nature,
459, 243–247, https://doi.org/10.1038/nature07979, 2009. a, b
Brandt, P., Funk, A., Czeschel, L., Eden, C., and Böning, C. W.: Ventilation
and Transformation of Labrador Sea Water and Its Rapid Export in the Deep
Labrador Current, J. Phys. Ocean., 37, 946–961,
https://doi.org/10.1175/JPO3044.1, 2007. a
Brüggemann, N. and Katsman, C. A.: Dynamics of Downwelling in an Eddying
Marginal Sea: Contrasting the Eulerian and the Isopycnal Perspective,
J. Phys. Ocean., 49, 3017–3035,
https://doi.org/10.1175/JPO-D-19-0090.1, 2019. a, b
Chafik, L., Hátún, H., Kjellsson, J., Larsen, K. M. H., Rossby, T., and Berx,
B.: Discovery of an unrecognized pathway carrying overflow waters toward the
Faroe Bank Channel, Nat. Commun., 11, 1–10, 2020. a
Cuny, J., Rhines, P. B., Niiler, P. P., and Bacon, S.: Labrador Sea Boundary
Currents and the Fate of the Irminger Sea Water, J. Phys. Ocean., 32, 627–647,
https://doi.org/10.1175/1520-0485(2002)032<0627:LSBCAT>2.0.CO;2, 2002. a, b
Cuny, J., Rhines, P. B., Schott, F., and Lazier, J.: Convection above the
Labrador Continental Slope, J. Phys. Ocean., 35, 489–511, https://doi.org/10.1175/JPO2700.1, 2005. a
Delandmeter, P. and van Sebille, E.: The Parcels v2.0 Lagrangian framework: new field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a, b
Desbruyères, D. G., Mercier, H., Maze, G., and Daniault, N.: Surface predictor of overturning circulation and heat content change in the subpolar North Atlantic, Ocean Sci., 15, 809–817, https://doi.org/10.5194/os-15-809-2019, 2019. a, b, c
Devana, M. S., Johns, W. E., Houk, A., and Zou, S.: Rapid Freshening of Iceland
Scotland Overflow Water Driven By Entrainment of a Major Upper Ocean Salinity
Anomaly, Geophys. Res. Lett., 48, e2021GL094396,
https://doi.org/10.1029/2021GL094396, 2021. a, b
Dietrich, G.: Ozeanographische Probleme der deutschen Forschungsfahrten im
Internationalen Geophysikalischen Jahr 1957/58, Deutsche Hydrografische
Zeitschrift, 10, 39–61, 1957. a
Fichefet, T. and Maqueda, M. A.: Sensitivity of a global sea ice model to the
treatment of ice thermodynamics and dynamics, J. Geophys. Res.-Oceans, 102, 12609–12646, 1997. a
Fischer, J., Karstensen, J., Oltmanns, M., and Schmidtko, S.: Mean circulation and EKE distribution in the Labrador Sea Water level of the subpolar North Atlantic, Ocean Sci., 14, 1167–1183, https://doi.org/10.5194/os-14-1167-2018, 2018. a, b, c
Fröb, F., Olsen, A., Våge, K., Moore, G. W. K., Yashayaev, I., Jeansson, E.,
and Rajasakaren, B.: Irminger Sea deep convection injects oxygen and
anthropogenic carbon to the ocean interior, Nat. Commun., 7, 1–8,
2016. a
Garabato, A. C. N., Frajka-Williams, E. E., Spingys, C. P., Legg, S., Polzin,
K. L., Forryan, A., Abrahamsen, E. P., Buckingham, C. E., Griffies, S. M.,
and McPhail, S. D.: Rapid mixing and exchange of deep-ocean waters in an
abyssal boundary current, P. Natl. Acad. Sci. USA,
116, 13233–13238, 2019. a
Georgiou, S., van der Boog, C. G., Brüggemann, N., Ypma, S. L., Pietrzak,
