Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1389-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1389-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Import of Atlantic Water and sea ice controls the ocean environment in the northern Barents Sea
Øyvind Lundesgaard
CORRESPONDING AUTHOR
Section for Oceans and Sea Ice, Norwegian Polar Institute, Tromsø, Norway
Arild Sundfjord
Section for Oceans and Sea Ice, Norwegian Polar Institute, Tromsø, Norway
Sigrid Lind
Section for Oceans and Sea Ice, Norwegian Polar Institute, Tromsø, Norway
Frank Nilsen
Department of Arctic Geophysics, University Center in Svalbard, Longyearbyen, Norway
Angelika H. H. Renner
Department of Oceanography and Climate, Institute of Marine Research, Tromsø, Norway
Related authors
No articles found.
Vidar S. Lien, Angelika H. H. Renner, Mari S. Myksvoll, Johnny A. Johannessen, Jeremy Cook, Helene Spurkeland, and Ronald Toppe
State Planet Discuss., https://doi.org/10.5194/sp-2022-12, https://doi.org/10.5194/sp-2022-12, 2022
Preprint withdrawn
Short summary
Short summary
The One Ocean Expedition, a part of the United Nations Ocean Decade, is a sailing voyage where a traditional tall ship equipped with state-of-the-art ocean observation technology is circumnavigating the globe with a crew consisting of students, scientists, trainees and professionals. The focus for the expedition is awareness raising and education through showcasing ocean science using a traditional tall ship as a platform.
Pedro Duarte, Philipp Assmy, Karley Campbell, and Arild Sundfjord
Geosci. Model Dev., 15, 841–857, https://doi.org/10.5194/gmd-15-841-2022, https://doi.org/10.5194/gmd-15-841-2022, 2022
Short summary
Short summary
Sea ice modeling is an important part of Earth system models (ESMs). The results of ESMs are used by the Intergovernmental Panel on Climate Change in their reports. In this study we present an improvement to calculate the exchange of nutrients between the ocean and the sea ice. This nutrient exchange is an essential process to keep the ice-associated ecosystem functioning. We found out that previous calculation methods may underestimate the primary production of the ice-associated ecosystem.
Andrey V. Pnyushkov, Igor V. Polyakov, Robert Rember, Vladimir V. Ivanov, Matthew B. Alkire, Igor M. Ashik, Till M. Baumann, Genrikh V. Alekseev, and Arild Sundfjord
Ocean Sci., 14, 1349–1371, https://doi.org/10.5194/os-14-1349-2018, https://doi.org/10.5194/os-14-1349-2018, 2018
Short summary
Short summary
This study describes along-slope volume, heat, and salt transports derived from observations collected between 2013 and 2015 in the eastern Eurasian Basin of the Arctic Ocean using a cross-slope array of six moorings. Inferred transport estimates may have wide implications and should be considered when assessing high-latitude ocean dynamics.
Achim Randelhoff and Arild Sundfjord
Ocean Sci., 14, 293–300, https://doi.org/10.5194/os-14-293-2018, https://doi.org/10.5194/os-14-293-2018, 2018
Short summary
Short summary
The future of Arctic marine ecosystems has received increasing attention in recent years as the extent of the sea ice cover is dwindling. Regional differences in the hydrography, bathymetry and atmospheric forcing of nutrient fluxes essential for phytoplankton growth mean that wind-driven mixing, advection and upwelling will influence the polar ecosystem in differing magnitudes in different regions of the Arctic Ocean, with particular effects likely being restricted to very specific areas.
Ane S. Fors, Dmitry V. Divine, Anthony P. Doulgeris, Angelika H. H. Renner, and Sebastian Gerland
The Cryosphere, 11, 755–771, https://doi.org/10.5194/tc-11-755-2017, https://doi.org/10.5194/tc-11-755-2017, 2017
Short summary
Short summary
This paper investigates the signature of melt ponds in satellite-borne synthetic aperture radar (SAR) imagery. A comparison between helicopter-borne images of drifting first-year ice and polarimetric X-band SAR images shows relations between observed melt pond fraction and several polarimetric SAR features. Melt ponds strongly influence the Arctic sea ice energy budget, and the results imply prospective opportunities for expanded monitoring of melt ponds from space.
Ane S. Fors, Camilla Brekke, Anthony P. Doulgeris, Torbjørn Eltoft, Angelika H. H. Renner, and Sebastian Gerland
The Cryosphere, 10, 401–415, https://doi.org/10.5194/tc-10-401-2016, https://doi.org/10.5194/tc-10-401-2016, 2016
Short summary
Short summary
This paper demonstrates how sea ice segmentation using high-resolution multi-polarisation synthetic aperture radar (SAR) can be used to retrieve valuable information about sea ice type during late summer. It adds knowledge to how choice of SAR features influence the information gain and highlights the sea ice segmentation capability of both the C and X band in late summer. The study contributes to an increased understanding of sea ice mapping and monitoring with SAR in the melt season.
