Articles | Volume 18, issue 4
https://doi.org/10.5194/os-18-1183-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1183-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Kinematics of surface currents at the northern margin of the Gulf of Cádiz
Luciano de Oliveira Júnior
CORRESPONDING AUTHOR
Centre for Marine and Environmental Research (CIMA), University of
Algarve, Faro, 8005-139, Portugal
Paulo Relvas
Centre of Marine Sciences (CCMAR), University of Algarve, Faro,
8005-139, Portugal
Erwan Garel
Centre for Marine and Environmental Research (CIMA), University of
Algarve, Faro, 8005-139, Portugal
Related authors
No articles found.
Sarah A. Rautenbach, Carlos Mendes de Sousa, Mafalda Carapuço, and Paulo Relvas
Earth Syst. Sci. Data, 16, 4641–4654, https://doi.org/10.5194/essd-16-4641-2024, https://doi.org/10.5194/essd-16-4641-2024, 2024
Short summary
Short summary
This article presents the data of a 4-month observation of the Iberian Margin Cape St. Vincent ocean observatory, in Portugal (2022), a European Multidisciplinary Seafloor and water column Observatory node. Three instruments at depths between 150 and 200 m collected physical/biogeochemical parameters at different spatial and temporal scales. EMSO-ERIC aims at developing strategies to enable sustainable ocean observation with regards to costs, time, and resolution.
Huayang Cai, Bo Li, Junhao Gu, Tongtiegang Zhao, and Erwan Garel
Ocean Sci., 19, 603–614, https://doi.org/10.5194/os-19-603-2023, https://doi.org/10.5194/os-19-603-2023, 2023
Short summary
Short summary
For many problems concerning water resource utilization in estuaries, it is essential to be able to express observed salinity distributions based on simple theoretical models. In this study, we propose an analytical salt intrusion model inspired from a theory for predictions of flood hydrographs in watersheds. The newly developed model can be well calibrated using a minimum of three salinity measurements along the estuary and has been successfully applied in 21 estuaries worldwide.
Tina Georg, Maria C. Neves, and Paulo Relvas
Ocean Sci., 19, 351–361, https://doi.org/10.5194/os-19-351-2023, https://doi.org/10.5194/os-19-351-2023, 2023
Short summary
Short summary
This study aims to analyse the changes of the vertical structure of the ocean during upwelling and the role of climate patterns in the Canary Current (25–35°N) over a period of 25 years (1993–2017). Ocean mixing is enhanced during upwelling events and extends deeper (shallower) in the winters of positive (negative) North Atlantic Oscillation. It is enhanced during coupled, opposite phases of the East Atlantic pattern, suggesting stronger upwelling activity independent of climate patterns.
Erwan Garel, Ping Zhang, and Huayang Cai
Ocean Sci., 17, 1605–1621, https://doi.org/10.5194/os-17-1605-2021, https://doi.org/10.5194/os-17-1605-2021, 2021
Short summary
Short summary
Understanding tidal hydrodynamics is essential for water resources management in estuarine environments. In this study, we propose an analytical model to examine the fortnightly water level variations due to tidal motions alone in tide-dominated estuaries. Details of the analytical model show that changes in the mean depth or length of semi-arid estuaries affect the fortnightly tide amplitude, which has significant potential impacts on the estuarine ecosystem management.
Huayang Cai, Ping Zhang, Erwan Garel, Pascal Matte, Shuai Hu, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 24, 1871–1889, https://doi.org/10.5194/hess-24-1871-2020, https://doi.org/10.5194/hess-24-1871-2020, 2020
Short summary
Short summary
Understanding the morphological changes in estuaries due to natural processes and human interventions is especially important with regard to sustainable water management and ecological impacts on the estuarine environment. In this contribution, we explore the morphological evolution in tide-dominated estuaries by means of a novel analytical approach using the observed water levels along the channel. The method could serve as a useful tool to understand the evolution of estuarine morphology.