J. D., and Katsman, C. A.: On the interplay between downwelling, deep
convection and mesoscale eddies in the Labrador Sea, Ocean Modell., 135,
56–70,
2019. a
Georgiou, S., Ypma, S. L., Brüggemann, N., Sayol, J.-M., van der Boog, C. G.,
Spence, P., Pietrzak, J. D., and Katsman, C. A.: Direct and indirect
pathways of convected water masses and their impacts on the overturning
dynamics of the Labrador Sea, J. Geophys. Res.-Oceans, 126, e2020JC016654, https://doi.org/10.1029/2020JC016654, 2020. a, b
Grist, J. P., Marsh, R., and Josey, S. A.: On the relationship between the
North Atlantic meridional overturning circulation and the surface-forced
overturning streamfunction, J. Climate, 22, 4989–5002,
2009. a
Haine, T., Böning, C., Brandt, P., Fischer, J., Funk, A., Kieke, D.,
Kvaleberg, E., Rhein, M., and Visbeck, M.: North Atlantic deep water
formation in the Labrador Sea, recirculation through the subpolar gyre, and
discharge to the subtropics, in: Arctic – Subarctic Ocean Fluxes,
Springer, 653–701, 2008. a, b
Hansen, B., Hátún, H., Kristiansen, R., Olsen, S. M., and Østerhus, S.: Stability and forcing of the Iceland-Faroe inflow of water, heat, and salt to the Arctic, Ocean Sci., 6, 1013–1026, https://doi.org/10.5194/os-6-1013-2010, 2010. a
Hansen, B., Húsgarð Larsen, K. M., Hátún, H., and Østerhus, S.: A stable Faroe Bank Channel overflow 1995–2015, Ocean Sci., 12, 1205–1220, https://doi.org/10.5194/os-12-1205-2016, 2016. a
Hansen, B. and Østerhus, S.: North atlantic–nordic seas exchanges, Prog. Oceanogr., 45, 109–208, 2000. a
Harden, B. E., Pickart, R. S., Valdimarsson, H., Våge, K., de Steur, L.,
Richards, C., Bahr, F., Torres, D., Børve, E., and Jónsson, S.: Upstream
sources of the Denmark Strait Overflow: Observations from a high-resolution
mooring array, Deep Sea Res. Pt. I, 112,
94–112, 2016. a
Higginson, S., Thompson, K., and Huang, J.: The
mean surface circulation of the North Atlantic subpolar gyre: A comparison of
estimates derived from new gravity and oceanographic measurements, J. Geophys. Res.-Oceans, 116, https://doi.org/10.1029/2010JC006877, 2011. a, b
Hjartarson, A., Erlendsson, Ö., and Blischke, A.: The
Greenland–Iceland–Faroe Ridge Complex, Geol. Soc. Spec. Publ., 447, 127–148, https://doi.org/10.1144/SP447.14, 2017. a
Intergovernmental Oceanographic Commission: The International
thermodynamic equation of seawater–2010: calculation and use of
thermodynamic properties, (includes corrections up to 31st October 2015),
2015. a
Jochumsen, K., Quadfasel, D., Valdimarsson, H., and Jonsson, S.: Variability of
the Denmark Strait overflow: Moored time series from 1996–2011, J. Geophys. Res.-Oceans, 117, https://doi.org/10.1029/2012JC008244,
2012. a
Jochumsen, K., Moritz, M., Nunes, N., Quadfasel, D., Larsen, K. M. H., Hansen,
B., Valdimarsson, H., and Jonsson, S.: Revised transport estimates of the D
enmark S trait overflow, J. Geophys. Res.-Oceans, 122,
3434–3450, 2017. a
