Articles | Volume 18, issue 4
https://doi.org/10.5194/os-18-1109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Evaluation of basal melting parameterisations using in situ ocean and melting observations from the Amery Ice Shelf, East Antarctica
Madelaine Rosevear
CORRESPONDING AUTHOR
Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Oceans Graduate School, University of Western Australia, Perth, Australia
Benjamin Galton-Fenzi
Australian Antarctic Division, Kingston, Australia
The Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, Australia
Australian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
Craig Stevens
National Institute of Water and Atmospheric Research, Wellington, New Zealand
Department of Physics, University of Auckland, Auckland, New Zealand
Related authors
Claire K. Yung, Madelaine G. Rosevear, Adele K. Morrison, Andrew McC Hogg, and Yoshihiro Nakayama
EGUsphere, https://doi.org/10.5194/egusphere-2024-3513, https://doi.org/10.5194/egusphere-2024-3513, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ocean models are used to understand how the ocean interacts with the Antarctic Ice Sheet, but they are too coarse in resolution to capture the small-scale ocean processes driving melting and require a parameterisation to predict melt. Previous parameterisations ignore key processes occurring in some regions of Antarctica. We develop a parameterisation with the feedback of stratification on melting and test it in idealised and regional ocean models, finding changes to melt rate and circulation.
Claire K. Yung, Madelaine G. Rosevear, Adele K. Morrison, Andrew McC Hogg, and Yoshihiro Nakayama
EGUsphere, https://doi.org/10.5194/egusphere-2024-3513, https://doi.org/10.5194/egusphere-2024-3513, 2024
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
Ocean models are used to understand how the ocean interacts with the Antarctic Ice Sheet, but they are too coarse in resolution to capture the small-scale ocean processes driving melting and require a parameterisation to predict melt. Previous parameterisations ignore key processes occurring in some regions of Antarctica. We develop a parameterisation with the feedback of stratification on melting and test it in idealised and regional ocean models, finding changes to melt rate and circulation.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024, https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Short summary
We introduce an accelerated forcing approach to address timescale discrepancies between the ice sheets and ocean components in coupled modelling by reducing the ocean simulation duration. The approach is evaluated using idealized coupled models, and its limitations in real-world applications are discussed. Our results suggest it can be a valuable tool for process-oriented coupled ice sheet–ocean modelling and downscaling climate simulations with such models.
Yu Wang, Chen Zhao, Rupert Gladstone, Thomas Zwinger, Benjamin K. Galton-Fenzi, and Poul Christoffersen
The Cryosphere, 18, 5117–5137, https://doi.org/10.5194/tc-18-5117-2024, https://doi.org/10.5194/tc-18-5117-2024, 2024
Short summary
Short summary
Our research delves into the future evolution of Antarctica's Wilkes Subglacial Basin (WSB) and its potential contribution to sea level rise, focusing on how basal melt is implemented at the grounding line in ice flow models. Our findings suggest that these implementation methods can significantly impact the magnitude of future ice loss projections. Under a high-emission scenario, the WSB ice sheet could undergo massive and rapid retreat between 2200 and 2300.
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda
EGUsphere, https://doi.org/10.5194/egusphere-2024-3311, https://doi.org/10.5194/egusphere-2024-3311, 2024
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This paper describes results from an underwater robot (glider) deployment in the energetic waters of Te-Moana-o-Raukawa. The glider data showed how energy is transferred from winds and tides to turbulent processes. We found that boundary layers of strong turbulence typically can impact the water from surface to seafloor, except when pockets of fresher or warmer water move into the region. Numerical simulations showed that turbulent energy transport was crucial for boundary layers to interact.