Cited articles
Aaboe, S., Lind, S., Hendricks, S., Down, E., Lavergne, T., and Ricker, R.:
Sea-Ice and Ocean Conditions Surprisingly Normal in the Svalbard-Barents
Sea Region after Large Sea-Ice Inflows in 2019, In: Copernicus Marine
Service Ocean State Report, Issue 5, J. Oper. Ocean.,
14, 140–148, https://doi.org/10.1080/1755876X.2021.1946240, 2021. a, b, c, d, e
Aagaard, K.: A Synthesis of the Arctic Ocean Circulation, Rapp. P. V. Reun.
Cons. Int. Explor. Mer., 188, 11–22, 1989. a
Aagaard, K. and Greisman, P.: Toward New Mass and Heat Budgets for the Arctic
Ocean, J. Geophys. Res., 80, 3821–3827,
https://doi.org/10.1029/JC080i027p03821, 1975. a
Aagaard, K., Coachman, L. K., and Carmack, E.: On the Halocline of the Arctic
Ocean, Deep Sea Res., 28,
529–545, https://doi.org/10.1016/0198-0149(81)90115-1, 1981. a, b, c
Ådlandsvik, B. and Loeng, H.: A Study of the Climatic System in the
Barents Sea, Polar Res., 10, 45–50, https://doi.org/10.3402/polar.v10i1.6726,
1991. a
Aksenov, Y., Bacon, S., Coward, A. C., and Nurser, A. J. G.: The North
Atlantic Inflow to the Arctic Ocean: High-resolution Model Study,
J. Mar. Syst. 79, 1–22, https://doi.org/10.1016/j.jmarsys.2009.05.003,
2010. a, b, c
Årthun, M., Ingvaldsen,
R. B., Smedsrud, L. H., and Schrum, C.: Dense Water Formation and Circulation in the Barents Sea, Deep Sea Res. Pt. I, 58, 801–817,
https://doi.org/10.1016/j.dsr.2011.06.001, 2011. a
Årthun, M., Eldevik, T., Smedsrud, L. H., Skagseth, Ø., and Ingvaldsen,
R. B.: Quantifying the Influence of Atlantic Heat on Barents Sea
Ice Variability and Retreat, J. Climate, 25, 4736–4743,
https://doi.org/10.1175/JCLI-D-11-00466.1, 2012. a, b
Athanase, M., Provost, C., Pérez-Hernández, M. D., Sennéchael,
N., Bertosio, C., Artana, C., Garric, G., and Lellouche, J.-M.: Atlantic
Water Modification North of Svalbard in the Mercator Physical System
from 2007 to 2020, J. Geophys. Res.-Oceans, 125,
e2020JC016463, https://doi.org/10.1029/2020JC016463, 2020. a, b
Barton, B. I., Lenn, Y.-D., and Lique, C.: Observed Atlantification of the
Barents Sea Causes the Polar Front to Limit the Expansion of
Winter Sea Ice, J. Phys. Ocean., 48, 1849–1866,
https://doi.org/10.1175/JPO-D-18-0003.1, 2018. a
Beszczynska-Möller, A.: A Synthesis of Exchanges Through the
Main Oceanic Gateways to the Arctic Ocean, Oceanography, 24, 82–99,
https://doi.org/10.5670/oceanog.2011.59, 2011. a
Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E.:
Variability in Atlantic Water Temperature and Transport at the Entrance
to the Arctic Ocean, 1997–2010, ICES J. Mar. Sci., 69, 852–863, https://doi.org/10.1093/icesjms/fss056, 2012. a
Carmack, E. C. and Kulikov, E. A.: Wind-Forced Upwelling and Internal
Kelvin Wave Generation in Mackenzie Canyon, Beaufort Sea, J.
Geophys. Res.-Oceans, 103, 18447–18458,
https://doi.org/10.1029/98JC00113, 1998. a
Chulliat, A., Macmillan, S., Alken, P., Beggan, C., Nair, M., Hamilton, B.,
Woods, A., Ridley, V., Maus, S., and Thomson, A.: World Magnetic Model
2015, NOAA National Centers for Environmental Information,
https://doi.org/10.7289/V5TH8JNW, 2014. a
Coachman, L. K. and Barnes, C. A.: The Movement of Atlantic Water in
the Arctic Ocean, ARCTIC, 16, 8–16, https://doi.org/10.14430/arctic3517, 1963. a
Cole, S. T., Toole, J. M., Lele, R., Timmermans, M.-L., Gallaher, S. G.,
Stanton, T. P., Shaw, W. J., Hwang, B., Maksym, T., Wilkinson, J. P., Ortiz,
M., Graber, H., Rainville, L., Petty, A. A., Farrell, S. L., Richter-Menge,
J. A., and Haas, C.: Ice and Ocean Velocity in the Arctic Marginal Ice
Zone: Ice Roughness and Momentum Transfer, Elementa, 5, 55, https://doi.org/10.1525/elementa.241, 2017. a
Copernicus Climate Change Service: Copernicus Arctic Regional ReAnalysis
(CARRA),
https://climate.copernicus.eu/copernicus-arctic-regional-reanalysis-service,
last access: 5 December 2021.