Jong, M. F. and Steur, L.: Strong winter cooling over the Irminger Sea in
winter 2014–2015, exceptional deep convection, and the emergence of
anomalously low SST, Geophys. Res. Lett., 43, 7106–7113, 2016. a
Kieke, D. and Yashayaev, I.: Studies of Labrador Sea Water formation and
variability in the subpolar North Atlantic in the light of international
partnership and collaboration, Prog. Oceanogr., 132, 220–232, 2015. a
Koelling, J., Atamanchuk, D., Karstensen, J., Handmann, P., and Wallace, D. W. R.: Oxygen export to the deep ocean following Labrador Sea Water formation, Biogeosciences, 19, 437–454, https://doi.org/10.5194/bg-19-437-2022, 2022. a
Koszalka, I. M., Haine, T. W. N., and Magaldi, M. G.: Fates and Travel Times of
Denmark Strait Overflow Water in the Irminger Basin, J. Phys. Ocean., 43, 2611–2628, https://doi.org/10.1175/JPO-D-13-023.1, 2013. a
Lab Sea Group: The Labrador Sea deep convection experiment, B. Am. Meteorol. Soc., 79, 2033–2058, 1998. a
Lankhorst, M. and Zenk, W.: Lagrangian observations of the middepth and deep
velocity fields of the northeastern Atlantic Ocean, J. Phys. Ocean., 36, 43–63, 2006. a
Lavender, K. L., Davis, R. E., and Owens, W. B.: Mid-depth recirculation
observed in the interior Labrador and Irminger Seas by direct velocity
measurements, Nature, 407, 66–69, 2000. a
Lazier, J.: The renewal of Labrador sea water, Deep Sea Res., 20, 341–353, https://doi.org/10.1016/0011-7471(73)90058-2,
1973. a
Le Bras, I. A.-A., Straneo, F., Holte, J., de Jong, M. F., and Holliday, N. P.:
Rapid Export of Waters Formed by Convection Near the Irminger Sea's Western
Boundary, Geophys. Res. Lett., 47, e2019GL085989,
https://doi.org/10.1029/2019gl085989, 2020. a, b
Legg, S., Ezer, T., Jackson, L., Briegleb, B. P., Danabasoglu, G., Large,
W. G., Wu, W., Chang, Y., Ozgokmen, T. M., and Peters, H.: Improving oceanic
overflow representation in climate models: The gravity current entrainment
climate process team, B. Am. Meteorol. Soc., 90, 657–670, 2009. a
Lilly, J. M., Rhines, P. B., Schott, F., Lavender, K., Lazier, J., Send, U.,
and D’Asaro, E.: Observations of the Labrador Sea eddy field, Prog. Oceanogr., 59, 75–176, https://doi.org/10.1016/j.pocean.2003.08.013, 2003. a
Liu, M. and Tanhua, T.: Water masses in the Atlantic Ocean: characteristics and distributions, Ocean Sci., 17, 463–486, https://doi.org/10.5194/os-17-463-2021, 2021. a, b, c, d
Lozier, M. S.: Overturning in the North Atlantic, Annu. Rev. Mar. Sci., 4, 291–315,
2012. a
Lozier, M. S., Bacon, S., Bower, A. S., Cunningham, S. A., de Jong, M. F.,
de Steur, L., deYoung, B., Fischer, J., Gary, S. F., Greenan, B. J. W.,
Heimbach, P., Holliday, N. P., Houpert, L., Inall, M. E., Johns, W. E.,
Johnson, H. L., Karstensen, J., Li, F., Lin, X., Mackay, N., Marshall, D. P.,
Mercier, H., Myers, P. G., Pickart, R. S., Pillar, H. R., Straneo, F.,
Thierry, V., Weller, R. A., Williams, R. G., Wilson, C., Yang, J., Zhao, J.,
and Zika, J. D.: Overturning in the Subpolar North Atlantic Program: A New