Jan De Rydt, Nicolas C. Jourdain, Yoshihiro Nakayama, Mathias van Caspel, Ralph Timmermann, Pierre Mathiot, Xylar S. Asay-Davis, Hélène Seroussi, Pierre Dutrieux, Ben Galton-Fenzi, David Holland, and Ronja Reese
Geosci. Model Dev., 17, 7105–7139, https://doi.org/10.5194/gmd-17-7105-2024, https://doi.org/10.5194/gmd-17-7105-2024, 2024
Short summary
Short summary
Global climate models do not reliably simulate sea-level change due to ice-sheet–ocean interactions. We propose a community modelling effort to conduct a series of well-defined experiments to compare models with observations and study how models respond to a range of perturbations in climate and ice-sheet geometry. The second Marine Ice Sheet–Ocean Model Intercomparison Project will continue to lay the groundwork for including ice-sheet–ocean interactions in global-scale IPCC-class models.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Felicity S. McCormack, Jason L. Roberts, Bernd Kulessa, Alan Aitken, Christine F. Dow, Lawrence Bird, Benjamin K. Galton-Fenzi, Katharina Hochmuth, Richard S. Jones, Andrew N. Mackintosh, and Koi McArthur
The Cryosphere, 17, 4549–4569, https://doi.org/10.5194/tc-17-4549-2023, https://doi.org/10.5194/tc-17-4549-2023, 2023
Short summary
Short summary
Changes in Antarctic surface elevation can cause changes in ice and basal water flow, impacting how much ice enters the ocean. We find that ice and basal water flow could divert from the Totten to the Vanderford Glacier, East Antarctica, under only small changes in the surface elevation, with implications for estimates of ice loss from this region. Further studies are needed to determine when this could occur and if similar diversions could occur elsewhere in Antarctica due to climate change.
Chen Zhao, Rupert Gladstone, Benjamin Keith Galton-Fenzi, David Gwyther, and Tore Hattermann
Geosci. Model Dev., 15, 5421–5439, https://doi.org/10.5194/gmd-15-5421-2022, https://doi.org/10.5194/gmd-15-5421-2022, 2022
Short summary
Short summary
We use a coupled ice–ocean model to explore an oscillation feature found in several contributing models to MISOMIP1. The oscillation is closely related to the discretized grounding line retreat and likely strengthened by the buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and frequent ice–ocean coupling. Our model choices have a non-trivial impact on mean melt and ocean circulation strength, which might be interesting for the coupled ice–ocean community.
Ole Richter, David E. Gwyther, Matt A. King, and Benjamin K. Galton-Fenzi
The Cryosphere, 16, 1409–1429, https://doi.org/10.5194/tc-16-1409-2022, https://doi.org/10.5194/tc-16-1409-2022, 2022
Short summary
Short summary
Tidal currents may play an important role in Antarctic ice sheet retreat by changing the rate at which the ocean melts glaciers. Here, using a computational ocean model, we derive the first estimate of present-day tidal melting that covers all of Antarctica. Our results suggest that large-scale ocean models aiming to accurately predict ice melt rates will need to account for the effects of tides. The inclusion of tide-induced friction at the ice–ocean interface should be prioritized.
Yu Wang, Chen Zhao, Rupert Gladstone, Ben Galton-Fenzi, and Roland Warner
The Cryosphere, 16, 1221–1245, https://doi.org/10.5194/tc-16-1221-2022, https://doi.org/10.5194/tc-16-1221-2022, 2022
Short summary
Short summary
The thermal structure of the Amery Ice Shelf and its spatial pattern are evaluated and analysed through temperature observations from six boreholes and numerical simulations. The simulations demonstrate significant ice warming downstream along the ice flow and a great variation of the thermal structure across the ice flow. We suggest that the thermal structure of the Amery Ice Shelf is unlikely to be affected by current climate changes on decadal timescales.