Huayang Cai, Hubert H. G. Savenije, Erwan Garel, Xianyi Zhang, Leicheng Guo, Min Zhang, Feng Liu, and Qingshu Yang
Hydrol. Earth Syst. Sci., 23, 2779–2794, https://doi.org/10.5194/hess-23-2779-2019, https://doi.org/10.5194/hess-23-2779-2019, 2019
Short summary
Short summary
Tide–river dynamics play an essential role in large-scale river deltas as they exert a tremendous impact on delta morphodynamics, salt intrusion and deltaic ecosystems. For the first time, we illustrate that there is a critical river discharge, beyond which tidal damping is reduced with increasing river discharge, and we explore the underlying mechanism using an analytical model. The results are useful for guiding sustainable water management and sediment transport in tidal rivers.
Huayang Cai, Marco Toffolon, Hubert H. G. Savenije, Qingshu Yang, and Erwan Garel
Ocean Sci., 14, 769–782, https://doi.org/10.5194/os-14-769-2018, https://doi.org/10.5194/os-14-769-2018, 2018
E. Garel and Ó. Ferreira
Earth Syst. Sci. Data, 7, 299–309, https://doi.org/10.5194/essd-7-299-2015, https://doi.org/10.5194/essd-7-299-2015, 2015
Short summary
Short summary
This contribution presents flagged (valid/non-valid) data from a current-meter and a multi-parametric probe operating between 2008 and 2014 at the lower Guadiana Estuary. To support data analysis, freshwater discharge into the estuary is also provided for the monitoring period. The data set is publicly available at PANGAEA in tab-delimitated format (http://doi.pangaea.de/10.1594/PANGAEA.845750).
Cited articles
Alvarez, I., Gomez-Gesteira, M., deCastro, M., and Dias, J. M.:
Spatiotemporal evolution of upwelling regime along the western coast of the
Iberian Peninsula, J. Geophys. Res.-Ocean., 113, C07020,
https://doi.org/10.1029/2008JC004744, 2008.
Alvera-Azcárate, A., Barth, A., Rixen, M., and Beckers, J. M.:
Reconstruction of incomplete oceanographic data sets using empirical
orthogonal functions: Application to the Adriatic Sea surface temperature,
Ocean Model., 9, 325–346, https://doi.org/10.1016/j.ocemod.2004.08.001,
2005.
Beckers, J. M. and Rixen, M.: EOF Calculations and Data Filling from Incomplete Oceanographic Datasets, J. Atmos. Ocean. Technol., 20, 1839–1856, https://doi.org/10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2, 2003.
Boavida, J., Paulo, D., Aurelle, D., Arnaud-Haond, S., Marschal, C., Reed,
J., Goncalves, J. M. S., and Serrao, E. A.: A well-kept treasure at depth:
Precious red coral rediscovered in atlantic deep coral gardens (SW Portugal)
after 300 Years, PLoS One, 11, 1–26,
https://doi.org/10.1371/journal.pone.0147228, 2016.
Casaucao, A., González-Ortegón, E., Jiménez, M. P.,
Teles-Machado, A., Plecha, S., Peliz, A. J., and Laiz, I.: Assessment of the
spawning habitat, spatial distribution, and Lagrangian dispersion of the
European anchovy (Engraulis encrasicolus) early stages in the Gulf of Cadiz
during an apparent anomalous episode in 2016, Sci. Total Environ., 781,
146530, https://doi.org/10.1016/j.scitotenv.2021.146530, 2021.
Castelao, R. M. and Barth, J. A.: The Role of Wind Stress Curl in Jet
Separation at a Cape, J. Phys. Oceanogr., 37, 2652–2672, https://doi.org/10.1175/2007JPO3679.1,
2007.
Castelao, R. M. and Luo, H.: Upwelling jet separation in the California
Current System, Sci. Rep.-UK, 8, 1–8, https://doi.org/10.1038/s41598-018-34401-y,
2018.
Chapman, R. D., Shay, L. K., Graber, H. C., Edson, J. B., Karachintsev, A.,
Trump, C. L., and Ross, D. B.: On the accuracy of HF radar surface current
measurements: Intercomparisons with ship-based sensors, J. Geophys. Res.-Ocean., 102, 18737–18748, https://doi.org/10.1029/97JC00049, 1997.
