Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-143-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-143-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wind-driven upwelling and surface nutrient delivery in a semi-enclosed coastal sea
Ben Moore-Maley
CORRESPONDING AUTHOR
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
Susan E. Allen
Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2207 Main Mall, Vancouver, BC V6T 1Z4, Canada
Related authors
Benjamin L. Moore-Maley, Debby Ianson, and Susan E. Allen
Biogeosciences, 15, 3743–3760, https://doi.org/10.5194/bg-15-3743-2018, https://doi.org/10.5194/bg-15-3743-2018, 2018
Short summary
Short summary
Estuaries are vulnerable to ocean acidification, but present-day estuarine pH and aragonite saturation state variability are larger than in the open ocean. Using a numerical model of a large estuary and data from its primary river, we find that changes in river alkalinity relative to river carbon may determine a small but significant portion of this variability, while the majority is controlled by photosynthesis/respiration. Future watershed changes may shift the river alkalinity–carbon balance.
Pedro Figueroa, Gonzalo Saldías, and Susan Allen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2386, https://doi.org/10.5194/egusphere-2024-2386, 2024
Short summary
Short summary
Submarine canyons are topographic features found along the continental slope worldwide. Here we use numerical simulations to study how a submarine canyon influences the circulation near the coast when winds moving poleward influence the region. Our results show that submarine canyons modify the circulation near the coast, causing strong velocities perpendicular to the coast. These changes can trap particles inside the canyon, an important mechanism to explain its role as a biological hotspot.
Laura Bianucci, Jennifer M. Jackson, Susan E. Allen, Maxim V. Krassovski, Ian J. W. Giesbrecht, and Wendy C. Callendar
Ocean Sci., 20, 293–306, https://doi.org/10.5194/os-20-293-2024, https://doi.org/10.5194/os-20-293-2024, 2024
Short summary
Short summary
While the deeper waters in the coastal ocean show signs of climate-change-induced warming and deoxygenation, some fjords can keep cool and oxygenated waters in the subsurface. We use a model to investigate how these subsurface waters created during winter can linger all summer in Bute Inlet, Canada. We found two main mechanisms that make this fjord retentive: the typical slow subsurface circulation in such a deep, long fjord and the further speed reduction when the cold waters are present.
Tereza Jarníková, Elise M. Olson, Susan E. Allen, Debby Ianson, and Karyn D. Suchy
Ocean Sci., 18, 1451–1475, https://doi.org/10.5194/os-18-1451-2022, https://doi.org/10.5194/os-18-1451-2022, 2022
Short summary
Short summary
Understanding drivers of phytoplankton biomass in dynamic coastal regions is key to predicting present and future ecosystem functioning. Using a clustering-based method, we objectively determined biophysical provinces in a complex estuarine sea. The Salish Sea contains three major distinct provinces where phytoplankton dynamics are controlled by diverse stratification regimes. Our method is simple to implement and broadly applicable for identifying structure in large model-derived datasets.
Benjamin L. Moore-Maley, Debby Ianson, and Susan E. Allen
Biogeosciences, 15, 3743–3760, https://doi.org/10.5194/bg-15-3743-2018, https://doi.org/10.5194/bg-15-3743-2018, 2018
Short summary
Short summary
Estuaries are vulnerable to ocean acidification, but present-day estuarine pH and aragonite saturation state variability are larger than in the open ocean. Using a numerical model of a large estuary and data from its primary river, we find that changes in river alkalinity relative to river carbon may determine a small but significant portion of this variability, while the majority is controlled by photosynthesis/respiration. Future watershed changes may shift the river alkalinity–carbon balance.
J. M. Spurgin and S. E. Allen
Ocean Sci., 10, 799–819, https://doi.org/10.5194/os-10-799-2014, https://doi.org/10.5194/os-10-799-2014, 2014
Cited articles
Allen, S. E. and Wolfe, M. A.: Hindcast of the timing of the spring
phytoplankton bloom in the Strait of Georgia, 1968–2010, Prog.