International Ocean Observing System, B. Am. Meteorol. Soc., 98, 737–752, 2017. a
Lozier, M. S., Li, F., Bacon, S., Bahr, F., Bower, A. S., Cunningham, S. A.,
de Jong, M. F., de Steur, L., deYoung, B., Fischer, J., Gary, S. F., Greenan,
B. J. W., Holliday, N. P., Houk, A., Houpert, L., Inall, M. E., Johns, W. E.,
Johnson, H. L., Johnson, C., Karstensen, J., Koman, G., Le Bras, I. A., Lin,
X., Mackay, N., Marshall, D. P., Mercier, H., Oltmanns, M., Pickart, R. S.,
Ramsey, A. L., Rayner, D., Straneo, F., Thierry, V., Torres, D. J., Williams,
R. G., Wilson, C., Yang, J., Yashayaev, I., and Zhao, J.: A sea change in
our view of overturning in the subpolar North Atlantic, Science, 363,
516–521, https://doi.org/10.1126/science.aau6592, 2019. a, b, c
Lumpkin, R., Speer, K. G., and Koltermann, K. P.: Transport across 48 N in the
Atlantic Ocean, J. Phys. Ocean., 38, 733–752, 2008. a
MacGilchrist, G. A., Johnson, H. L., Marshall, D. P., Lique, C., Thomas, M.,
Jackson, L. C., and Wood, R. A.: Locations and Mechanisms of Ocean
Ventilation in the High-Latitude North Atlantic in an Eddy-Permitting Ocean
Model, J. Climate, 33, 10113–10131,
https://doi.org/10.1175/JCLI-D-20-0191.1, 2020. a
MacKinnon, J., St Laurent, L., and Naveira Garabato, A. C.: Chapter 7 –
Diapycnal Mixing Processes in the Ocean Interior, in: Ocean Circulation and
Climate, edited by: Siedler, G., Griffies, S. M., Gould, J., and Church,
J. A., Vol. 103 of International Geophysics, Academic
Press, 159–183, https://doi.org/10.1016/B978-0-12-391851-2.00007-6, 2013. a, b
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D.,
Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C.,
Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato,
T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D.,
Storto, A., and Vancoppenolle, M.: NEMO ocean engine, Zenodo,
https://doi.org/10.5281/zenodo.1472492, 2017. a
Marsh, R.: Recent variability of the North Atlantic thermohaline circulation
inferred from surface heat and freshwater fluxes, J. Climate, 13,
3239–3260, 2000. a
Marsh, R., De Cuevas, B. A., Coward, A. C., Bryden, H. L., and Álvarez, M.:
Thermohaline circulation at three key sections in the North Atlantic over
1985–2002, Geophys. Res. Lett., 32, https://doi.org/10.1029/2004GL022281, 2005. a
Marshall, J. and Schott, F.: Open-ocean convection: Observations, theory, and
models, Rev. Geophys., 37, 1–64, https://doi.org/10.1029/98RG02739, 1999. a, b, c
Mertens, C., Rhein, M., Walter, M., Böning, C. W., Behrens, E., Kieke, D.,
Steinfeldt, R., and Stöber, U.: Circulation and transports in the
Newfoundland Basin, western subpolar North Atlantic, J. Geophys. Res.-Oceans, 119, 7772–7793, 2014. a
Molinari, R. L., Fine, R. A., Wilson, W. D., Curry, R. G., Abell, J., and
McCartney, M. S.: The arrival of recently formed Labrador sea water in the
Deep Western Boundary Current at 26.5∘ N, Geophys. Res. Lett., 25, 2249–2252, https://doi.org/10.1029/98GL01853, 1998. a
