Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1361-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1361-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global coarse-grained mesoscale eddy statistics based on integrated kinetic energy and enstrophy correlations
Imre M. Jánosi
CORRESPONDING AUTHOR
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
University of Public Service, Faculty of Water Sciences, Department of Water and Environmental Policy,Ludovika tér 2, 1083 Budapest, Hungary
Holger Kantz
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
Jason A. C. Gallas
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
Instituto de Altos Estudos da Paraíba, Rua Silvino Lopes 419-2502, 58039-190 João Pessoa, Brazil
Miklós Vincze
von Kármán Laboratory for Environmental Flows, Eötvös Loránd University, Pázmány Péter s. 1/A, 1117 Budapest, Hungary
MTA-ELTE Theoretical Physics Research Group, Pázmány Péter s. 1/A, 1117 Budapest, Hungary
Related authors
Imre M. Jánosi, Amin Padash, Jason A. C. Gallas, and Holger Kantz
Ocean Sci., 18, 307–320, https://doi.org/10.5194/os-18-307-2022, https://doi.org/10.5194/os-18-307-2022, 2022
Short summary
Short summary
Spectacular climatic phenomena such as El Nino—La Nina oscillations are connected with large-scale rearrangements of oceanic surface flow patterns. In order to get a better insight into the dynamics of such changes, we performed numerical experiments on the advection of 6600 water parcels in the focal area. Surface flow fields were taken from the AVISO data bank. A simple stochastic model (fractional Brownian motion) with only two parameters nicely reproduced the statistics of advection.
Karim Medjdoub, Imre M. Jánosi, and Miklós Vincze
Ocean Sci., 17, 997–1009, https://doi.org/10.5194/os-17-997-2021, https://doi.org/10.5194/os-17-997-2021, 2021
Short summary
Short summary
In our laboratory experiments we addressed the question of how surface standing waves in a closed stratified basin are damped by the interaction of the flow in the bulk with a sill-like bottom obstacle reaching up to a density interface between the more saline deep layer and the freshwater layer at the top. We quantify the decay rates of the surface waves and explore what types of internal waves can be excited in this process along the internal density interface.
Imre M. Jánosi, Miklós Vincze, Gábor Tóth, and Jason A. C. Gallas
Ocean Sci., 15, 941–949, https://doi.org/10.5194/os-15-941-2019, https://doi.org/10.5194/os-15-941-2019, 2019
Short summary
Short summary
Mesoscale eddies are ubiquitous swirling flow patterns in the open ocean with diameters of around 100 km. They transport a huge amount of heat and material and are therefore key elements of the “weather” of the ocean. Using satellite-based ocean surface elevation, we found that the combined global effect of all mesoscale eddies can be treated as a single strong “super-vortex”. This finding can be helpful to estimate the energy budget of ocean regions where only sparse field data are available.
P. I. Orvos, V. Homonnai, A. Várai, Z. Bozóki, and I. M. Jánosi
Geosci. Instrum. Method. Data Syst., 4, 189–196, https://doi.org/10.5194/gi-4-189-2015, https://doi.org/10.5194/gi-4-189-2015, 2015
Short summary
Short summary
The remotely sensed drought severity index (DSI) records compiled by Mu et al. (2013) exhibit significant local trends in several geographic areas. Since the interpretation of DSI values and trends depend on several local factors, standard field significance tests cannot provide more reliable results than the presented local trend survey. The observed continent-wide trends might be related to a slow (decadal) mode of climate variability, a link to global climate change cannot be established.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 17, 6489–6511, https://doi.org/10.5194/gmd-17-6489-2024, https://doi.org/10.5194/gmd-17-6489-2024, 2024
Short summary
Short summary
The forecast error growth of atmospheric phenomena is caused by initial and model errors. When studying the initial error growth, it may turn out that small-scale phenomena, which contribute little to the forecast product, significantly affect the ability to predict this product. With a negative result, we investigate in the extended Lorenz (2005) system whether omitting these phenomena will improve predictability. A theory explaining and describing this behavior is developed.
Riccardo Silini, Sebastian Lerch, Nikolaos Mastrantonas, Holger Kantz, Marcelo Barreiro, and Cristina Masoller
Earth Syst. Dynam., 13, 1157–1165, https://doi.org/10.5194/esd-13-1157-2022, https://doi.org/10.5194/esd-13-1157-2022, 2022
Short summary
Short summary
The Madden–Julian Oscillation (MJO) has important socioeconomic impacts due to its influence on both tropical and extratropical weather extremes. In this study, we use machine learning (ML) to correct the predictions of the weather model holding the best performance, developed by the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the ML post-processing leads to an improved prediction of the MJO geographical location and intensity.