Oceanogr., 115, 6–13, https://doi.org/10.1016/j.pocean.2013.05.026, 2013. a
Bakri, T. and Jackson, P.: Statistical and synoptic analyses of offshore wind
variations, Int. J. Climatol., 39, 3201–3217, https://doi.org/10.1002/joc.6012, 2019. a, b, c
Bakri, T., Jackson, P., and Doherty, F.: A synoptic climatology of strong
along‐channel winds on the coast of British Columbia, Canada, Int. J.
Climatol., 37, 2398–2412, https://doi.org/10.1002/joc.4853, 2017a. a
Bakri, T., Jackson, P., and Doherty, F.: Along-channel winds in Howe Sound:
climatological analysis and case studies, Atmos. Ocean, 55, 12–30,
https://doi.org/10.1080/07055900.2016.1233094, 2017b. a
Barth, J. A., Menge, B. A., Lubchenco, J., Chan, F., Bane, J. M., Kirincich,
A. R., McManus, M. A., Nielsen, K. J., Pierce, S. D., and Washburn, L.:
Delayed upwelling alters nearshore coastal ocean ecosystems in the northern
California Current, P. Natl. Acad. Sci. USA, 104, 3719–3724, https://doi.org/10.1073/pnas.0700462104,
2007. a
Bednorz, E., Półrolniczak, M., Czernecki, B., and Tomczyk, A. M.:
Atmospheric forcing of coastal upwelling in the southern Baltic Sea
basin, Atmosphere, 10, 327, https://doi.org/10.3390/atmos10060327, 2019. a, b
Bouffard, D. and Lemmin, U.: Kelvin waves in Lake Geneva, J. Great Lakes
Res., 39, 637–645, https://doi.org/10.1016/j.jglr.2013.09.005, 2013. a, b
Bouffard, D., Kiefer, I., Wüest, A., Wunderle, S., and Odermatt, D.: Are
surface temperature and chlorophyll in a large deep lake related? An analysis
based on satellite observations in synergy with hydrodynamic modelling and
in-situ data, Remote Sens. Environ., 209, 510–523,
https://doi.org/10.1016/j.rse.2018.02.056, 2018. a
Chan, F., Barth, J. A., Blanchette, C. A., Byrne, R. H., Chavez, F., Cheriton,
O., Feely, R. A., Friederich, G., Gaylord, B., Gouhier, T., Hacker, S.,
T. Hill, G. H., McManus, M. A., Menge, B. A., Nielsen, K. J., Russell, A.,
Sanford, E., Sevadjian, J., and Washburn, L.: Persistent spatial structuring
of coastal ocean acidification in the California Current System, Nat.
Sci. Rep., 7, 2526, https://doi.org/10.1038/s41598-017-02777-y, 2017. a
Chavez, F. P. and Messié, M.: A comparison of Eastern Boundary
Upwelling Ecosystems, Prog. Oceanogr., 83, 80–96,
https://doi.org/10.1016/j.pocean.2009.07.032, 2009. a
Choboter, P. F., Duke, D., Horton, J. P., and Sinz, P.: Exact solutions of
wind-driven coastal upwelling and downwelling over sloping topography, J.
Phys. Oceanogr., 41, 1277–1296, https://doi.org/10.1175/2011JPO4527.1, 2011. a
Collins, A. K., Allen, S. E., and Pawlowicz, R.: The role of wind in
determining the timing of the spring bloom in the Strait of Georgia, Can.
J. Fish. Aquat. Sci., 66, 1597–1616, https://doi.org/10.1139/F09-071, 2009. a, b, c, d
Csanady, G. T.: Transverse internal seiches in large oblong lakes and marginal seas, J. Phys. Oceanogr., 3, 439–447, https://doi.org/10.1175/1520-0485(1973)003<0439:TISILO>2.0.CO;2, 1973. a, b
Csanady, G. T.: Barotropic currents over the continental shelf, J. Phys.
Oceanogr., 4, 357–371,
https://doi.org/10.1175/1520-0485(1974)004<0357:BCOTCS>2.0.CO;2, 1974. a
Csanady, G. T.: Intermittent “full” upwelling in Lake Ontario, J. Geophys.
Res., 82, 397–419, https://doi.org/10.1029/JC082i003p00397, 1977. a, b, c
Csanady, G. T.: On the structure of transient upwelling events, J. Phys.