Ole Richter, David E. Gwyther, Benjamin K. Galton-Fenzi, and Kaitlin A. Naughten
Geosci. Model Dev., 15, 617–647, https://doi.org/10.5194/gmd-15-617-2022, https://doi.org/10.5194/gmd-15-617-2022, 2022
Short summary
Short summary
Here we present an improved model of the Antarctic continental shelf ocean and demonstrate that it is capable of reproducing present-day conditions. The improvements are fundamental and regard the inclusion of tides and ocean eddies. We conclude that the model is well suited to gain new insights into processes that are important for Antarctic ice sheet retreat and global ocean changes. Hence, the model will ultimately help to improve projections of sea level rise and climate change.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Craig Stevens, Natalie Robinson, Gabby O'Connor, and Brett Grant
The Cryosphere Discuss., https://doi.org/10.5194/tc-2020-249, https://doi.org/10.5194/tc-2020-249, 2020
Revised manuscript not accepted
Short summary
Short summary
Along Antarctica's coastal margin melting ice shelves create plumes of very cold sea water. In some circumstances the water is so cold that ice crystals exist in suspension. We present evidence from near the McMurdo Ice Shelf of ice crystals far larger than normal (by an order of magnitude or more). The crystal behaviour is examined by combining measurements of the crystal motion with ocean flow and turbulence data. This helps us make links between ice shelf melting and sea ice formation.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Rebecca A. McPherson, Craig L. Stevens, Joanne M. O'Callaghan, Andrew J. Lucas, and Jonathan D. Nash
Ocean Sci., 16, 799–815, https://doi.org/10.5194/os-16-799-2020, https://doi.org/10.5194/os-16-799-2020, 2020
Short summary
Short summary
River plume characteristics (density, velocity, turbulence) are measured in the first several kilometers of a river flow entering a New Zealand fjord. These observations are used to quantify the influence of the main plume dynamics on controlling the behavior and structure of the flow. The mixing of dense, stationary water from below into the fast-flowing plume drove its deceleration. Internal waves were capable of transporting almost 15 % of the total momentum out beyond the plume's boundaries.
Seung-Tae Yoon, Won Sang Lee, Craig Stevens, Stefan Jendersie, SungHyun Nam, Sukyoung Yun, Chung Yeon Hwang, Gwang Il Jang, and Jiyeon Lee
Ocean Sci., 16, 373–388, https://doi.org/10.5194/os-16-373-2020, https://doi.org/10.5194/os-16-373-2020, 2020
Short summary
Short summary
We investigated the variability in high-salinity shelf water (HSSW) formation in the Terra Nova Bay polynya using hydrographic data from instrumented moorings and vessel-based profiles. We show that HSSW can be formed in the upper water column of the eastern Terra Nova Bay via polynya activity and convective processes, as well as how the nature of circulation in Terra Nova Bay influences HSSW production. This article also discusses the present results in the context of previous analyses.
Chad A. Greene, Duncan A. Young, David E. Gwyther, Benjamin K. Galton-Fenzi, and Donald D. Blankenship
The Cryosphere, 12, 2869–2882, https://doi.org/10.5194/tc-12-2869-2018, https://doi.org/10.5194/tc-12-2869-2018, 2018
Short summary
Short summary
We show that Totten Ice Shelf accelerates each spring in response to the breakup of seasonal landfast sea ice at the ice shelf calving front. The previously unreported seasonal flow variability may have aliased measurements in at least one previous study of Totten's response to ocean forcing on interannual timescales. The role of sea ice in buttressing the flow of the ice shelf implies that long-term changes in sea ice cover could have impacts on the mass balance of the East Antarctic Ice Sheet.
Craig L. Stevens
Ocean Sci., 14, 801–812, https://doi.org/10.5194/os-14-801-2018, https://doi.org/10.5194/os-14-801-2018, 2018
Short summary
Short summary
Mixing in the ocean is highly variable and it is often difficult to measure the more energetic regions. Here we present the first full-depth turbulence profiles from Cook Strait, New Zealand. This 22 km wide channel between the major islands of New Zealand sustains very fast tidally driven flows. The measurements show that large vertical eddies exist, moving water up and down. This will affect stratification, as well as any biology, as it passes through the strait.