Costanza Rodda, Uwe Harlander, and Miklos Vincze
Weather Clim. Dynam., 3, 937–950, https://doi.org/10.5194/wcd-3-937-2022, https://doi.org/10.5194/wcd-3-937-2022, 2022
Short summary
Short summary
We report on a set of laboratory experiments that reproduce a global warming scenario. The experiments show that a decreased temperature difference between the poles and subtropics slows down the eastward propagation of the mid-latitude weather patterns. Another consequence is that the temperature variations diminish, and hence extreme temperature events might become milder in a global warming scenario. Our experiments also show that the frequency of such events increases.
Hynek Bednář and Holger Kantz
Geosci. Model Dev., 15, 4147–4161, https://doi.org/10.5194/gmd-15-4147-2022, https://doi.org/10.5194/gmd-15-4147-2022, 2022
Short summary
Short summary
A scale-dependent error growth described by a power law or by a quadratic hypothesis is studied in Lorenz’s system with three spatiotemporal levels. The validity of power law is extended by including a saturation effect. The quadratic hypothesis can only serve as a first guess. In addition, we study the initial error growth for the ECMWF forecast system. Fitting the parameters, we conclude that there is an intrinsic limit of predictability after 22 days.
Imre M. Jánosi, Amin Padash, Jason A. C. Gallas, and Holger Kantz
Ocean Sci., 18, 307–320, https://doi.org/10.5194/os-18-307-2022, https://doi.org/10.5194/os-18-307-2022, 2022
Short summary
Short summary
Spectacular climatic phenomena such as El Nino—La Nina oscillations are connected with large-scale rearrangements of oceanic surface flow patterns. In order to get a better insight into the dynamics of such changes, we performed numerical experiments on the advection of 6600 water parcels in the focal area. Surface flow fields were taken from the AVISO data bank. A simple stochastic model (fractional Brownian motion) with only two parameters nicely reproduced the statistics of advection.
Karim Medjdoub, Imre M. Jánosi, and Miklós Vincze
Ocean Sci., 17, 997–1009, https://doi.org/10.5194/os-17-997-2021, https://doi.org/10.5194/os-17-997-2021, 2021
Short summary
Short summary
In our laboratory experiments we addressed the question of how surface standing waves in a closed stratified basin are damped by the interaction of the flow in the bulk with a sill-like bottom obstacle reaching up to a density interface between the more saline deep layer and the freshwater layer at the top. We quantify the decay rates of the surface waves and explore what types of internal waves can be excited in this process along the internal density interface.
Meagan Carney and Holger Kantz
Adv. Stat. Clim. Meteorol. Oceanogr., 6, 61–77, https://doi.org/10.5194/ascmo-6-61-2020, https://doi.org/10.5194/ascmo-6-61-2020, 2020
Short summary
Short summary
Extremes in weather can have lasting effects on human health and resource consumption. Studying the recurrence of these events on a regional scale can improve response times and provide insight into a changing climate. We introduce a set of clustering tools that allow for regional clustering of weather recordings from stations across Germany. We use these clusters to form regional models of summer temperature extremes and find an increase in the mean from 1960 to 2018.
Imre M. Jánosi, Miklós Vincze, Gábor Tóth, and Jason A. C. Gallas
Ocean Sci., 15, 941–949, https://doi.org/10.5194/os-15-941-2019, https://doi.org/10.5194/os-15-941-2019, 2019
Short summary
Short summary
Mesoscale eddies are ubiquitous swirling flow patterns in the open ocean with diameters of around 100 km. They transport a huge amount of heat and material and are therefore key elements of the “weather” of the ocean. Using satellite-based ocean surface elevation, we found that the combined global effect of all mesoscale eddies can be treated as a single strong “super-vortex”. This finding can be helpful to estimate the energy budget of ocean regions where only sparse field data are available.