Oceanogr., 12, 84–96, https://doi.org/10.1175/1520-0485(1982)012<0084:OTSOTU>2.0.CO;2,
1982a. a
Csanady, G. T.: Circulation in the Coastal Ocean, first edn., Springer, Dordrecht, Netherlands, 281 pp., ISBN 978-94-017-1041-1, https://doi.org/10.1007/978-94-017-1041-1, 1982b. a
Cushman-Roisin, B., Asplin, L., and Svendsen, H.: Upwelling in broad fjords,
Cont. Shelf Res., 14, 1701–1721, https://doi.org/10.1016/0278-4343(94)90044-2, 1994. a, b
Delpeche-Ellmann, N., Mingelaitė, T., and Soomere, T.: Examining
Lagrangian surface transport during a coastal upwelling in the Gulf of
Finland, Baltic Sea, J. Mar. Sys., 171, 21–30,
https://doi.org/10.1016/j.jmarsys.2016.10.007, 2017. a
Delpeche-Ellmann, N., Soomere, T., and Kudryavtseva, N.: The role of nearshore
slope on cross-shore surface transport during a coastal upwelling event in
Gulf of Finland, Baltic Sea, Estuar. Coast. Shelf S., 209,
123–135, https://doi.org/10.1016/j.ecss.2018.03.018, 2018. a
DFO: Canadian wave data, Marine environmental data section archive [data set], available at: https://www.meds-sdmm.dfo-mpo.gc.ca/isdm-gdsi/waves-vagues/data-donnees/index-eng.asp, last access: 18 January 2022. a
ECCC: Historical climate data, Digital archive of Canadian climatological data [data set], available at: https://climate.weather.gc.ca/historical_data/search_historic_data_e.html, last access: 18 January 2022. a
Fatland, R., MacCready, P., and Oscar, N.: LiveOcean, in: Cloud Computing in
Ocean and Atmospheric Sciences, edited by: Vance, T. C., Merati, N., Yang, C., and Yuan, M., Academic Press, Cambridge, USA, chap. 14, 277–296, https://doi.org/10.1016/B978-0-12-803192-6.00014-1, 2016. a
Flather, R. A.: A storm surge prediction model for the northern Bay of
Bengal with application to the cyclone disaster in April 1991, J. Phys.
Oceanogr., 24, 172–190,
https://doi.org/10.1175/1520-0485(1994)024<0172:ASSPMF>2.0.CO;2, 1994. a
Fleming, S. W. and Clarke, G. K.: Attenuation of high-frequency interannual
streamflow variability by watershed glacial cover, J. Hydraul. Eng., 131,
615–618, https://doi.org/10.1061/(ASCE)0733-9429(2005)131:7(615), 2005. a
Foreman, M. G. G., Walters, R. A., Henry, R. F., Keller, C. P., and Dolling,
A. G.: A tidal model for eastern Juan de Fuca Strait and the southern
Strait of Georgia, J. Geophys. Res.-Oceans, 100, 721–740,
https://doi.org/10.1029/94JC02721, 1995. a
Foreman, M. G. G., Crawford, W. R., Cherniawsky, J. Y., Henry, R. F., and
Tarbotton, M. R.: A high-resolution assimilating tidal model for the
northeast Pacific Ocean, J. Geophys. Res.-Oceans, 105, 28629–28651,
https://doi.org/10.1029/1999JC000122, 2000. a
Haigh, R. and Taylor, F. J. R.: Mosaicism of microplankton communities in the
northern Strait of Georgia, British Columbia, Mar. Biol., 110,
301–314, https://doi.org/10.1007/bf01313717, 1991. a
Halverson, M. and Pawlowicz, R.: Tide, wind, and river forcing of the surface
currents in the Fraser River plume, Atmos. Ocean, 54, 131–152,
https://doi.org/10.1080/07055900.2016.1138927, 2016. a
Hannachi, A., Jolliffe, I. T., and Stephenson, D. B.: Empirical orthogonal
functions and related techniques in atmospheric science: A review, Int. J.