Chase, J.: The Bermuda‐Azores high pressure cell; Its surface wind circulation, Woods Hole Oceanographic Institution, technical report no. 20, 51–60, 1951.
CMEMS Service Evolution: Report on European HF Radar systems development and roadmap for HF Radar products evolution in compliance with CMEMS needs, report, CMEMS, 2017.
CODAR: About Baseline Interpolation, Manual, http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/Baseline_Interpolation.pdf (last access: 15 March 2021), 2004a.
CODAR: Obtaining Total Current Velocities from Radials, Manual, http://support.codar.com/Technicians_Information_Page_for_SeaSondes/Docs/Informative/Combining_Radials.pdf (last access: 15 March 2021), 2004b.
Cravo, A., Relvas, P., Cardeira, S., and Rita, F.: Nutrient and chlorophyll
a transports during an upwelling event in the NW margin of the Gulf of
Cadiz, J. Marine Syst., 128, 208–221,
https://doi.org/10.1016/j.jmarsys.2013.05.001, 2013.
Criado-Aldeanueva, F., García-Lafuente, J., Vargas, J. M., Del
Río, J., Vázquez, A., Reul, A., and Sánchez, A.: Distribution
and circulation of water masses in the Gulf of Cadiz from in situ
observations, Deep-Sea Res. Pt. II, 53, 1144–1160,
https://doi.org/10.1016/j.dsr2.2006.04.012, 2006.
Criado-Aldeanueva, F., García-Lafuente, J., Navarro, G., and Ruiz, J.:
Seasonal and interannual variability of the surface circulation in the
eastern Gulf of Cadiz (SW Iberia), J. Geophys. Res., 114, C01011,
https://doi.org/10.1029/2008JC005069, 2009.
Cristina, S., Icely, J., Costa Goela, P., Angel DelValls, T., and Newton,
A.: Using remote sensing as a support to the implementation of the European
Marine Strategy Framework Directive in SW Portugal, Cont. Shelf Res., 108,
169–177, https://doi.org/10.1016/j.csr.2015.03.011, 2015.
de Castro, S., Lobo, F. J., and Puga-Bernabéu, Á.:
Headland-associated banner banks generated during the last deglaciation near
the Strait of Gibraltar (Gulf of Cadiz, SW Spain), Mar. Geol., 386, 56–75,
https://doi.org/10.1016/j.margeo.2017.02.007, 2017.
de Oliveira Júnior, L., Garel, E., and Relvas, P.: The structure of
incipient coastal counter currents in South Portugal as indicator of their
forcing agents, J. Marine Syst., 214, 103486,
https://doi.org/10.1016/j.jmarsys.2020.103486, 2021.
Díez-Minguito, M., Baquerizo, A., Ortega-Sánchez, M., Navarro, G.,
and Losada, M. A.: Tide transformation in the Guadalquivir estuary (SW
Spain) and process-based zonation, J. Geophys. Res., 117, C03019,
https://doi.org/10.1029/2011JC007344, 2012.
Fiúza, A. F. G.: Upwelling Patterns off Portugal, in: Coastal Upwelling
Its Sediment Record, edited by: Suess, E. and Thiede, J., Springer US,
Boston, MA, 85–98, https://doi.org/10.1007/978-1-4615-6651-9_5, 1983.
Fiúza, A. F. G., de Macedo, M. E., and Guerreiro, M. R.: Climatological
space and time variation of the Portuguese coastal upwelling, Oceanol. Acta,
5, 31–40, 1982.
Folkard, A. M., Davies, P. A., Fiúza, A. F. G., and Ambar, I.: Remotely
sensed sea surface thermal patterns in the gulf of-cadiz and the strait of
Gibraltar: Variability, correlations, and relationships with the surface
wind field, J. Geophys. Res.-Oceans, 102, 5669–5683,
https://doi.org/10.1029/96JC02505, 1997.