Crews, L., Sundfjord, A., and Hattermann, T.: How the Yermak Pass Branch
Regulates Atlantic Water Inflow to the Arctic Ocean, J. Geophys. Res.-Oceans, 124, 267–280, https://doi.org/10.1029/2018JC014476,
2019. a
Dalpadado, P., Arrigo, K. R., van Dijken, G. L., Skjoldal, H. R., Bagøien,
E., Dolgov, A. V., Prokopchuk, I. P., and Sperfeld, E.: Climate Effects on
Temporal and Spatial Dynamics of Phytoplankton and Zooplankton in the
Barents Sea, Prog. Ocean., 185, 102320,
https://doi.org/10.1016/j.pocean.2020.102320, 2020. a
Davis, R. E.: Predictability of Sea Surface Temperature and Sea Level
Pressure Anomalies over the North Pacific Ocean, J. Phys. Ocean., 6, 249–266,
https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2, 1976. a
Dinniman, M. S. and Klinck, J. M.: A Model Study of Circulation and Cross-Shelf
Exchange on the West Antarctic Peninsula Continental Shelf, Deep Sea
Res. Pt. II, 51, 2003–2022,
https://doi.org/10.1016/j.dsr2.2004.07.030, 2004. a
Docquier, D., Fuentes-Franco, R., Koenigk, T., and Fichefet, T.: Sea
Ice–Ocean Interactions in the Barents Sea Modeled at
Different Resolutions, Front. Earth Sci., 8, 172,
https://doi.org/10.3389/feart.2020.00172, 2020. a
Dörr, J., Årthun, M., Eldevik, T., and Madonna, E.: Mechanisms of
Regional Winter Sea-Ice Variability in a Warming Arctic, J. Climate, 34, 8635–8653, https://doi.org/10.1175/JCLI-D-21-0149.1, 2021. a
Erofeeva, S. Y. and Egbert, G.: Arc5km2018: Arctic Ocean Inverse Tide Model
on a 5 Kilometer Grid, 2018, [data set], https://doi.org/10.18739/A21R6N14K, 2020. a
Fossheim, M., Primicerio, R., Johannesen, E., Ingvaldsen, R. B., Aschan, M. M.,
and Dolgov, A. V.: Recent Warming Leads to a Rapid Borealization of Fish
Communities in the Arctic, Nat. Clim. Change, 5, 673–677,
https://doi.org/10.1038/nclimate2647, 2015. a
Frainer, A., Primicerio, R., Kortsch, S., Aune, M., Dolgov, A. V., Fossheim,
M., and Aschan, M. M.: Climate-Driven Changes in Functional Biogeography of
Arctic Marine Fish Communities, P. Natl. Acad. Sci. USA, 114, 12202–12207, 2017. a
Furevik, T., Mauritzen, C., and Ingvaldsen, R.: The Flow of Atlantic Water
to the Nordic Seas and Arctic Ocean, in: Arctic Alpine Ecosystems
and People in a Changing Environment, edited by: Ørbæk, J. B.,
Kallenborn, R., Tombre, I., Hegseth, E. N., Falk-Petersen, S., and Hoel,
A. H., Springer, Berlin, Heidelberg, 123–146,
https://doi.org/10.1007/978-3-540-48514-8_8, 2007. a
Gelderloos, R., Haine, T. W. N., and Almansi, M.: Coastal Trapped Waves and Other Subinertial Variability along the Southeast Greenland Coast in a Realistic Numerical Simulation,
J. Phys. Ocean., 51, 861–877,
https://doi.org/10.1175/JPO-D-20-0239.1, 2021. a
Guest, P. S. and Davidson, K. L.: The Effect of Observed Ice Conditions on the
Drag Coefficient in the Summer East Greenland Sea Marginal Ice Zone,
J. Geophys. Res.-Oceans, 92, 6943–6954,
https://doi.org/10.1029/JC092iC07p06943, 1987. a
Hakkinen, S. and Rhines, P. B.: Shifting Surface Currents in the Northern
North Atlantic Ocean, J. Geophys. Res.-Oceans, 114, C04005,
https://doi.org/10.1029/2008JC004883, 2009. a
Hansen, B. and Østerhus, S.: North Atlantic–Nordic Seas
Exchanges, Prog. Oceanogr., 45, 109–208,
https://doi.org/10.1016/S0079-6611(99)00052-X, 2000. a
Harris, C. L., Plueddemann, A. J., and Gawarkiewicz, G. G.: Water Mass
Distribution and Polar Front Structure in the Western Barents Sea,
J. Geophys. Res.-Oceans, 103, 2905–2917,
https://doi.org/10.1029/97JC02790, 1998. a, b
Holliday, N. P., Cunningham, S. A., Johnson, C., Gary, S. F., Griffiths, C.,
Read, J. F., and Sherwin, T.: Multidecadal Variability of Potential
Temperature, Salinity, and Transport in the Eastern Subpolar North
Atlantic, J. Geophys. Res.-Oceans, 120, 5945–5967,
https://doi.org/10.1002/2015JC010762, 2015. a
Inall, M. E., Nilsen, F., Cottier, F. R., and Daae, R.: Shelf/Fjord Exchange
Driven by Coastal-Trapped Waves in the Arctic, J. Geophys.