Climatol., 27, 1119–1152, https://doi.org/10.1002/joc.1499, 2007. a
Hansen, P. J., Nielsen, L. T., Johnson, M., Berge, T., and Flynn, K. J.:
Acquired phototrophy in Mesodinium and Dinophysis – A review of cellular organization, prey selectivity, nutrient uptake and
bioenergetics, Harmful Algae, 28, 126–139, https://doi.org/10.1016/j.hal.2013.06.004,
2013. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen,
P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard,
K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E.:
Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hellerman, S. and Rosenstein, M.: Normal monthly wind stress over the world
ocean with error estimates, J. Phys. Oceanogr., 13, 1093–1104,
https://doi.org/10.1175/1520-0485(1983)013<1093:NMWSOT>2.0.CO;2, 1983. a
Hollingsworth, A., Kållberg, P., Renner, V., and Burridge, D. M.: An
internal symmetric computational instability, Q. J. R. Meteorol. Soc., 109, 417–428, https://doi.org/10.1002/qj.49710946012, 1983. a
Horst, P.: Factor Analysis of Data Matrices, Holt, Rinehart and Winston, first end., New York, USA, 750 pp., ISBN 978-0030502507, 1965. a
Hoyer, S. and Hamman, J.: xarray: N-D labeled arrays and datasets in
Python, J. Open Res. Software, 5, 10 pp., https://doi.org/10.5334/jors.148, 2017. a
Hunter, J. D.: Matplotlib: A 2D graphics environment, Comput. Sci. Eng., 9,
90–95, https://doi.org/10.1109/MCSE.2007.55, 2007. a
Ianson, D., Allen, S. E., Moore‐Maley, B. L., Johannessen, S. C., and
Macdonald, R. W.: Vulnerability of a semienclosed estuarine sea to ocean
acidification in contrast with hypoxia, Geophys. Res. Lett., 43, 5793–5801, https://doi.org/10.1002/2016GL068996, 2016. a, b, c
Imam, Y. E., Laval, B., Pieters, R., and Lawrence, G.: The strongly damped
baroclinic response to wind in a multibasin reservoir, Limnol. Oceanogr., 58,
1243–1258, https://doi.org/10.4319/lo.2013.58.4.1243, 2013. a, b
Jackson, P. L.: Surface winds during an intense outbreak of arctic air in
southwestern British Columbia, Atmos. Ocean, 34, 285–311,
https://doi.org/10.1080/07055900.1996.9649566, 1996. a
Johannessen, S. C., Masson, D., and Macdonald, R. W.: Oxygen in the deep
Strait of Georgia, 1951–2009: the roles of mixing, deep-water renewal,
and remineralization of organic carbon, Limnol. Oceanogr., 59, 211–222,
https://doi.org/10.4319/lo.2014.59.1.0211, 2014. a, b
Johannessen, S. C., Macdonald, R. W., and Strivens, J. E.: Has primary
production declined in the Salish Sea?, Can. J. Fish. Aquat. Sci., 78,
312–321, https://doi.org/10.1139/cjfas-2020-0115, 2021. a
JPL/OBPG/RSMAS: MODIS Aqua L2P swath SST data set, version 2019.0, PO.DAAC [data set], https://doi.org/10.5067/GHMDA-2PJ19, 2020. a
Kämpf, J. and Chapman, P.: Upwelling Systems of the World, first edn., Springer, Cham, Switzerland, 433 pp., ISBN 978-3-319-42524-5, https://doi.org/10.1007/978-3-319-42524-5, 2016. a
Khangaonkar, T., Nugraha, A., Xu, W., Long, W., Bianucci, L., Ahmed, A.,
Mohamedali, T., and Pelletier, G.: Analysis of hypoxia and sensitivity to
nutrient pollution in Salish Sea, J. Geophys. Res.-Oceans, 123,
4735–4761, https://doi.org/10.1029/2017JC013650, 2018. a
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M.,
Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P.,