Gan, J. and Allen, J. S.: A modeling study of shelf circulation off northern
California in the region of the Coastal Ocean Dynamics Experiment: Response
to relaxation of upwelling winds, J. Geophys. Res., 107, 3123,
https://doi.org/10.1029/2000JC000768, 2002.
Garcia, C. M., Prieto, L., Vargas, M., Echevarría, F., Garcia-Lafuente,
J., Ruiz, J., and Rubin, J. P.: Hydrodynamics and the spatial distribution
of plankton and TEP in the Gulf of Cadiz (SW Iberian Peninsula), J. Plankton
Res., 24, 817–833, https://doi.org/10.1093/plankt/24.8.817, 2002.
García Lafuente, J. and Ruiz, J.: The Gulf of Cádiz pelagic
ecosystem: A review, Prog. Oceanogr., 74, 228–251,
https://doi.org/10.1016/j.pocean.2007.04.001, 2007.
García-Lafuente, J., Delgado, J., Criado-Aldeanueva, F., Bruno, M., del
Río, J., and Miguel Vargas, J.: Water mass circulation on the
continental shelf of the Gulf of Cádiz, Deep-Sea Res. Pt. II, 53, 1182–1197, https://doi.org/10.1016/j.dsr2.2006.04.011, 2006.
García-Lafuente, J., Sánchez-Román, A., Naranjo, C., and
Sánchez-Garrido, J. C.: The very first transformation of the
Mediterranean outflow in the Strait of Gibraltar, J. Geophys. Res., 116,
C07010, https://doi.org/10.1029/2011JC006967, 2011.
García-Lafuente, J., Sammartino, S., Huertas, I. E., and Flecha, S.:
Hotter and Weaker Mediterranean Outflow as a Response to Basin-Wide
Alterations, Front. Mar. Sci., 8, 613444, https://doi.org/10.3389/fmars.2021.613444, 2021.
Garel, E. and D'Alimonte, D.: Continuous river discharge monitoring with
bottom-mounted current profilers at narrow tidal estuaries, Cont. Shelf
Res., 133, 1–12, https://doi.org/10.1016/j.csr.2016.12.001, 2017.
Garel, E., Laiz, I., Drago, T., and Relvas, P.: Characterisation of coastal
counter-currents on the inner shelf of the Gulf of Cadiz, J. Marine Syst.,
155, 19–34, https://doi.org/10.1016/j.jmarsys.2015.11.001, 2016.
Hanebuth, T. J. J., King, M. L., Mendes, I., Lebreiro, S., Lobo, F. J.,
Oberle, F. K., Antón, L., Ferreira, P. A., and Reguera, M. I.: Hazard
potential of widespread but hidden historic offshore heavy metal (Pb, Zn)
contamination (Gulf of Cadiz, Spain), Sci. Total Environ., 637–638,
561–576, https://doi.org/10.1016/j.scitotenv.2018.04.352, 2018.
Hernández-Carrasco, I., Solabarrieta, L., Rubio, A., Esnaola, G., Reyes, E., and Orfila, A.: Impact of HF radar current gap-filling methodologies on the Lagrangian assessment of coastal dynamics, Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, 2018.
Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut, J.-N.: ERA5 hourly data on pressure levels from 1959 to present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/cds.bd0915c6, 2018.
Kaihatu, J. M., Handler, R. A., Marmorino, G. O., and Shay, L. K.: Empirical
orthogonal function analysis of ocean surface currents using complex and
real-vector methods, J. Atmos. Ocean. Tech., 15, 927–941,
https://doi.org/10.1175/1520-0426(1998)015<0927:EOFAOO>2.0.CO;2, 1998.
Kaplan, D. M., Largier, J., and Botsford, L. W.: HF radar observations of
surface circulation off Bodega Bay (northern California, USA), J. Geophys.
Res., 110, 1–25, https://doi.org/10.1029/2005JC002959, 2005.
Kida, S., Price, J. F., and Yang, J.: The upper-oceanic response to
overflows: A mechanism for the Azores current, J. Phys. Oceanogr., 38,
880–895, https://doi.org/10.1175/2007JPO3750.1, 2008.