P. I. Orvos, V. Homonnai, A. Várai, Z. Bozóki, and I. M. Jánosi
Geosci. Instrum. Method. Data Syst., 4, 189–196, https://doi.org/10.5194/gi-4-189-2015, https://doi.org/10.5194/gi-4-189-2015, 2015
Short summary
Short summary
The remotely sensed drought severity index (DSI) records compiled by Mu et al. (2013) exhibit significant local trends in several geographic areas. Since the interpretation of DSI values and trends depend on several local factors, standard field significance tests cannot provide more reliable results than the presented local trend survey. The observed continent-wide trends might be related to a slow (decadal) mode of climate variability, a link to global climate change cannot be established.
R. C. Batac and H. Kantz
Nonlin. Processes Geophys., 21, 735–744, https://doi.org/10.5194/npg-21-735-2014, https://doi.org/10.5194/npg-21-735-2014, 2014
Cited articles
Ajayi, A., Le Sommer, J., Chassignet, E., Molines, J.-M., Xu, X., Albert, A.,
and Cosme, E.: Spatial and temporal variability of the North Atlantic eddy
field from two kilometric-resolution ocean models, J. Geophys. Res.-Ocean,
125, e2019JC015827, https://doi.org/10.1029/2019JC015827, 2020. a
Amores, A., Jordà, G., Arsouze, T., and Le Sommer, J.: Up to what extent can
we characterize ocean eddies using present-day gridded altimetric products?,
J. Geophys. Res.-Ocean., 123, 7220–7236, https://doi.org/10.1029/2018JC014140, 2018. a, b
Badin, G., Williams, R. G., Holt, J. T., and Fernand, L. J.: Are mesoscale
eddies in shelf seas formed by baroclinic instability of tidal fronts?, J.
Geophys. Res.-Ocean., 114, C005340,
https://doi.org/10.1029/2009JC005340, 2009. a, b
Beron-Vera, F. J., Hadjighasem, A., Xia, Q., Olascoaga, M. J., and Haller, G.:
Coherent Lagrangian swirls among submesoscale motions, P. Natl. Acad. Sci.
USA, 116, 18251–18256, https://doi.org/10.1073/pnas.1701392115, 2018. a
Brach, L., Deixonne, P., Bernard, M.-F., Durand, E., Desjean, M.-C., Perez, E.,
van Sebille, E., and ter Halle, A.: Anticyclonic eddies increase
accumulation of microplastic in the North Atlantic subtropical gyre, Mar.
Pollut. Bull., 126, 191–196,
https://doi.org/10.1016/j.marpolbul.2017.10.077, 2018. a, b
Carton, X. and Mcwilliams, J.: Barotropic and baroclinic instabilities of
axisymmetric vortices in a quasigeostrophic model, in: Mesoscale/Synoptic
Coherent structures in Geophysical Turbulence, edited by: Nihoul, J. and
Jamart, B., Vol. 50, Elsevier Oceanography Series, 225–244,
Elsevier, https://doi.org/10.1016/S0422-9894(08)70188-0, 1989. a
Cetina-Heredia, P., Roughan, M., van Sebille, E., Keating, S., and Brassington,
G. B.: Retention and leakage of water by mesoscale eddies in the East
Australian Current System, J. Geophys. Res.-Ocean., 124, 2485–2500,
https://doi.org/10.1029/2018JC014482, 2019. a, b
Chelton, D. B. and Schlax, M. G.: Global observations of oceanic Rossby waves,
Science, 272, 234–238, https://doi.org/10.1126/science.272.5259.234, 1996. a
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., Naggar, K. E., and Siwertz, N.:
Geographical variability of the first-baroclinic Rossby radius of
deformation, J. Phys. Oceanogr., 28, 433–460,
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a, b, c
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global
observations of large oceanic eddies, Geophys. Res. Lett., 34, L15606,
https://doi.org/10.1029/2007GL030812, 2007. a, b, c, d
Chen, G., Han, G., and Yang, X.: On the intrinsic shape of oceanic eddies
derived from satellite altimetry, Remote Sens. Environ., 228, 75–89,
https://doi.org/10.1016/j.rse.2019.04.011, 2019. a
Chérubin, L. M., Paih, N. L., and Carton, X. J.: Submesoscale instability in
the Straits of Florida, J. Phys. Oceanogr., 51, 2599–2615,
https://doi.org/10.1175/JPO-D-20-0283.1, 2021. a
Cotter, C. H.: Sines, versines and haversines in nautical astronomy, J. Navig.,
27, 536––541, https://doi.org/10.1017/S0373463300029337, 1974. a
Cushman-Roisin, B., Tang, B., and Chassignet, E. P.: Westward motion of
mesoscale eddies, J. Phys. Oceanogr., 20, 758–768,
https://doi.org/10.1175/1520-0485(1990)020<0758:WMOME>2.0.CO;2, 1990. a, b
Dewar, W. K. and Killworth, P. D.: On the stability of oceanic rings, J. Phys.