Avila, D., Abdalla, S., Willing, C., and Jupyter development team:
Jupyter Notebooks – a publishing format for reproducible computational
workflows, in: Positioning and Power in Academic Publishing: Players, Agents
and Agendas, edited by: Loizides, F. and Scmidt, B., IOS Press,
Netherlands, 87–90, https://doi.org/10.3233/978-1-61499-649-1-87, 2016. a
Laval, B. E., Morrison, J., Potts, D. J., Carmack, E. C., Vagle, S., James, C.,
McLaughlin, F. A., and Foreman, M.: Wind-driven summertime upwelling in a
fjord-type lake and its impact on downstream river conditions: Quesnel
Lake and River, British Columbia, Canada, J. Great Lakes Res., 34,
189–203, https://doi.org/10.3394/0380-1330(2008)34[189:WSUIAF]2.0.CO;2, 2008. a, b
Lehmann, A., Myrberg, K., and Höflich, K.: A statistical approach to
coastal upwelling in the Baltic Sea based on the analysis of satellite
data for 1990–2009, Oceanologia, 54, 369–393, https://doi.org/10.5697/oc.54-3.369,
2012. a
Lentz, S. J. and Chapman, D. C.: The importance of nonlinear cross-shelf
momentum flux during wind-driven coastal upwelling, J. Phys. Oceanogr., 34,
2444–2457, https://doi.org/10.1175/JPO2644.1, 2004. a
MacCready, P., McCabe, R. M., Siedlecki, S. A., Lorenz, M., Giddings, S. N.,
Bos, J., Albertson, S., Banas, N. S., and Garnier, S.: Estuarine circulation,
mixing, and residence times in the Salish Sea, J. Geophys. Res.-Oceans,
126, e2020JC016738, https://doi.org/10.1029/2020JC016738, 2021. a
Mackas, D. L. and Harrison, P. J.: Nitrogenous nutrient sources and sinks in
the Juan de Fuca Strait/Strait of Georgia/Puget Sound estuarine
system: assessing the potential for eutrophication, Estuar. Coast. Shelf
Sci., 44, 1–21, https://doi.org/10.1006/ecss.1996.0110, 1997. a
Madec, G., Bourdallé-Badie, R., Bouttier, P.-A., Bricaud, C., Bruciaferri, D., Calvert, D., Chanut, J., Clementi, E., Coward, A., Delrosso, D., Ethé, C., Flavoni, S., Graham, T., Harle, J., Iovino, D., Lea, D., Lévy, C., Lovato, T., Martin, N., Masson, S., Mocavero, S., Paul, J., Rousset, C., Storkey, D., Storto, A., and Vancoppenolle, M.: NEMO ocean engine, Notes du Pôle de modélisation de l'Institut Pierre-Simon Laplace (IPSL): (27), revision 8625 from SVN repository, Zenodo, https://doi.org/10.5281/zenodo.1472492, 2017. a, b
Marchesiello, P., McWilliams, J. C., and Shchepetkin, A.: Open boundary
conditions for long-term integration of regional oceanic models, Ocean
Model., 3, 1–20, https://doi.org/10.1016/S1463-5003(00)00013-5, 2001. a
Masson, D.: Deep water renewal in the Strait of Georgia, Estuar. Coast.
Shelf Sci., 54, 115–126, https://doi.org/10.1006/ecss.2001.0833, 2002. a
McKinney, W.: Data structures for statistical computing in Python, in:
Proceedings of the 9th Python in Science Conference, edited by: van der
Walt, S. and Millman, J., 28 June 2010 – 3 July 2010, Austin, USA, 56–61, https://doi.org/10.25080/Majora-92bf1922-00a, 2010. a
Messié, M. and Chavez, F. P.: Seasonal regulation of primary production in
eastern boundary upwelling systems, Prog. Oceanogr., 134, 1–18,
https://doi.org/10.1016/j.pocean.2014.10.011, 2015. a
Met Office: Cartopy: a cartographic Python library with a Matplotlib
interface, Exeter, Devon, Zenodo, https://doi.org/10.5281/zenodo.3783894, 2010–2015. a
Milbrandt, J. A., Bélair, S., Faucher, M., Vallée, M., Carrera, M. L.,