Kokkini, Z., Potiris, M., Kalampokis, A., and Zervakis, V.: HF Radar
observations of the dardanelles outflow current in the north eastern Aegean
using validated WERA HF radar data, Mediterr. Mar. Sci., 15, 753–768,
https://doi.org/10.12681/mms.938, 2014.
Kundu P. K. and Allen J. S.: Some three-dimensional characteristics of low-frequency current fluctuations near the Oregon Coast, J. Phys. Oceanogr., 6, 181–199, https://doi.org/10.1175/1520-0485(1976)006<0181:STDCOL>2.0.CO;2, 1976.
Leitão, F., Relvas, P., Cánovas, F., Baptista, V., and Teodósio,
A.: Northerly wind trends along the Portuguese marine coast since 1950,
Theor. Appl. Climatol., 137, 1–19, https://doi.org/10.1007/s00704-018-2466-9,
2018.
Lipa, B., Barrick, D., Alonso-Martirena, A., Fernandes, M., Ferrer, M. I.,
and Nyden, B.: Brahan project high frequency radar ocean measurements:
Currents, winds, waves and their interactions, Remote Sens., 6,
12094–12117, https://doi.org/10.3390/rs61212094, 2014.
Lipa, B. J. and Barrick, D. E.: Least-Squares Methods for the Extraction of
Surface Currents from CODAR Crossed-Loop Data: Application at ARSLOE, IEEE
J. Ocean. Eng., 8, 226–253, https://doi.org/10.1109/JOE.1983.1145578, 1983.
Lorente, P., Piedracoba, S., and Fanjul, E. A.: Validation of high-frequency
radar ocean surface current observations in the NW of the Iberian Peninsula,
Cont. Shelf Res., 92, 1–15, https://doi.org/10.1016/j.csr.2014.11.001,
2015.
Losada, A. M. P.: Analysis of the meteorological synoptic situations that
affect the Straits of Gibraltar and their influence on the surface wind,
Bol. Inst. Esp. Ocean., 15, 81–90, 1999.
Maiwa, K., Masumoto, Y., and Yamagata, T.: Characteristics of coastal
trapped waves along the southern and eastern coasts of Australia, J.
Oceanogr., 66, 243–258, https://doi.org/10.1007/s10872-010-0022-z, 2010.
Mestdagh, T., Lobo, F. J., Llave, E., Hernández-Molina, F. J.,
García Ledesma, A., Puga-Bernabéu, Á., Fernández-Salas, L.
M., and Van Rooij, D.: Late Quaternary multi-genetic processes and products
on the northern Gulf of Cadiz upper continental slope (SW Iberian
Peninsula), Mar. Geol., 427, 106214,
https://doi.org/10.1016/j.margeo.2020.106214, 2020.
Mulero-Martínez, R., Gómez-Enri, J., Mañanes, R., and Bruno,
M.: Assessment of near-shore currents from CryoSat-2 satellite in the Gulf
of Cádiz using HF radar-derived current observations, Remote Sens.
Environ., 256, 112310, https://doi.org/10.1016/j.rse.2021.112310, 2021.
Navarro, G., Escudier, R., Pascual, A., Caballero, I., and Vázquez, A.: Singular Value Decomposition of Ocean Surface Chlorophyll and Sea Level Anomalies in the Gulf of Cadiz (South-Western Iberian Peninsula), 20 years Prog. Radar Altimetry Symp., Venice-Lido 2012, 2013.
Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C.: A
vector geometry-based eddy detection algorithm and its application to a
high-resolution numerical model product and high-frequency radar surface
velocities in the Southern California Bight, J. Atmos. Ocean. Tech., 27,
564–579, https://doi.org/10.1175/2009JTECHO725.1, 2010.
Nunes, R. A. O., Alvim-Ferraz, M. C. M., Martins, F. G., Calderay-Cayetano, F., Durán-Grados, V., Moreno-Gutiérrez, J., Jalkanen, J.-P., Hannuniemi, H., and Sousa, S. I. V.: Shipping emissions in the Iberian Peninsula and the impacts on air quality, Atmos. Chem. Phys., 20, 9473–9489, https://doi.org/10.5194/acp-20-9473-2020, 2020.