Oceanogr., 25, 1467–1487,
https://doi.org/10.1175/1520-0485(1995)025<1467:OTSOOR>2.0.CO;2, 1995. a
Drótos, G. and Tél, T.: On the validity of the β-plane approximation in
the dynamics and the chaotic advection of a point vortex pair model on a
rotating sphere, J. Atmos. Sci., 72, 415–429, https://doi.org/10.1175/JAS-D-14-0101.1,
2015. a
Early, J. J., Samelson, R. M., and Chelton, D. B.: The evolution and
propagation of quasigeostrophic ocean eddies, J. Phys. Oceanogr., 41, 1535–1555, https://doi.org/10.1175/2011JPO4601.1, 2011. a, b
El Aouni, A.: A hybrid identification and tracking of Lagrangian mesoscale
eddies, Phys. Fluids, 33, 036604, https://doi.org/10.1063/5.0038761, 2021. a
Escudier, R., Renault, L., Pascual, A., Brasseur, P., Chelton, D., and Beuvier,
J.: Eddy properties in the Western Mediterranean Sea from satellite altimetry
and a numerical simulation, J. Geophys. Res.-Ocean., 121, 3990–4006,
https://doi.org/10.1002/2015JC011371, 2016. a
Faghmous, J. H., Uluyol, M., Warmka, R., Ngyuen, H., Yao, Y., and Lindell, A.: A Daily Global Mesoscale Ocean Eddy Dataset From Satellite Altimetry (v1.1), Zenodo [data set], https://doi.org/10.5281/zenodo.13037, 2014. a
Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., and Kumar, V.: Data from: A daily global mesoscale ocean eddy dataset from satellite altimetry, Dryad [data set], https://doi.org/10.5061/dryad.gp40h, 2016. a
Frenger, I., Münnich, M., Gruber, N., and Knutti, R.: Southern Ocean eddy
phenomenology, J. Geophys. Res.-Ocean., 120, 7413–7449,
https://doi.org/10.1002/2015JC011047, 2015. a
Gulliver, L. T. and Radko, T.: Topographic stabilization of ocean rings,
Geophys. Res. Lett., 49, e2021GL097686,
https://doi.org/10.1029/2021GL097686, 2022. a
Haller, G.: Lagrangian coherent structures, Annu. Rev. Fluid Mech., 47,
137–162, https://doi.org/10.1146/annurev-fluid-010313-141322, 2015. a
Haller, G., Karrasch, D., and Kogelbauer, F.: Material barriers to diffusive
and stochastic transport, P. Natl. Acad. Sci. USA, 115, 9074–9079,
https://doi.org/10.1073/pnas.1720177115, 2018. a
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P.,
Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R.,
Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del
Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant,
T. E.: Array programming with NumPy, Nature, 585, 357–362,
https://doi.org/10.1038/s41586-020-2649-2, 2020. a
Hopfinger, E. J. and van Heijst, G. J. F.: Vortices in rotating fluids, Annu.