Lenneke M. Jong, Rupert M. Gladstone, Benjamin K. Galton-Fenzi, and Matt A. King
The Cryosphere, 12, 2425–2436, https://doi.org/10.5194/tc-12-2425-2018, https://doi.org/10.5194/tc-12-2425-2018, 2018
Short summary
Short summary
We used an ice sheet model to simulate temporary regrounding of a marine ice sheet retreating across a retrograde bedrock slope. We show that a sliding relation incorporating water-filled cavities and the ice overburden pressure at the base allows the temporary regrounding to occur. This suggests that choice of basal sliding relation can be important when modelling grounding line behaviour of regions where potential ice rises and pinning points are present and regrounding could occur.
Sue Cook, Jan Åström, Thomas Zwinger, Benjamin Keith Galton-Fenzi, Jamin Stevens Greenbaum, and Richard Coleman
The Cryosphere, 12, 2401–2411, https://doi.org/10.5194/tc-12-2401-2018, https://doi.org/10.5194/tc-12-2401-2018, 2018
Short summary
Short summary
The growth of fractures on Antarctic ice shelves is important because it controls the amount of ice lost as icebergs. We use a model constructed of multiple interconnected blocks to predict the locations where fractures will form on the Totten Ice Shelf in East Antarctica. The results show that iceberg calving is controlled not only by fractures forming near the front of the ice shelf but also by fractures which formed many kilometres upstream.
Kaitlin A. Naughten, Katrin J. Meissner, Benjamin K. Galton-Fenzi, Matthew H. England, Ralph Timmermann, Hartmut H. Hellmer, Tore Hattermann, and Jens B. Debernard
Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, https://doi.org/10.5194/gmd-11-1257-2018, 2018
Short summary
Short summary
MetROMS and FESOM are two ocean/sea-ice models which resolve Antarctic ice-shelf cavities and consider thermodynamics at the ice-shelf base. We simulate the period 1992–2016 with both models, and with two options for resolution in FESOM, and compare output from the three simulations. Ice-shelf melt rates, sub-ice-shelf circulation, continental shelf water masses, and sea-ice processes are compared and evaluated against available observations.
Felicity S. Graham, Jason L. Roberts, Ben K. Galton-Fenzi, Duncan Young, Donald Blankenship, and Martin J. Siegert
Earth Syst. Sci. Data, 9, 267–279, https://doi.org/10.5194/essd-9-267-2017, https://doi.org/10.5194/essd-9-267-2017, 2017
Short summary
Short summary
Antarctic bed topography datasets are interpolated onto low-resolution grids because our observed topography data are sparsely sampled. This has implications for ice-sheet model simulations, especially in regions prone to instability, such as grounding lines, where detailed knowledge of the topography is required. Here, we constructed a high-resolution synthetic bed elevation dataset using observed covariance properties to assess the dependence of simulated ice-sheet dynamics on grid resolution.
Christopher J. Fogwill, Erik van Sebille, Eva A. Cougnon, Chris S. M. Turney, Steve R. Rintoul, Benjamin K. Galton-Fenzi, Graeme F. Clark, E. M. Marzinelli, Eleanor B. Rainsley, and Lionel Carter
The Cryosphere, 10, 2603–2609, https://doi.org/10.5194/tc-10-2603-2016, https://doi.org/10.5194/tc-10-2603-2016, 2016
Short summary
Short summary
Here we report new data from in situ oceanographic surveys and high-resolution ocean modelling experiments in the Commonwealth Bay region of East Antarctica, where in 2010 there was a major reconfiguration of the regional icescape due to the collision of the 97 km long iceberg B09B with the Mertz Glacier tongue. Here we compare post-calving observations with high-resolution ocean modelling which suggest that this reconfiguration has led to the development of a new polynya off Commonwealth Bay.
Miles G. McPhee, Craig L. Stevens, Inga J. Smith, and Natalie J. Robinson
Ocean Sci., 12, 507–515, https://doi.org/10.5194/os-12-507-2016, https://doi.org/10.5194/os-12-507-2016, 2016
Short summary
Short summary
Measurements of turbulent heat fluxes in tidally modulated flow of supercool seawater under Antarctic land-fast sea ice show that turbulent heat exchange at the ocean–ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing. Also, the conditions cause platelet ice growth to form on the underside of the sea ice which increases the hydraulic roughness (drag) of fast ice compared to ice without platelets.