Ortega, C., Nogueira, C., and Pinto, H.: Sea and littoral localities'
economy: Exploring potentialities for a maritime cluster – An integrated
analysis of Huelva, Spain and Algarve, Portugal, J. Marit. Res., 10, 35–42,
2013.
Ocean Color Data: Level 3 VIIRS-SNPP SST data, https://oceandata.sci.gsfc.nasa.gov, last access: 15 November 2021.
Paduan, J. D. and Rosenfeld, L. K.: Remotely sensed surface currents in
Monterey Bay from shore-based HF radar (Coastal Ocean Dynamics Application
Radar), J. Geophys. Res.-Oceans, 101, 20669–20686,
https://doi.org/10.1029/96JC01663, 1996.
Paduan, J. D. and Washburn, L.: High-Frequency Radar Observations of Ocean
Surface Currents, Annu. Rev. Mar. Sci., 5, 115–136,
https://doi.org/10.1146/annurev-marine-121211-172315, 2013.
Peliz, A., Dubert, J., Marchesiello, P., and Teles-Machado, A.: Surface
circulation in the Gulf of Cadiz: Model and mean flow structure, J. Geophys.
Res., 112, 1–20, https://doi.org/10.1029/2007JC004159, 2007.
Peliz, A., Marchesiello, P., Santos, A. M. P., Dubert, J., Teles-Machado,
A., Marta-Almeida, M., and Le Cann, B.: Surface circulation in the Gulf of
Cadiz: 2. Inflow-outflow coupling and the Gulf of Cadiz slope current, J.
Geophys. Res., 114, 1–16, https://doi.org/10.1029/2008JC004771, 2009.
Peliz, A., Boutov, D., Cardoso, R. M., Delgado, J., and Soares, P. M. M.:
The Gulf of Cadiz-Alboran Sea sub-basin: Model setup, exchange and seasonal
variability, Ocean Model., 61, 49–67,
https://doi.org/10.1016/j.ocemod.2012.10.007, 2013.
Peliz, A., Boutov, D., Barbosa Aguiar, A., and Carton, X.: The Gulf of Cadiz
Gap wind anticyclones, Cont. Shelf Res., 91, 171–191,
https://doi.org/10.1016/j.csr.2014.09.004, 2014.
Price, J. F., Baringer, M. O., Lueck, R. G., Johnson, G. C., Ambar, I.,
Parrilla, G., Cantos, A., Kennelly, M. A., and Sanford, T. B.: Mediterranean
Outflow Mixing and Dynamics, Science, 259, 1277–1282,
https://doi.org/10.1126/science.259.5099.1277, 1993.
Prieto, L., Navarro, G., Rodríguez-Gálvez, S., Huertas, I. E.,
Naranjo, J. M., and Ruiz, J.: Oceanographic and meteorological forcing of
the pelagic ecosystem on the Gulf of Cadiz shelf (SW Iberian Peninsula),
Cont. Shelf Res., 29, 2122–2137, https://doi.org/10.1016/j.csr.2009.08.007,
2009.
Puertos del Estado: HFR data, http://opendap.puertos.es/thredds/catalog/radar_local_huelva/catalog.html, last access: 13 October 2020.
Relvas, P. and Barton, E. D.: Mesoscale patterns in the Cape São Vicente
(Iberian Peninsula) upwelling region, J. Geophys. Res., 107, 3164,
https://doi.org/10.1029/2000JC000456, 2002.
Relvas, P. and Barton, E. D.: A separated jet and coastal counterflow during
upwelling relaxation off Cape São Vicente (Iberian Peninsula), Cont.
Shelf Res., 25, 29–49, https://doi.org/10.1016/j.csr.2004.09.006, 2005.