Rev. Fluid Mech., 25, 241–289, https://doi.org/10.1146/annurev.fl.25.010193.001325,
1993. a, b
Ji, J., Dong, C., Zhang, B., Liu, Y., Zou, B., King, G. P., Xu, G., and Chen,
D.: Oceanic eddy characteristics and generation mechanisms in the Kuroshio
Extension region, J. Geophys. Res.-Ocean., 123, 8548–8567,
https://doi.org/10.1029/2018JC014196, 2018. a, b
Keppler, L., Cravatte, S., Chaigneau, A., Pegliasco, C., Gourdeau, L., and
Singh, A.: Observed characteristics and vertical structure of mesoscale
eddies in the Southwest Tropical Pacific, J. Geophys. Res.-Ocean., 123,
2731–2756, https://doi.org/10.1002/2017JC013712, 2018. a
Kurian, J., Colas, F., Capet, X., McWilliams, J. C., and Chelton, D. B.: Eddy
properties in the California Current System, J. Geophys. Res., 116, C08027,
https://doi.org/10.1029/2010JC006895, 2011. a, b
Ladd, C., Mordy, C. W., Kachel, N. B., and Stabeno, P. J.: Northern Gulf of
Alaska eddies and associated anomalies, Deep-Sea Res. Pt. I., 54, 487–509,
https://doi.org/10.1016/j.dsr.2007.01.006, 2007. a
Li, Q.-Y., Sun, L., and Lin, S.-F.: GEM: a dynamic tracking model for mesoscale
eddies in the ocean, Ocean Sci., 12, 1249–1267,
https://doi.org/10.5194/os-12-1249-2016, 2016. a
Lyman, J. M. and Johnson, G. C.: Anomalous eddy heat and freshwater transport
in the Gulf of Alaska, J. Geophys. Res.-Ocean., 120, 1397–1408,
https://doi.org/10.1002/2014JC010252, 2015. a
Marta, T. and Isachsen, P. E.: Topographic influence on baroclinic instability
and the mesoscale eddy field in the northern North Atlantic Ocean and the
Nordic Seas, J. Phys. Oceanogr., 48, 2593–2607,
https://doi.org/10.1175/JPO-D-17-0220.1, 2018. a, b
Martínez-Moreno, J., Hogg, A. M., Kiss, A. E., Constantinou, N. C., and
Morrison, A. K.: Kinetic energy of eddy-like features from sea surface
altimetry, J. Adv. Model. Earth Syst., 11, 3090–3105,
https://doi.org/10.1029/2019MS001769, 2019. a, b, c
Martínez-Moreno, J., Hogg, A., England, M., Constantinou, N. C., Kiss,
A. E., and Morrison, A. K.: Global changes in oceanic mesoscale currents over
the satellite altimetry record, Nat. Clim. Change, 11, 397–403,
https://doi.org/10.1038/s41558-021-01006-9, 2021. a
Mason, E., Pascual, A., and McWilliams, J. C.: A new sea surface height–based
code for oceanic mesoscale eddy tracking, J. Atmos. Oceanic Technol., 31,
1181–1188, https://doi.org/10.1175/JTECH-D-14-00019.1, 2014. a
Matsuura, T. and Yamagata, T.: On the evolution of nonlinear planetary eddies
larger than the radius of deformation, J. Phys. Oceanogr., 12, 440–456,
https://doi.org/10.1175/1520-0485(1982)012<0440:OTEONP>2.0.CO;2, 1982. a
Molemaker, M. J., McWilliams, J. C., and Dewar, W. K.: Submesoscale instability
and generation of mesoscale anticyclones near a separation of the California
Undercurrent, J. Phys. Oceanogr., 45, 613–629,
https://doi.org/10.1175/JPO-D-13-0225.1, 2015. a
Moreton, S. M., Ferreira, D., Roberts, M. J., and Hewitt, H. T.: Evaluating
surface eddy properties in coupled climate simulations with
“eddy-present” and “eddy-rich” ocean resolution, Ocean Model., 147,
101567, https://doi.org/10.1016/j.ocemod.2020.101567, 2020. a
Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C.: A
vector geometry–based eddy detection algorithm and its application to a
high-resolution numerical model product and high-frequency radar surface
velocities in the Southern California Bight, J. Atmos. Ocean. Technol., 27,
564–579, https://doi.org/10.1175/2009JTECHO725.1, 2010. a
Nurser, A. J. G. and Bacon, S.: The Rossby radius in the Arctic Ocean, Ocean
Sci., 10, 967–975, https://doi.org/10.5194/os-10-967-2014, 2014. a
Pegliasco, C., Delepoulle, A., Mason, E., Morrow, R., Faugère, Y., and
Dibarboure, G.: META3.1exp: a new global mesoscale eddy trajectory atlas
derived from altimetry, Earth Syst. Sci. Data, 14, 1087–1107,
https://doi.org/10.5194/essd-14-1087-2022, 2022. a
Pessini, F., Olita, A., Cotroneo, Y., and Perilli, A.: Mesoscale eddies in the
Algerian Basin: do they differ as a function of their formation site?, Ocean
Sci., 14, 669–688, https://doi.org/10.5194/os-14-669-2018, 2018. a, b
Pnyushkov, A., Polyakov, I. V., Padman, L., and Nguyen, A. T.: Structure and
dynamics of mesoscale eddies over the Laptev Sea continental slope in the
Arctic Ocean, Ocean Sci., 14, 1329–1347, https://doi.org/10.5194/os-14-1329-2018,