and Glazer, A.: The pan-Canadian high resolution (2.5 km) deterministic
prediction system, Weather Forecast., 31, 1791–1816,
https://doi.org/10.1175/WAF-D-16-0035.1, 2016. a
Moore-Maley, B. and Allen, S. E.: SalishSeaCast/SoG_upwelling_EOF_paper: Source code for: Wind-driven upwelling and nutrient delivery in a semi-enclosed coastal sea (v1.0), Zenodo [code], https://doi.org/10.5281/zenodo.5874717, 2022a. a
Moore-Maley, B. and Allen, S. E.: SalishSeaCast hourly surface along-axis wind velocity, temperature and nitrate summary 2015–2019, Federated Research Data Repository [data set], https://doi.org/10.20383/102.0546, 2022b. a
Moore‐Maley, B. L., Allen, S. E., and Ianson, D.: Locally driven interannual
variability of near‐surface pH and ΩA in the Strait of
Georgia, J. Geophys. Res.-Oceans, 121, 1600–1625,
https://doi.org/10.1002/2015JC011118, 2016. a, b
Morrison, J., Foreman, M. G. G., and Masson, D.: A method for estimating
monthly freshwater discharge affecting British Columbia coastal waters,
Atmos. Ocean, 50, 1–21, https://doi.org/10.1080/07055900.2011.637667, 2012. a
Mysak, L. A. and Tang, C. L.: Kelvin wave propagation along an irregular
coastline, J. Fluid Mech., 64, 241–262, https://doi.org/10.1017/S0022112074002382,
1974. a
Mziray, P., Kimirei, I. A., Staehr, P. A., Lugomela, C. V., Perry, W. L.,
Trolle, D., O'Reilly, C. M., and Mgana, H. F.: Seasonal patterns of thermal
stratification and primary production in the northern parts of Lake
Tanganyika, J. Great Lakes Res., 44, 1209–1220,
https://doi.org/10.1016/j.jglr.2018.08.015, 2018. a
Olson, E. M., Allen, S. E., Do, V., Dunphy, M., and Ianson, D.: Assessment of
nutrient supply by a tidal jet in the northern Strait of Georgia based on
a biogeochemical model, J. Geophys. Res.-Oceans, 125, e2019JC015766,
https://doi.org/10.1029/2019JC015766, 2020. a, b, c, d, e, f, g, h, i, j, k, l, m
Overland, J. E. and Walter, B. A.: Gap winds in the Strait of Juan de
Fuca, Mon. Weather Rev., 109, 2221–2233, https://doi.org/10.1175/1520-0493(1981)109<2221:GWITSO>2.0.CO;2, 1981. a
Parsons, T. R., Stronach, J., Borstad, G. A., Louttit, G., and Perry, R. I.:
Biological fronts in the Strait of Georgia, British Columbia, and
their relation to recent measurements of primary productivity, Mar. Ecol.
Prog. Ser., 6, 237–242, https://doi.org/10.3354/meps006237, 1981. a
Pawlowicz, R., Riche, O., and Halverson, M.: The circulation and residence time
of the Strait of Georgia using a simple mixing‐box approach, Atmos.
Ocean, 45, 173–193, https://doi.org/10.3137/ao.450401, 2007. a, b
Pawlowicz, R., Di Costanzo, R., Halverson, M., Devred, E., and Johannessen,
S.: Advection, surface area, and sediment load of the Fraser River plume
under variable wind and river forcing, Atmos. Ocean, 55, 293–313,
https://doi.org/10.1080/07055900.2017.1389689, 2017. a
Pawlowicz, R., Hannah, C., and Rosenberger, A.: Lagrangian observations of
estuarine residence times, dispersion, and trapping in the Salish Sea,
Estuar. Coast. Shelf S., 225, 106246, https://doi.org/10.1016/j.ecss.2019.106246,
2019. a, b
Pawlowicz, R., Suzuki, T., Chappell, R., Ta, A., and Esenkulova, S.: Atlas of
oceanographic conditions in the Strait of Georgia (2015–2019) based on
the Pacific Salmon Foundation's citizen science dataset, Can. Tech.