Res.-Oceans, 120, 8283–8303, https://doi.org/10.1002/2015JC011277, 2015. a, b
Ingvaldsen, R., Loeng, H., and Asplin, L.: Variability in the Atlantic
Inflow to the Barents Sea Based on a One-Year Time Series from Moored
Current Meters, Cont. Shelf Res., 22, 505–519,
https://doi.org/10.1016/S0278-4343(01)00070-X, 2002. a, b
Ivanov, V. V., Polyakov, I. V., Dmitrenko, I. A., Hansen, E., Repina, I. A.,
Kirillov, S. A., Mauritzen, C., Simmons, H., and Timokhov, L. A.: Seasonal
Variability in Atlantic Water off Spitsbergen, Deep Sea Res. Pt. I, 56, 1–14, https://doi.org/10.1016/j.dsr.2008.07.013,
2009. a, b
Jakobsson, M., Mayer, L., Coakley, B., Dowdeswell, J. A., Forbes, S., Fridman,
B., Hodnesdal, H., Noormets, R., Pedersen, R., Rebesco, M., Schenke, H. W.,
Zarayskaya, Y., Accettella, D., Armstrong, A., Anderson, R. M., Bienhoff, P.,
Camerlenghi, A., Church, I., Edwards, M., Gardner, J. V., Hall, J. K., Hell,
B., Hestvik, O., Kristoffersen, Y., Marcussen, C., Mohammad, R., Mosher, D.,
Nghiem, S. V., Pedrosa, M. T., Travaglini, P. G., and Weatherall, P.: The
International Bathymetric Chart of the Arctic Ocean (IBCAO)
Version 3.0, Geophys. Res. Lett., 39, L12609,
https://doi.org/10.1029/2012GL052219, 2012. a
Johannesen, E., Jørgensen, L. L., Fossheim, M., Primicerio, R., Greenacre,
M., Ljubin, P. A., Dolgov, A. V., Ingvaldsen, R. B., Anisimova, N. A., and
Manushin, I. E.: Large-Scale Patterns in Community Structure of Benthos and
Fish in the Barents Sea, Polar Biol., 40, 237–246,
https://doi.org/10.1007/s00300-016-1946-6, 2017. a
Jones, E. P.: Circulation in the Arctic Ocean, Polar Res., 20,
139–146, https://doi.org/10.1111/j.1751-8369.2001.tb00049.x, 2001. a
Jordi, A., Klinck, J. M., Basterretxea, G., Orfila, A., and Tintoré, J.:
Estimation of Shelf-Slope Exchanges Induced by Frontal Instability near
Submarine Canyons, J. Geophys. Res.-Oceans, 113, C05016,
https://doi.org/10.1029/2007JC004207, 2008. a
Kämpf, J.: Transient Wind-Driven Upwelling in a Submarine Canyon: A
Process-Oriented Modeling Study, J. Geophys. Res.-Oceans,
111, C11011, https://doi.org/10.1029/2006JC003497, 2006. a, b
Kämpf, J. and Chapman, P.: The Functioning of Coastal Upwelling
Systems, in: Upwelling Systems of the World: A Scientific
Journey to the Most Productive Marine Ecosystems, edited by: Kämpf,
J. and Chapman, P., Springer International Publishing, Cham,
31–65, https://doi.org/10.1007/978-3-319-42524-5_2, 2016. a
Koenig, Z., Provost, C., Sennéchael, N., Garric, G., and Gascard, J.-C.:
The Yermak Pass Branch: A Major Pathway for the Atlantic Water
North of Svalbard?, J. Geophys. Res.-Oceans, 122,
9332–9349, https://doi.org/10.1002/2017JC013271, 2017. a
Kolås, E. H., Koenig, Z., Fer, I., Nilsen, F., and Marnela, M.: Structure
and Transport of Atlantic Water North of Svalbard From
Observations in Summer and Fall 2018, J. Geophys. Res.-Oceans, 125, e2020JC016174, https://doi.org/10.1029/2020JC016174, 2020. a, b
Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., and Aschan, M.:
Climate Change Alters the Structure of Arctic Marine Food Webs Due to
Poleward Shifts of Boreal Generalists, P. Roy. Soc. B-Bio., 282, 20151546, 2015. a
Kortsch, S., Primicerio, R., Aschan, M., Lind, S., Dolgov, A. V., and Planque,
B.: Food-Web Structure Varies along Environmental Gradients in a
High-Latitude Marine Ecosystem, Ecography, 42, 295–308, 2019. a
Large, W. G. and Pond, S.: Open Ocean Momentum Flux Measurements in
Moderate to Strong Winds, J. Phys. Ocean., 11,