C. L. Stevens, P. Sirguey, G. H. Leonard, and T. G. Haskell
The Cryosphere, 7, 1333–1337, https://doi.org/10.5194/tc-7-1333-2013, https://doi.org/10.5194/tc-7-1333-2013, 2013
Cited articles
Adusumilli, S., Fricker, H. A., Siegfried, M. R., Padman, L., Paolo, F. S., and Ligtenberg, S. R. M.:
Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994–2016, Geophys. Res. Lett., 45, 4086–4095, https://doi.org/10.1002/2017GL076652, 2018. a
Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.:
Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nat. Geosci., 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020. a, b
Allison, I.:
The AMISOR project: ice shelf dynamics and ice-ocean interaction of the Amery Ice Shelf, FRISP Report, 14, 1–9, https://folk.uib.no/ngfso/FRISP/Rep14/allison.pdf (last access: 18 July 2022), 2003. a
Allison, I. and Craven, M.: Amery Ice Shelf – hot water drill borehole, AM06 Seabird MicroCAT CTD moorings at three depths in ocean cavity beneath the shelf, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.4225/15/525F34127651E, 2013. a
Arzeno, I. B., Beardsley, R. C., Limeburner, R., Owens, B., Padman, L., Springer, S. R., Stewart, C. L., and Williams, M. J.:
Ocean variability contributing to basal melt rate near the ice front of Ross Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 119, 4214–4233, https://doi.org/10.1002/2014JC009792, 2014. a
Bamber, J. L., Westaway, R. M., Marzeion, B., and Wouters, B.:
The land ice contribution to sea level during the satellite era, Environ. Res. Lett., 13, 063008, https://doi.org/10.1088/1748-9326/aac2f0, 2018. a
Begeman, C. B., Tulaczyk, S. M., Marsh, O. J., Mikucki, J. A., Stanton, T. P., Hodson, T. O., Siegfried, M. R., Powell, R. D., Christianson, K., and King, M. A.:
Ocean Stratification and Low Melt Rates at the Ross Ice Shelf Grounding Zone, J. Geophys. Res.-Oceans, 123, 7438–7452, https://doi.org/10.1029/2018JC013987, 2018. a, b, c, d
Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A., and Vaughan, D. G.:
Ocean forcing of glacier retreat in the western Antarctic Peninsula, Science, 353, 283–286, https://doi.org/10.1126/science.aae0017, 2016. a, b
Craven, M., Allison, I., Brand, R., Elcheikh, A., Hunter, J., Hemer, M., and Donoghue, S.:
Initial borehole results from the Amery Ice Shelf hot-water drilling project, Ann. Glaciol., 39, 531–539, https://doi.org/10.3189/172756404781814311, publisher: Cambridge University Press, 2004. a
Craven, M., Warner, R. C., Vogel, S. W., and Allison, I.:
Platelet ice attachment to instrument strings beneath the Amery Ice Shelf , East Antarctica, J. Glaciol., 60, 383–393, https://doi.org/10.3189/2014JoG13J082, 2014. a
Depoorter, M. A., Bamber, J. L., Griggs, J. A., Lenaerts, J. T. M., Ligtenberg, S. R. M., Broeke, M. R. V. D., and Moholdt, G.:
Calving fluxes and basal melt rates of Antarctic ice shelves, Nature, 502, 89–92, https://doi.org/10.1038/nature12567, 2013. a, b
Dinniman, M., Asay-Davis, X., Galton-Fenzi, B., Holland, P., Jenkins, A., and Timmermann, R.:
Modeling ice shelf/ocean interaction in Antarctica: A review, Oceanography, 29, 144–153, https://doi.org/10.5670/oceanog.2016.106, 2016. a
Dupont, T. K. and Alley, R. B.:
Assessment of the importance of ice-shelf buttressing to ice-sheet flow, Geophys. Res. Lett., 32, L04503, https://doi.org/10.1029/2004GL022024, 2005. a
Dutrieux, P., Stewart, C., Jenkins, A., Nicholls, K. W., Corr, H. F., Rignot, E., and Steffen, K.:
Basal terraces on melting ice shelves, Geophys. Res. Lett., 41, 5506–5513, https://doi.org/10.1002/2014GL060618, 2014. a, b, c
Fretwell, P., Pritchard, H. D., Vaughan, D. G., Bamber, J. L., Barrand, N. E., Bell, R., Bianchi, C., Bingham, R. G., Blankenship, D. D., Casassa, G., Catania, G., Callens, D., Conway, H., Cook, A. J., Corr, H. F. J., Damaske, D., Damm, V., Ferraccioli, F., Forsberg, R., Fujita, S., Gim, Y., Gogineni, P., Griggs, J. A., Hindmarsh, R. C. A., Holmlund, P., Holt, J. W., Jacobel, R. W., Jenkins, A., Jokat, W., Jordan, T., King, E. C., Kohler, J., Krabill, W., Riger-Kusk, M., Langley, K. A., Leitchenkov, G., Leuschen, C., Luyendyk, B. P., Matsuoka, K., Mouginot, J., Nitsche, F. O., Nogi, Y., Nost, O. A., Popov, S. V., Rignot, E., Rippin, D. M., Rivera, A., Roberts, J., Ross, N., Siegert, M. J., Smith, A. M., Steinhage, D., Studinger, M., Sun, B., Tinto, B. K., Welch, B. C., Wilson, D., Young, D. A., Xiangbin, C., and Zirizzotti, A.:
Bedmap2: improved ice bed, surface and thickness datasets for Antarctica, The Cryosphere, 7, 375–393, https://doi.org/10.5194/tc-7-375-2013, 2013. a
Fricker, H. A., Popov, S., Allison, I., and Young, N.:
Distribution of marine ice beneath the Amery Ice Shelf, Geophys. Res. Lett., 28, 2241–2244, https://doi.org/10.1029/2000GL012461, 2001. a, b
Fürst, J. J., Durand, G., Gillet-Chaulet, F., Tavard, L., Rankl, M., Braun, M., and Gagliardini, O.:
The safety band of Antarctic ice shelves, Nat. Clim. Change, 6, 479–482, https://doi.org/10.1038/nclimate2912, 2016. a
Gade, H. G.:
Melting of ice in sea water: A primitive model with application to the Antarctic ice shelf and icebergs, J. Phys. Oceanogr., 9, 189–198, https://doi.org/10.1175/1520-0485(1979)009<0189:MOIISW>2.0.CO;2, 1979. a, b
Galton-Fenzi, B. K.:
Modelling ice-shelf/ocean interaction, PhD thesis, University of Tasmania, https://eprints.utas.edu.au/19882/ (last access: 18 July 2022), 2009. a
Gayen, B., Griffiths, R. W., and Kerr, R. C.:
Simulation of convection at a vertical ice face dissolving into saline water, J. Fluid Mech., 798, 284–298, https://doi.org/10.1017/jfm.2016.315, 2016. a, b, c
Greene, C.:
Ice flowlines, MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/53152-ice-flowlines, (last access: 4 April 2022), 2022. a
Greene, C. A., Gwyther, D. E., and Blankenship, D. D.:
Antarctic mapping tools for MATLAB, Comput. Geosci., 104, 151–157, https://doi.org/10.1016/j.cageo.2016.08.003, 2017. a
Gwyther, D. E., Galton-Fenzi, B. K., Dinniman, M. S., Roberts, J. L., and Hunter, J. R.:
The effect of basal friction on melting and freezing in ice shelf-ocean models, Ocean Model., 95, 38–52, https://doi.org/10.1016/j.ocemod.2015.09.004, 2015. a, b, c