Rep. Fish. Aquat. Sci., 3374, 116 pp., ISBN 9780660349367, 2020. a
Percival, D. B. and Walden, A. T.: Spectral Analysis for Physical Applications,
Cambridge University Press, Cambridge, UK, 583 pp., https://doi.org/10.1017/CBO9780511622762, 1993. a
Plattner, S., Mason, D. M., Leshkevich, G. A., Schwab, D. J., and Rutherford,
E. S.: Classifying and forecasting coastal upwellings in Lake Michigan
using satellite derived temperature images and buoy data, J. Great Lakes
Res., 32, 63–76, https://doi.org/10.3394/0380-1330(2006)32[63:CAFCUI]2.0.CO;2, 2006. a, b, c
Roberts, D. C., Egan, G. C., Forrest, A. L., Largier, J. L., Bombardelli,
F. A., Laval, B. E., Monismith, S. G., and Schladow, G.: The setup and
relaxation of spring upwelling in a deep, rotationally influenced lake,
Limnol. Oceanogr., 66, 1168–1189, https://doi.org/10.1002/lno.11673, 2021. a, b
Roubeyrie, L. and Celles, S.: Windrose: A Python Matplotlib, NumPy
library to manage wind and pollution data, draw windrose, J. Open Source
Softw., 3, 268, https://doi.org/10.21105/joss.00268, 2018. a
Rowe, M. D., Anderson, E. J., Beletsky, D., Stow, C. A., Moegling, S. D.,
Chaffin, J. D., May, J. C., Collingsworth, P. D., Jabbari, A., and Ackerman,
J. D.: Coastal upwelling influences hypoxia spatial patterns and nearshore
dynamics in Lake Erie, J. Geophys. Res.-Oceans, 124, 6154–6175,
https://doi.org/10.1029/2019JC015192, 2019. a
Salvatier, J., Wiecki, T. V., and Fonnesbeck, C.: Probabilistic programming in Python using PyMC3, Peer, J. Comput. Sci., 2, 55,
https://doi.org/10.7717/peerj-cs.55, 2016. a
Shintani, T., de la Fuente, A., Niño, Y., and Imberger, J.: Generalizations
of the Wedderburn number: Parameterizing upwelling in stratified lakes,
Limnol. Oceanogr., 55, 1377–1389, https://doi.org/10.4319/lo.2010.55.3.1377, 2010. a
Silvestrova, K., Myslenkov, S., and Zatsepin, A.: Variability of wind-driven
coastal upwelling in the north-eastern Black Sea in 1979–2016 according
to NCEP/CFSR data, in: Meteorology and Climatology of the Mediterranean
and Black Seas, edited by: Vilibić, I., Horvath, K., and Palau, J. L.,
Pageoph Topical Volumes, Birkhäuser, Cham, Switzerland, 287–295,
https://doi.org/10.1007/978-3-030-11958-4_17, 2019. a
Soontiens, N. and Allen, S. E.: Modelling sensitivities to mixing and advection
in a sill-basin estuarine system, Ocean Model., 112, 17–32,
https://doi.org/10.1016/j.ocemod.2017.02.008, 2017. a, b, c
Soontiens, N., Allen, S. E., Latornell, D., Souëf, K. L., Machuca, I.,
Paquin, J.-P., Lu, Y., Thompson, K., and Korabel, V.: Storm surges in the
Strait of Georgia simulated with a regional model, Atmos. Ocean, 54, 121,
https://doi.org/10.1080/07055900.2015.1108899, 2016. a, b
Stahl, K., Moore, R. D., and Mckendry, I. G.: The role of synoptic‐scale
circulation in the linkage between large‐scale ocean–atmosphere indices
and winter surface climate in British Columbia, Canada, Int. J.
Climatol., 26, 541–560, https://doi.org/10.1002/joc.1268, 2006. a, b
Stevens, C. L. and Imberger, J.: The initial response of a stratified lake to a surface shear stress, J. Fluid Mech., 312, 39–66,
https://doi.org/10.1017/S0022112096001917, 1996. a, b
Stevens, C. L. and Lawrence, G. A.: Estimation of wind-forced internal seiche
amplitudes in lakes and reservoirs, with data from British Columbia,
Canada, Aquat. Sci., 59, 115–134, https://doi.org/10.1007/BF02523176, 1997. a, b, c, d
Suchy, K. D., Le Baron, N., Hilborn, A., Perry, R. I., and Costa, M.:
Influence of environmental drivers on spatio-temporal dynamics of
satellite-derived chlorophyll a in the Strait of Georgia, Prog.