324–336, https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2, 1981. a
Lewis, K. M., van Dijken, G. L., and Arrigo, K. R.: Changes in Phytoplankton
Concentration Now Drive Increased Arctic Ocean Primary Production,
Science, 369, 198–202, https://doi.org/10.1126/science.aay8380, 2020. a
Li, H., Chen, H., Wang, H., Sun, J., and Ma, J.: Can Barents Sea Ice
Decline in Spring Enhance Summer Hot Drought Events over Northeastern
China?, J. Climate, 31, 4705–4725, https://doi.org/10.1175/JCLI-D-17-0429.1,
2018. a
Lien, V. S., Vikebø, F. B., and Skagseth, Ø.: One Mechanism Contributing
to Co-Variability of the Atlantic Inflow Branches to the Arctic,
Nat. Commun., 4, 1488, https://doi.org/10.1038/ncomms2505, 2013. a
Lien, V. S., Schlichtholz, P., Skagseth, Ø., and Vikebø, F. B.:
Wind-Driven Atlantic Water Flow as a Direct Mode for Reduced
Barents Sea Ice Cover, J. Climate, 30, 803–812,
https://doi.org/10.1175/JCLI-D-16-0025.1, 2017.
Lind, S., Ingvaldsen, R. B., and Furevik, T.: Arctic Layer Salinity Controls Heat Loss from Deep Atlantic Layer in Seasonally Ice-Covered Areas of the Barents Sea, Geophys. Res. Lett., 43, 5233–42, https://doi.org/10.1002/2016GL068421, 2016. a
Lique, C. and Steele, M.: Where Can We Find a Seasonal Cycle of the
Atlantic Water Temperature within the Arctic Basin?, J. Geophys. Res.-Oceans, 117, C03026, https://doi.org/10.1029/2011JC007612, 2012. a
Loeng, H., Ozhigin, V., and Ådlandsvik, B.: Water Fluxes through the
Barents Sea, ICES J. Mar. Sci., 54, 310–317,
https://doi.org/10.1006/jmsc.1996.0165, 1997. a
Løyning, T. B.: Hydrography in the North–Western Barents Sea,
July–August 1996, Polar Res., 20, 1–11,
https://doi.org/10.1111/j.1751-8369.2001.tb00034.x, 2001. a
Lundesgaard, Ø., Sundfjord, A., and Renner, A. H. H.: Drivers of
Interannual Sea Ice Concentration Variability in the Atlantic Water
Inflow Region North of Svalbard, J. Geophys. Res.-Oceans, 126, e2020JC016522, https://doi.org/10.1029/2020JC016522, 2021. a, b
Lundesgaard, Ø., Sundfjord, A.: Time series of ocean currents, temperature, salinity, and pressure from ocean moorings M1 and M2 in the northwestern Barents Sea [data set], Norwegian Polar Institute, https://doi.org/10.21334/npolar.2022.1a68b156, 2022. a
Madonna, E., Hes, G., Li, C., Michel, C., and Siew, P. Y. F.: Control of
Barents Sea Wintertime Cyclone Variability by Large-Scale Atmospheric
Flow, Geophys. Res. Lett., 47, e2020GL090322,
https://doi.org/10.1029/2020GL090322, 2020. a
Martin, T., Steele, M., and Zhang, J.: Seasonality and Long-Term Trend of
Arctic Ocean Surface Stress in a Model, J. Geophys. Res.-Oceans, 119, 1723–1738, https://doi.org/10.1002/2013JC009425, 2014. a
Mauritzen, C.: Production of Dense Overflow Waters Feeding the North
Atlantic across the Greenland-Scotland Ridge, Part 1: Evidence
for a Revised Circulation Scheme, Deep Sea Res. Pt. I, 43, 769–806, https://doi.org/10.1016/0967-0637(96)00037-4, 1996. a
Menze, S., Ingvaldsen, R. B., Nikolopoulos, A., Hattermann, T., Albretsen, J.,
and Gjøsæter, H.: Productive Detours – Atlantic Water
Inflow and Acoustic Backscatter in the Major Troughs along the Svalbard
Shelf, Prog. Oceanogr., 188, 102447,
https://doi.org/10.1016/j.pocean.2020.102447, 2020. a, b
Midttun, L.: Formation of Dense Bottom Water in the Barents Sea, Deep Sea Res., 32, 1233–1241, https://doi.org/10.1016/0198-0149(85)90006-8, 1985. a
Mosby, H.: Water, Salt and Heat Balance of the North Polar Sea and of the