2018. a, b, c
Prants, S., Andreev, A., Uleysky, M. Y., and Budyansky, M.: Lagrangian study of
mesoscale circulation in the Alaskan Stream area and the eastern Bering Sea,
Deep-Sea Res. Pt. II, 169/170, 104560,
https://doi.org/10.1016/j.dsr2.2019.03.005, 2019. a
Rai, S., Hecht, M., Maltrud, M., and Aluie, H.: Scale of oceanic eddy killing
by wind from global satellite observations, Sci. Adv., 7, eabf4920,
https://doi.org/10.1126/sciadv.abf4920, 2021. a
Raj, R. P., Johannessen, J. A., Eldevik, T., Nilsen, J. E. O., and Halo, I.:
Quantifying mesoscale eddies in the Lofoten Basin, J. Geophys. Res.-Ocean.,
121, 4503–4521, https://doi.org/10.1002/2016JC011637, 2016. a
Roisin, B. C. and Tang, B.: Geostrophic turbulence and emergence of eddies
beyond the radius of deformation, J. Phys. Oceanogr., 20, 97–113,
https://doi.org/10.1175/1520-0485(1990)020<0097:GTAEOE>2.0.CO;2, 1990. a
Rubio, A., Blanke, B., Speich, S., Grima, N., and Roy, C.: Mesoscale eddy
activity in the southern Benguela upwelling system from satellite altimetry
and model data, Progr. Oceanogr., 83, 288–295,
https://doi.org/10.1016/j.pocean.2009.07.029, 2009. a
Ryzhov, E. and Berloff, P.: On transport tensor of dynamically unresolved
oceanic mesoscale eddies, J. Fluid Mech., 939, A7,
https://doi.org/10.1017/jfm.2022.169, 2022. a
Schütte, F., Brandt, P., and Karstensen, J.: Occurrence and characteristics
of mesoscale eddies in the tropical northeastern Atlantic Ocean, Ocean Sci.,
12, 663–685, https://doi.org/10.5194/os-12-663-2016, 2016. a, b
Smith, K. S.: The geography of linear baroclinic instability in Earth's oceans,
J. Mar. Res., 65, 655–683, https://doi.org/10.1357/002224007783649484, 2007. a, b
Souza, J. M. A. C., de Boyer Montégut, C., and Le Traon, P. Y.: Comparison
between three implementations of automatic identification algorithms for the
quantification and characterization of mesoscale eddies in the South Atlantic
Ocean, Ocean Sci., 7, 317–334, https://doi.org/10.5194/os-7-317-2011, 2011. a
Stammer, D.: Global Characteristics of Ocean Variability Estimated from
Regional TOPEX/POSEIDON Altimeter Measurements, J. Phys. Oceanogr., 27,
1743–1769, https://doi.org/10.1175/1520-0485(1997)027<1743:GCOOVE>2.0.CO;2, 1997. a
Stammer, D. and Cazenave, A.: Satellite Altimetry Over Oceans and Land
Surfaces, Earth Observation of Global Changes, CRC Press, ISBN 9780367874841, 2017. a
Sutyrin, G. G., Radko, T., and Nycander, J.: Steady radiating baroclinic
vortices in vertically sheared flows, Phys. Fluids, 33, 031705,
https://doi.org/10.1063/5.0040298, 2021. a, b
Taburet, G., Sanchez-Roman, A., Ballarotta, M., Pujol, M.-I., Legeais, J.-F.,
Fournier, F., Faugere, Y., and Dibarboure, G.: DUACS DT2018: 25 years of
reprocessed sea level altimetry products, Ocean Sci., 15, 1207–1224,
https://doi.org/10.5194/os-15-1207-2019, 2019 (data available at: https://resources.marine.copernicus.eu/products, last access: 13 September 2022, registration required). a, b, c, d
Tian, F., Wu, D., Yuan, L., and Chen, G.: Impacts of the efficiencies of
identification and tracking algorithms on the statistical properties of
global mesoscale eddies using merged altimeter data, Int. J. Remote Sens.,
41, 2835–2860, https://doi.org/10.1080/01431161.2019.1694724, 2020. a
Ubelmann, C. and Fu, L.-L.: Vorticity structures in the Tropical Pacific from a
numerical simulation, J. Phys. Oceanogr., 41, 1455–1464,
https://doi.org/10.1175/2011JPO4507.1, 2011. a
Ueno, H., Sato, K., Freeland, H. J., Crawford, W. R., Onishi, H., Oka, E., and
Suga, T.: Anticyclonic eddies in the Alaskan Stream, J. Phys. Oceanogr., 39,
934–951, https://doi.org/10.1175/2008JPO3948.1, 2009. a
van Sebille, E., Aliani, S., Law, K. L., Maximenko, N., Alsina, J. M., Bagaev,
A., Bergmann, M., Chapron, B., Chubarenko, I., Cózar, A., Delandmeter,
P., Egger, M., Fox-Kemper, B., Garaba, S. P., Goddijn-Murphy, L., Hardesty,
B. D., Hoffman, M. J., Isobe, A., Jongedijk, C. E., Kaandorp, M. L. A.,
Khatmullina, L., Koelmans, A. A., Kukulka, T., Laufkötter, C., Lebreton, L.,
Lobelle, D., Maes, C., Martinez-Vicente, V., Maqueda, M. A. M.,
Poulain-Zarcos, M., Rodríguez, E., Ryan, P. G., Shanks, A. L., Shim,
W. J., Suaria, G., Thiel, M., van den Bremer, T. S., and Wichmann, D.: The
physical oceanography of the transport of floating marine debris, Environ.