Palter, J. B., Caron, C.-A., Law, K. L., Willis, J. K., Trossman, D. S.,
Yashayaev, I. M., and Gilbert, D.: Variability of the directly observed,
middepth subpolar North Atlantic circulation, Geophys. Res. Lett., 43,
2700–2708, https://doi.org/10.1002/2015gl067235, 2016. a, b, c, d
Petit, T., Lozier, M. S., Josey, S. A., and Cunningham, S. A.: Atlantic deep
water formation occurs primarily in the Iceland Basin and Irminger Sea by
local buoyancy forcing, Geophys. Res. Lett., 47, e2020GL091028, https://doi.org/10.1029/2020GL091028,
2020. a, b, c, d
Petit, T., Lozier, M. S., Josey, S. A., and Cunningham, S. A.: Role of air–sea fluxes and ocean surface density in the production of deep waters in the eastern subpolar gyre of the North Atlantic, Ocean Sci., 17, 1353–1365, https://doi.org/10.5194/os-17-1353-2021, 2021. a
Pickart, R. S.: Water mass components of the North Atlantic deep western
boundary current, Deep Sea Res.,
39, 1553–1572,
1992. a
Pickart, R. S. and Spall, M. A.: Impact of Labrador Sea Convection on the North
Atlantic Meridional Overturning Circulation, J. Phys. Oceanogr., 37,
2207–2227, https://doi.org/10.1175/jpo3178.1, 2007. a
Pickart, R. S., Spall, M. A., and Lazier, J. R.: Mid-depth ventilation in the
western boundary current system of the sub-polar gyre, Deep Sea Res. Pt. I, 44, 1025–1054,
https://doi.org/10.1016/S0967-0637(96)00122-7, 1997. a, b, c
Pickart, R. S., Torres, D. J., and Clarke, R. A.: Hydrography of the Labrador
Sea during Active Convection, J. Phys. Ocean., 32, 428–457, https://doi.org/10.1175/1520-0485(2002)032<0428:HOTLSD>2.0.CO;2, 2002. a
Pickart, R. S., Spall, M. A., Ribergaard, M. H., Moore, G. W. K., and Milliff,
R. F.: Deep convection in the Irminger Sea forced by the Greenland tip jet,
Nature, 424, 152–156, https://doi.org/10.1038/nature01729, 2003. a
Piron, A., Thierry, V., Mercier, H., and Caniaux, G.: Argo float observations
of basin-scale deep convection in the Irminger sea during winter
2011–2012, Deep Sea Res. Pt. I, 109,
76–90, https://doi.org/10.1016/j.dsr.2015.12.012, 2016. a
Radko, T. and Marshall, J.: Eddy-Induced Diapycnal Fluxes and Their Role in the
Maintenance of the Thermocline, J. Phys. Ocean., 34,
372–383, https://doi.org/10.1175/1520-0485(2004)034<0372:EDFATR>2.0.CO;2, 2004. a
Rhein, M., Kieke, D., Hüttl-Kabus, S., Roessler, A., Mertens, C., Meissner,
R., Klein, B., Böning, C. W., and Yashayaev, I.: Deep water formation,
the subpolar gyre, and the meridional overturning circulation in the subpolar
North Atlantic, Deep Sea Res. Pt II,
58, 1819–1832,
2011. a
Rhein, M., Rintoul, S., Aoki, S., Campos, E., Chambers, D., Feely, R., Gulev,
S., Johnson, G., Josey, S., Kostianoy, A., et al.: Observations: ocean,
Cambridge University Press, 255–316, https://doi.org/10.1017/CBO9781107415324.010,
2013. a
Rossby, T., Flagg, C., Chafik, L., Harden, B., and Søiland, H.: A Direct
Estimate of Volume, Heat, and Freshwater Exchange Across the