Norwegian Sea, Geophys. Norveg., 24, 289–313, 1962. a
Mysak, L. A.: Topographically Trapped Waves, Annual Review of Fluid
Mechanics, 12, 45–76, https://doi.org/10.1146/annurev.fl.12.010180.000401, 1980. a
Nansen, F.: The Oceanography of the North Polar Basin. The Norwegian
North Polar Expedition 1893-1896., Scient. Results, 3 (9), 1902. a
Nilsen, F., Skogseth, R., Vaardal-Lunde, J., and Inall, M.: A Simple Shelf
Circulation Model: Intrusion of Atlantic Water on the West
Spitsbergen Shelf, J. Phys. Ocean., 46, 1209–1230,
https://doi.org/10.1175/JPO-D-15-0058.1, 2016. a, b, c
Nøst, O. A., Nilsson, J., and Nycander, J.: On the Asymmetry between
Cyclonic and Anticyclonic Flow in Basins with Sloping
Boundaries, J. Phys. Ocean.,, 38, 771–787,
https://doi.org/10.1175/2007JPO3714.1, 2008. a
Onarheim, I. H. and Årthun, M.: Toward an Ice-Free Barents Sea,
Geophys. Res. Lett., 44, 8387–8395, https://doi.org/10.1002/2017GL074304,
2017. a
Onarheim, I. H., Smedsrud, L. H., Ingvaldsen, R. B., and Nilsen, F.: Loss of
Sea Ice during Winter North of Svalbard, Tellus A, 66, 23933, https://doi.org/10.3402/tellusa.v66.23933, 2014. a
Oziel, L., Sirven, J., and Gascard, J.-C.: The Barents Sea Frontal Zones
and Water Masses Variability (1980–2011), Ocean Sci., 12,
169–184, https://doi.org/10.5194/os-12-169-2016, 2016. a, b
Pérez-Hernández, M. D., Pickart, R. S., Pavlov, V., Våge, K.,
Ingvaldsen, R., Sundfjord, A., Renner, A. H. H., Torres, D. J., and Erofeeva,
S. Y.: The Atlantic Water Boundary Current North of Svalbard in Late
Summer, J. Geophys. Res.-Oceans, 122, 2269–2290,
https://doi.org/10.1002/2016JC012486, 2017. a, b, c
Pérez-Hernández, M. D., Pickart, R. S., Torres, D. J., Bahr, F.,
Sundfjord, A., Ingvaldsen, R., Renner, A. H. H., Beszczynska-Möller, A.,
von Appen, W.-J., and Pavlov, V.: Structure, Transport, and
Seasonality of the Atlantic Water Boundary Current North of
Svalbard: Results From a Yearlong Mooring Array, J. Geophys. Res.-Oceans, 124, 1679–1698, https://doi.org/10.1029/2018JC014759,
2019. a
Petoukhov, V. and Semenov, V. A.: A Link between Reduced Barents-Kara Sea
Ice and Cold Winter Extremes over Northern Continents, J. Geophys. Res.-Atmos., 115, D21111, https://doi.org/10.1029/2009JD013568, 2010. a
Pfirman, S., Bauch, D., and Gammelsrød, T.: The Northern Barents Sea:
Water Mass Distribution and Modification, in: The Polar Oceans and
Their Role in Shaping the Global Environment, edited by:
Johannessen, O. M., Muench, R. D., and Overland, J. E., AGU,
Ameircan Geophysical Union, Washington, DC, USA, 77–94, https://doi.org/10.1029/GM085p0077,
1994. a, b
Phillips, N. A.: Geostrophic Motion, Rev. Geophys., 1, 123–176,
https://doi.org/10.1029/RG001i002p00123, 1963. a
Pnyushkov, A. V., Polyakov, I. V., Ivanov, V. V., Aksenov, Y., Coward, A. C.,
Janout, M., and Rabe, B.: Structure and Variability of the Boundary Current
in the Eurasian Basin of the Arctic Ocean, Deep Sea Res. Pt. I, 101, 80–97, https://doi.org/10.1016/j.dsr.2015.03.001,
2015. a
Polyakov, I. V., Pnyushkov, A. V., Alkire, M. B., Ashik, I. M., Baumann, T. M.,
Carmack, E. C., Goszczko, I., Guthrie, J., Ivanov, V. V., Kanzow, T.,
Krishfield, R., Kwok, R., Sundfjord, A., Morison, J., Rember, R., and Yulin,
A.: Greater Role for Atlantic Inflows on Sea-Ice Loss in the Eurasian
Basin of the Arctic Ocean, Science, 356, 285–291,
https://doi.org/10.1126/science.aai8204, 2017. a
Randelhoff, A. and
Sundfjord, A.: Short Commentary on Marine Productivity at