Res. Lett., 15, 023003, https://doi.org/10.1088/1748-9326/ab6d7d, 2020. a, b
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van
der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson,
A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng,
Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R.,
Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro,
A. H., Pedregosa, F., van Mulbregt, P., and SciPy 1.0 Contributors:
SciPy 1.0: Fundamental algorithms for scientific computing in Python,
Nat. Method., 17, 261–272, https://doi.org/10.1038/s41592-019-0686-2, 2020.
a
Wang, Z., Li, Q., Sun, L., Li, S., Yang, Y., and Liu, S.: The most typical
shape of oceanic mesoscale eddies from global satellite sea level
observations, Front. Earth Sci., 9, 202–208,
https://doi.org/10.1007/s11707-014-0478-z, 2015. a
Wichmann, D., Kehl, C., Dijkstra, H. A., and van Sebille, E.: Ordering of trajectories reveals hierarchical finite-time coherent sets in Lagrangian particle data: detecting Agulhas rings in the South Atlantic Ocean, Nonlin. Processes Geophys., 28, 43–59, https://doi.org/10.5194/npg-28-43-2021, 2021. a, b
Willett, C. S., Leben, R. R., and Lavín, M. F.: Eddies and tropical
instability waves in the eastern tropical Pacific: A review, Prog. Oceanogr.,
69, 218–238, https://doi.org/10.1016/j.pocean.2006.03.010, 2006. a, b, c
Wunsch, C.: The oceanic variability spectrum and transport trends, Atmos.-Ocean, 47, 281–291, https://doi.org/10.3137/OC310.2009, 2009. a
Wunsch, C.: Baroclinic motions and energetics as measured by altimeters, J.
Atmos. Oc. Technol., 30, 140–150, https://doi.org/10.1175/JTECH-D-12-00035.1,
2013. a
Wunsch, C. and Ferrari, R.: Vertical mixing, energy, and the general
circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281–314,
https://doi.org/10.1146/annurev.fluid.36.050802.122121, 2004. a
Zhang, Z., Zhang, Y., Wang, W., and Huang, R. X.: Universal structure of
mesoscale eddies in the ocean, Geophys. Res. Lett., 40, 3677–3681,
https://doi.org/10.1002/grl.50736, 2013. a
Zhibing, L., Zhongya, C., Zhiqiang, L., Xiaohua, W., and Jianyu, H.: A novel
identification method for unrevealed mesoscale eddies with transient and weak
features-Capricorn Eddies as an example, Remote Sens. Environ., 274,
112981, https://doi.org/10.1016/j.rse.2022.112981, 2022. a
Short summary
Surface flow fields of the global oceans are dominated by so-called mesoscale (50–300 km) eddies. They usually drift westward at a few kilometers per day, transporting mass, temperature, chlorophyll, and debris. There are several methods to identify and track eddies based on satellite measurements, some of them very computationally demanding. Here we extend a recently proposed simple procedure to the global scale, which gives quick coarse-grained statistics on mesoscale vortex properties.
Surface flow fields of the global oceans are dominated by so-called mesoscale (50–300 km)...