Greenland‐Iceland‐Faroe‐Scotland Ridge, J. Geophys. Res.-Oceans, 123, 7139–7153, 2018. a
Rudels, B., Eriksson, P., Fahrbach, E., Budéus, G., and Meincke, J.: The East
Greenland Current and its contribution to the Denmark Strait overflow,
ICES J. Mar. Sci., 59, 1133–1154, 2002. a
Sayol, J.-M., Dijkstra, H., and Katsman, C.: Seasonal and regional variations of sinking in the subpolar North Atlantic from a high-resolution ocean model, Ocean Sci., 15, 1033–1053, https://doi.org/10.5194/os-15-1033-2019, 2019. a
Schmidt, C., Schwarzkopf, F. U., Rühs, S., and Biastoch, A.: Characteristics and robustness of Agulhas leakage estimates: an inter-comparison study of Lagrangian methods, Ocean Sci., 17, 1067–1080, https://doi.org/10.5194/os-17-1067-2021, 2021. a, b
Schott, F. A., Fischer, J., Dengler, M., and Zantopp, R.: Variability of the
deep western boundary current east of the Grand Banks, Geophys. Res. Lett., 33, https://doi.org/10.1029/2006GL026563, 2006. a
Sidorenko, D., Danilov, S., Fofonova, V., Cabos, W., Koldunov, N., Scholz, P.,
Sein, D. V., and Wang, Q.: AMOC, Water Mass Transformations, and Their
Responses to Changing Resolution in the Finite-VolumE Sea Ice-Ocean Model,
J. Adv. Model. Earth Sy., 12,
https://doi.org/10.1029/2020MS002317, 2020. a
Spall, M. A.: Large-Scale Circulations Forced by Localized Mixing over a
Sloping Bottom, J. Phys. Ocean., 31, 2369–2384,
https://doi.org/10.1175/1520-0485(2001)031<2369:LSCFBL>2.0.CO;2, 2001. a
Spall, M. A.: Boundary Currents and Watermass Transformation in Marginal
Seas, J. Phys. Ocean., 34, 1197–1213,
https://doi.org/10.1175/1520-0485(2004)034<1197:BCAWTI>2.0.CO;2, 2004. a
Spall, M. A. and Pickart, R. S.: Wind-driven recirculations and exchange in the
Labrador and Irminger Seas, J. Phys. Ocean., 33, 1829–1845,
2003. a
Stramma, L., Kieke, D., Rhein, M., Schott, F., Yashayaev, I., and Koltermann,
K. P.: Deep water changes at the western boundary of the subpolar North
Atlantic during 1996 to 2001, Deep Sea Res. Pt. I, 51, 1033–1056,
2004. a
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G.,
Danabasoglu, G., Suzuki, T., Bamber, J. L., Bentsen, M., Böning, C. W.,
Bozec, A., Chassignet, E. P., Curchitser, E., Boeira Dias, F., Durack,
P. J., Griffies, S. M., Harada, Y., Ilicak, M., Josey, S. A., Kobayashi, C.,
Kobayashi, S., Komuro, Y., Large, W. G., Le Sommer, J., Marsland, S. J.,
Masina, S., Scheinert, M., Tomita, H., Valdivieso, M., and Yamazaki, D.:
JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do),
Ocean Modell., 130, 79–139,
https://doi.org/10.1016/j.ocemod.2018.07.002, 2018. a
Våge, K., Pickart, R. S., Moore, G. W. K., and Ribergaard, M. H.: Winter
mixed layer development in the central Irminger Sea: The effect of strong,
intermittent wind events, J. Phys. Ocean., 38, 541–565,
2008. a
Våge, K., Pickart, R. S., Thierry, V., Reverdin, G., Lee, C. M., Petrie,
B., Agnew, T. A., Wong, A., and Ribergaard, M. H.: Surprising return of deep
convection to the subpolar North Atlantic Ocean in winter 2007–2008, Nat.