Reul, A., Muñoz, M., Criado-Aldeanueva, F., and Rodríguez, V.:
Spatial distribution of phytoplankton < 13 µm in the Gulf of
Cádiz in relation to water masses and circulation pattern under westerly
and easterly wind regimes, Deep-Sea Res. Pt. II, 53,
1294–1313, https://doi.org/10.1016/j.dsr2.2006.04.008, 2006.
Ribas-Ribas, M., Gómez-Parra, A., and Forja, J. M.: Air–sea CO2 fluxes
in the north-eastern shelf of the Gulf of Cádiz (southwest Iberian
Peninsula), Mar. Chem., 123, 56–66,
https://doi.org/10.1016/j.marchem.2010.09.005, 2011.
Rivas, D.: Wind-driven coastal-trapped waves off southern Tamaulipas and
northern Veracruz, western Gulf of Mexico, during winter 2012–2013, Estuar.
Coast. Shelf Sc., 185, 1–10, https://doi.org/10.1016/j.ecss.2016.12.002,
2017.
Sánchez, R. F. and Relvas, P.: Spring–summer climatological circulation
in the upper layer in the region of Cape St. Vincent, Southwest Portugal,
ICES J. Mar. Sci., 60, 1232–1250,
https://doi.org/10.1016/S1054-3139(03)00137-1, 2003.
Sánchez, R. F., Mason, E., Relvas, P., da Silva, A. J., and Peliz,
Á.: On the inner-shelf circulation in the northern Gulf of Cádiz,
southern Portuguese shelf, Deep-Sea Res. Pt. II, 53, 1198–1218,
https://doi.org/10.1016/j.dsr2.2006.04.002, 2006.
Sánchez, R. F., Relvas, P., and Delgado, M.: Coupled ocean wind and sea
surface temperature patterns off the western Iberian Peninsula, J. Marine
Syst., 68, 103–127, https://doi.org/10.1016/j.jmarsys.2006.11.003, 2007.
Sánchez-Leal, R. F., Bellanco, M. J., Naranjo, C., García-Lafuente,
J., and González-Pola, C.: On the seasonality of waters below the
seasonal thermocline in the Gulf of Cádiz, Cont. Shelf Res., 204, 104190,
https://doi.org/10.1016/j.csr.2020.104190, 2020.
Simpson, J. H. and Sharples, J.: Introduction to the Physical and Biological
Oceanography of Shelf Seas, in: Introduction to the Physical and Biological
Oceanography of Shelf Seas, Cambridge University Press, Cambridge, 306–313,
https://doi.org/10.1017/CBO9781139034098, 2012.
Solabarrieta, L., Rubio, A., Castanedo, S., Medina, R., Charria, G., and
Hernández, C.: Surface water circulation patterns in the southeastern
Bay of Biscay: New evidences from HF radar data, Cont. Shelf Res., 74,
60–76, https://doi.org/10.1016/j.csr.2013.11.022, 2014.
Stevenson, R. E.: Huelva Front and Malaga, Spain, eddy chain as defined by
satellite and oceanographic data, Dtsch. Hydrogr. Zeitschrift, 30, 51–53,
https://doi.org/10.1007/BF02226082, 1977.
Teles-Machado, A., Peliz, Á., Dubert, J., and Sánchez, R. F.: On the
onset of the Gulf of Cadiz Coastal Countercurrent, Geophys. Res. Lett., 34,
L12601, https://doi.org/10.1029/2007GL030091, 2007.
Vargas, J. M., García-Lafuente, J., Delgado, J., and Criado, F.: Seasonal
and wind-induced variability of Sea Surface Temperature patterns in the Gulf
of Cádiz, J. Marine Syst., 38, 205–219,
https://doi.org/10.1016/S0924-7963(02)00240-3, 2003.
Short summary
The circulation patterns of surface water over the northern Gulf of Cádiz are described based on hourly high-frequency radar data from 2016 to 2020. A persistent current follows the continental shelf slope eastward while near the coast, and currents generally have a balanced (eastward–westward) direction. In summer cross-shelf transport is promoted when westward coastal countercurrents recirculate offshore in the western region and merge with the slope current.
The circulation patterns of surface water over the northern Gulf of Cádiz are described based...