Oceanogr., 176, 102134, https://doi.org/10.1016/j.pocean.2019.102134, 2019. a
Sutton, J. N., Johannessen, S. C., and Macdonald, R. W.: A nitrogen budget for the Strait of Georgia, British Columbia, with emphasis on particulate nitrogen and dissolved inorganic nitrogen, Biogeosciences, 10, 7179–7194, https://doi.org/10.5194/bg-10-7179-2013, 2013. a
Thomson, R. E. and Huggett, W. S.: M2 baroclinic tides in Johnstone Strait,
British Columbia, J. Phys. Oceanogr., 10, 1509–1539,
https://doi.org/10.1175/1520-0485(1980)010<1509:MBTIJS>2.0.CO;2, 1980. a
Thomson, R. E., Beamish, R. J., Beacham, T. D., Trudel, M., Whitfield, P. H.,
and Hourston, R. A. S.: Anomalous ocean conditions may explain the recent
extreme variability in Fraser River sockeye salmon production, Mar.
Coast. Fish., 4, 415–437, https://doi.org/10.1080/19425120.2012.675985, 2012. a, b
Thomson, R. E., Kulikov, E. A., Spear, D. J., Johannessen, S. C., and Wills,
W. P.: A role for gravity currents in cross‐sill estuarine exchange and
subsurface inflow to the southern Strait of Georgia, J. Geophys. Res.-Oceans, 125, e2019JC015374, https://doi.org/10.1029/2019JC015374, 2020. a
Trenberth, K. E.: Some effects of finite sample size and persistence on
meteorological statistics, Part I: Autocorrelations, Month. Weather Rev.,
112, 2359–2368, https://doi.org/10.1175/1520-0493(1984)112<2359:SEOFSS>2.0.CO;2, 1984. a
Unidata: Network Common Data Form (netCDF) version 4.5.4, UCAR/Unidata, Boulder, CO, https://doi.org/10.5065/D6H70CW6, 2019. a
Valerio, G., Pilotti, M., Marti, C. L., and Imberger, J.: The structure of
basin-scale internal waves in a stratified lake in response to lake
bathymetry and wind spatial and temporal distribution: Lake Iseo,
Italy, Limnol. Oceanogr., 57, 772–786, https://doi.org/10.4319/lo.2012.57.3.0772,
2012. a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, I., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: fundamental algorithms for scientific computing in Python,
Nat. Methods, 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020. a
Wasmund, N., Nausch, G., and Voss, M.: Upwelling events may cause cyanobacteria
blooms in the Baltic Sea, J. Mar. Sys., 90, 67–76,
https://doi.org/10.1016/j.jmarsys.2011.09.001, 2012.
a
Wasser, S. K., Lundin, J. I., Ayres, K., Seely, E., Giles, D., Balcomb, K.,
Hempelmann, J., Parsons, K., and Booth, R.: Population growth is limited by
nutritional impacts on pregnancy success in endangered Southern Resident
killer whales (Orcinus orca), PLoS One, 12, e0179824,
https://doi.org/10.1371/journal.pone.0179824, 2017. a
Wessel, P. and Smith, W. H. F.: A global, self‐consistent, hierarchical,
high‐resolution shoreline database, J. Geophys. Res. Sol. EA, 101,
8741–8743, https://doi.org/10.1029/96JB00104, 1996. a
Yin, K., Goldblatt, R. H., Harrison, P. J., John, M. A. S., Clifford, P. J.,
and Beamish, R. J.: Importance of wind and river discharge in influencing
nutrient dynamics and phytoplankton production in summer in the central
Strait of Georgia, Mar. Ecol. Prog. Ser., 161, 173–183,
https://doi.org/10.3354/meps161173, 1997. a
Zhurbas, V., Laanemets, J., and Vahtera, E.: Modeling of the mesoscale
structure of coupled upwelling/downwelling events and the related input of
nutrients to the upper mixed layer in the Gulf of Finland, Baltic
Sea, J. Geophys. Res.-Oceans, 133, C05004, https://doi.org/10.1029/2007JC004280,
2008. a
Short summary
Inland seas are critical habitats for globally important fisheries, and the local food webs that support these fisheries are often limited by surface nutrient availability. In the Strait of Georgia, which supports several key northern Pacific fisheries, we identify wind-driven upwelling as a dominant source of summer surface nutrients using a high-resolution coupled ecosystem model. This newly identified underlying mechanism will inform interpretations of ecosystem variability in the region.
Inland seas are critical habitats for globally important fisheries, and the local food webs that...