Arctic Shelf Breaks: Upwelling, Advection and Vertical Mixing, Ocean
Sci., 14, 293–300, https://doi.org/10.5194/os-14-293-2018, 2018. a
Renner, A. H. H., Sundfjord, A., Janout, M. A., Ingvaldsen, R. B.,
Beszczynska-Möller, A., Pickart, R. S., and Pérez-Hernández,
M. D.: Variability and Redistribution of Heat in the Atlantic Water
Boundary Current North of Svalbard, J. Geophys. Res.-Oceans, 123, 6373–6391, https://doi.org/10.1029/2018JC013814, 2018. a, b, c, d, e, f, g
Rudels, B.: Arctic Ocean Circulation, Processes and Water Masses: A
Description of Observations and Ideas with Focus on the Period Prior to the
International Polar Year 2007–2009, Prog. Oceanogr.,
132, 22–67, https://doi.org/10.1016/j.pocean.2013.11.006, 2015. a
Saldías, G. S., Ramos-Musalem, K., and Allen, S. E.: Circulation and
Upwelling Induced by Coastal Trapped Waves over a Submarine Canyon in an
Idealized Eastern Boundary Margin, Geophys. Res. Lett., 48,
e2021GL093548, https://doi.org/10.1029/2021GL093548, 2021. a
Schauer, U., Loeng, H., Rudels, B., Ozhigin, V. K., and Dieck, W.:
Atlantic Water Flow through the Barents and Kara Seas,
Deep Sea Res. Pt. I, 49,
2281–2298, https://doi.org/10.1016/S0967-0637(02)00125-5, 2002. a, b, c
She, J. and Klinck, J. M.: Flow near Submarine Canyons Driven by Constant
Winds, J. Geophys. Res.-Oceans, 105, 28671–28694,
https://doi.org/10.1029/2000JC900126, 2000. a
Schyberg, H., Yang, X., Køltzow, M. A. Ø., Amstrup, B., Bakketun, Å.,
Bazile, E., Bojarova, J., Box, J. E., Dahlgren, P., Hagelin, S., Homleid, M.,
Horányi, A., Høyer, J., Johansson, Å., Killie, M. A., Körnich, H., Le Moigne, P.,
Lindskog, M., Manninen, T., Nielsen Englyst, P., Nielsen, K. P., Olsson, E., Palmason,
B.,
Peralta Aros, C., Randriamampianina, R., Samuelsson, P., Stappers, R, Støylen, E.,
Thorsteinsson, S., Valkonen, T., Wang, Z. Q.: Arctic
Regional Reanalysis on Single Levels from 1991 to Present, Copernicus
Climate Change Service (C3S) Climate Data Store (CDS), https://doi.org/10.24381/cds.713858f6, 2020. a, b
Skagseth, Ø.: Recirculation of Atlantic Water in the Western Barents
Sea, Geophys. Res. Lett., 35, L11606, https://doi.org/10.1029/2008GL033785, 2008. a
Smedsrud, L. H., Esau, I., Ingvaldsen, R. B., Eldevik, T., Haugan, P. M., Li,
C., Lien, V. S., Olsen, A., Omar, A. M., Otterå, O. H., Risebrobakken,
B., Sandø, A. B., Semenov, V. A., and Sorokina, S. A.: The Role of the
Barents Sea in the Arctic Climate System, Rev. Geophys., 51,
415–449, https://doi.org/10.1002/rog.20017, 2013. a, b, c
Sorteberg, A. and Kvingedal, B.: Atmospheric Forcing on the Barents Sea
Winter Ice Extent, J. Climate, 19, 4772–4784,
https://doi.org/10.1175/JCLI3885.1, 2006. a
Spence, P., Holmes, R. M., Hogg, A. M., Griffies, S. M., Stewart, K. D., and
England, M. H.: Localized Rapid Warming of West Antarctic Subsurface
Waters by Remote Winds, Nat. Clim. Change, 7, 595–603,
https://doi.org/10.1038/nclimate3335, 2017. a
Spreen, G., Kaleschke, L., and Heygster, G.: Sea Ice Remote Sensing Using
AMSR-E 89-GHz Channels, J. Geophys. Res.-Oceans, 113, C02S03,
https://doi.org/10.1029/2005JC003384, 2008. a, b
Sternberg, R. W., Aagaard, K.,
Cacchione, D., Wheatcroft, R. A., Beach, R. A., Roach, A. T., and Marsden, M. A. H.: Long-Term near-Bed Observations of Velocity and Hydrographic Properties in the Northwest Barents Sea with Implications for Sediment Transport, Cont. Shelf Res., 21, 267–287,
https://doi.org/10.1016/S0278-4343(00)00103-5, 2001.