Geosci., 2, 67–72, 2009. a
van Sebille, E., Baringer, M. O., Johns, W. E., Meinen, C. S., Beal, L. M.,
de Jong, M. F., and van Aken, H. M.: Propagation pathways of classical
Labrador Sea water from its source region to 26∘ N, J. Geophys. Res, 116,
C12027, https://doi.org/10.1029/2011JC007171, 2011. a
Walin, G.: On the relation between sea-surface heat flow and thermal
circulation in the ocean, Tellus, 34, 187–195, 1982. a
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E.,
Simmons, H. L., Polzin, K. L., Laurent, L. C. S., Sun, O. M., Pinkel, R.,
Talley, L. D., Whalen, C. B., Huussen, T. N., Carter, G. S., Fer, I.,
Waterman, S., Garabato, A. C. N., Sanford, T. B., and Lee, C. M.: Global
Patterns of Diapycnal Mixing from Measurements of the Turbulent Dissipation
Rate, J. Phys. Ocean., 44, 1854–1872,
https://doi.org/10.1175/JPO-D-13-0104.1, 2014. a
Willebrand, J., Barnier, B., Böning, C., Dieterich, C., Killworth, P. D.,
Le Provost, C., Jia, Y., Molines, J.-M., and New, A. L.: Circulation
characteristics in three eddy-permitting models of the North Atlantic,
Prog. Oceanogr., 48, 123–161, 2001. a
Xu, X., Schmitz W., J., Hurlburt H., E., Hogan P., J., and Chassignet E., P.:
Transport of Nordic Seas overflow water into and within the Irminger Sea: An
eddy-resolving simulation and observations, J. Geophys. Res., 115,
https://doi.org/10.1029/2010jc006351, 2010. a, b
Yashayaev, I. and Loder, J. W.: Recurrent replenishment of Labrador Sea Water
and associated decadal-scale variability, J. Geophys. Res.-Oceans, 121, 8095–8114, https://doi.org/10.1002/2016JC012046, 2016. a
Yashayaev, I., Holliday, N. P., Bersch, M., and van Aken, H. M.: The History of
the Labrador Sea Water: Production, Spreading, Transformation and Loss, in:
Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in
Climate, Springer Netherlands, Dordrecht, 569–612,
https://doi.org/10.1007/978-1-4020-6774-7_25, 2008. a
Yeager, S., Castruccio, F., Chang, P., Danabasoglu, G., Maroon, E., Small, J.,
Wang, H., Wu, L., and Zhang, S.: An Outsized Role for the Labrador Sea in
the Multidecadal Variability of the Atlantic Overturning Circulation,
EarthArXiv [preprint], https://doi.org/10.31223/X5ZP68, 2021. a
Zhang, R., Sutton, R., Danabasoglu, G., Kwon, Y., Marsh, R., Yeager, S. G.,
Amrhein, D. E., and Little, C. M.: A review of the role of the Atlantic
Meridional Overturning Circulation in Atlantic multidecadal variability and
associated climate impacts, Rev. Geophys., 57, 316–375, 2019. a
Zou, S. and Lozier, M. S.: Breaking the Linkage Between Labrador Sea Water
Production and Its Advective Export to the Subtropical Gyre, J. Phys.
Oceanogr., 46, 2169–2182, https://doi.org/10.1175/jpo-d-15-0210.1, 2016. a, b
Zou, S., Bower, A. S., Furey, H., Lozier, S. M., and Xu, X.: Redrawing the
Iceland-Scotland Overflow Water pathways in the North Atlantic, Nat. Commun., 11, 1890, https://doi.org/10.1038/s41467-020-15513-4,
2020a.
a
Zou, S., Lozier, M. S., Li, F., Abernathey, R., and Jackson, L.:
Density-compensated overturning in the Labrador Sea, Nat. Geosci.,
13, 121–126, https://doi.org/10.1038/s41561-019-0517-1, 2020b. a
Zou, S., Bower, A. S., Furey, H., Pickart, R. S., Houpert, L., and Holliday,
N. P.: Observed Deep Cyclonic Eddies around Southern Greenland, J. Phys. Ocean., 51, 3235–3252, 2021. a
Østerhus, S., Turrell, W. R., Hansen, B., Lundberg, P., and Buch, E.: Observed
transport estimates between the North Atlantic and the Arctic Mediterranean
in the Iceland–Scotland region, Polar Res., 20, 169–175, 2001. a
Short summary
Three deep-water masses pass the southern exit of the Labrador Sea. Usually they are defined by explicit density intervals linked to the formation region. We evaluate this relation in an ocean model by backtracking the paths the water follows for 40 years: 48 % densify without contact to the atmosphere, 24 % densify in contact with the atmosphere, and 19 % are from the Nordic Seas. All three contribute to a similar density range at 53° N with weak specific formation location characteristics.
Three deep-water masses pass the southern exit of the Labrador Sea. Usually they are defined by...