a, b
Sundfjord, A.: CTD data from Nansen Legacy Cruise – Mooring service cruise 2019, [data set], https://doi.org/10.21335/NMDC-2135074338, 2022. a
Sundfjord, A., Assmann, K. M., Lundesgaard, Ø., Renner, A. H. H., Lind, S.,
and Ingvaldsen, R. B.: Suggested Water Mass Definitions for the Central and
Northern Barents Sea, and the Adjacent Nansen Basin:, The Nansen
Legacy Report Series, https://doi.org/10.7557/nlrs.5707, 2020. a, b
Sundfjord, A., Lundesgaard, Ø., and Renner, A. H.: A-TWAIN mooring data 2019–2020 [data set], Norwegian Polar Institute, https://doi.org/10.21334/npolar.2022.d3a5adc2, 2022. a
Timmermans, M.-L. and Marshall, J.: Understanding Arctic Ocean Circulation:
A Review of Ocean Dynamics in a Changing Climate, J. Geophys. Res.-Oceans, 125, e2018JC014378,
https://doi.org/10.1029/2018JC014378, 2020. a, b, c
Torres-Valdés, S., Tsubouchi, T., Bacon, S., Naveira-Garabato, A. C.,
Sanders, R., McLaughlin, F. A., Petrie, B., Kattner, G., Azetsu-Scott, K.,
and Whitledge, T. E.: Export of Nutrients from the Arctic Ocean, J. Geophys. Res.-Oceans, 118, 1625–1644, 2013. a
Våge, K., Pickart, R. S., Pavlov, V., Lin, P., Torres, D. J., Ingvaldsen,
R., Sundfjord, A., and Proshutinsky, A.: The Atlantic Water Boundary
Current in the Nansen Basin: Transport and Mechanisms of Lateral
Exchange, J. Geophys. Res.-Oceans, 121, 6946–6960,
https://doi.org/10.1002/2016JC011715, 2016. a
von Appen, W.-J.: Correction of ADCP Compass Errors Resulting from
Iron in the Instrument's Vicinity, J. Atmos. Ocean. Tech., 32, 591–602, https://doi.org/10.1175/JTECH-D-14-00043.1, 2015. a
Wassmann, P., Kosobokova, K. N., Slagstad, D., Drinkwater, K. F., Hopcroft,
R. R., Moore, S. E., Ellingsen, I., Nelson, R. J., Carmack, E., Popova, E.,
and Berge, J.: The Contiguous Domains of Arctic Ocean Advection:
Trails of Life and Death, Prog. Oceanogr., 139, 42–65,
https://doi.org/10.1016/j.pocean.2015.06.011, 2015. a
Wickström, S., Jonassen, M. O., Vihma, T., and Uotila, P.: Trends in
Cyclones in the High-Latitude North Atlantic during 1979–2016,
Q. J. Roy. Meteor. Soc., 146, 762–779,
https://doi.org/10.1002/qj.3707, 2020. a, b
Woodgate, R. A., Aagaard, K., Muench, R. D., Gunn, J., Björk, G., Rudels,
B., Roach, A. T., and Schauer, U.: The Arctic Ocean Boundary Current
along the Eurasian Slope and the Adjacent Lomonosov Ridge: Water
Mass Properties, Transports and Transformations from Moored Instruments, Deep
Sea Res. Pt. I, 48, 1757–1792,
https://doi.org/10.1016/S0967-0637(00)00091-1, 2001. a
Short summary
In this study, 2-year mooring observations show the evolution of temperature, salinity, and currents in the northern Barents Sea. Inflow of Atlantic Water from the north in autumn and winter was the main driver of the seasonal cycle in the ocean. Winds modulated the inflow on shorter timescales. The upper-ocean state reflected how much sea ice had previously melted in the area. The import of ocean water and sea ice from adjacent regions plays a key role in the complex air–ice–ocean interplay.
In this study, 2-year mooring observations show the evolution of temperature, salinity, and...