Gwyther, D. E., Cougnon, E. A., Galton-Fenzi, B. K., Roberts, J. L., Hunter, J. R., and Dinniman, M. S.:
Modelling the response of ice shelf basal melting to different ocean cavity environmental regimes, Ann. Glaciol., 57, 131–141, https://doi.org/10.1017/aog.2016.31, 2016. a, b
Gwyther, D. E., Kusahara, K., Asay-Davis, X. S., Dinniman, M. S., and Galton-Fenzi, B. K.:
Vertical processes and resolution impact ice shelf basal melting: A multi-model study, Ocean Model., 147, 101569, https://doi.org/10.1016/j.ocemod.2020.101569, 2020. a
Hattermann, T., Nøst, O. A., Lilly, J. M., and Smedsrud, L. H.:
Two years of oceanic observations below the Fimbul Ice Shelf, Antarctica, Geophys. Res. Lett., 39, L12605, https://doi.org/10.1029/2012GL051012, 2012. a
Hellmer, H. H. and Olbers, D.:
A two-dimensional model for the thermohaline circulation under an ice shelf, Antarct. Sci., 1, 325–336, https://doi.org/10.1017/S0954102089000490, 1989. a
Hemer, M., Hunter, J., and Coleman, R.:
Barotropic tides beneath the Amery Ice Shelf, J. Geophys. Res.-Oceans, 111, C11008, https://doi.org/10.1029/2006JC003622, 2006. a
Herraiz-Borreguero, L., Allison, I., Craven, M., Nicholls, K. W., and Rosenberg, M. A.:
Ice shelf/ocean interactions under the Amery Ice Shelf: Seasonal variability and its effect on marine ice formation, J. Geophys. Res.-Oceans, 118, 7117–7131, https://doi.org/10.1002/2013JC009158, 2013. a, b, c
Herraiz-Borreguero, L., Coleman, R., Allison, I., Rintoul, S. R., Craven, M., and Williams, G. D.:
Circulation of modified Circumpolar Deep Water and basal melt beneath the Amery Ice Shelf, East Antarctica, J. Geophys. Res.-Oceans, 120, 3098–3112, https://doi.org/10.1002/2015JC010697, 2015. a, b, c, d, e, f
Herraiz-Borreguero, L., Church, J. A., Allison, I., Peña-Molino, B., Coleman, R., Tomczak, M., and Craven, M.:
Basal melt, seasonal water mass transformation, ocean current variability, and deep convection processes along the Amery Ice Shelf calving front, East Antarctica, J. Geophys. Res.-Oceans, 121, 4946–4965, https://doi.org/10.1002/2016JC011858, 2016. a, b, c, d
Huppert, H. E. and Turner, J. S.:
On melting icebergs, Nature, 271, 46–48, https://doi.org/10.1038/271046a0, 1978. a
Jackson, P. R. and Rehmann, C. R.:
Experiments on differential scalar mixing in turbulence in a sheared, stratified flow, J. Phys. Oceanogr., 44, 2661–2680, https://doi.org/10.1175/JPO-D-14-0027.1, 2014. a
Jacobs, S. S., Jenkins, A., Giulivi, C. F., and Dutrieux, P.:
Stronger ocean circulation and increased melting under Pine Island Glacier ice shelf, Nat. Geosci., 4, 519–523, https://doi.org/10.1038/ngeo1188, 2011. a
Jenkins, A.:
A one-dimensional model of ice shelf-ocean interaction, J. Geophys. Res.-Oceans, 96, 20671–20677, https://doi.org/10.1029/91JC01842, 1991. a, b
Jenkins, A., Shoosmith, D., Dutrieux, P., Jacobs, S., Kim, T. W., Lee, S. H., Ha, H. K., and Stammerjohn, S.:
West Antarctic Ice Sheet retreat in the Amundsen Sea driven by decadal oceanic variability, Nat. Geosci., 11, 733–738, https://doi.org/10.1038/s41561-018-0207-4, 2018. a
Keitzl, T., Mellado, J. P., and Notz, D.:
Reconciling estimates of the ratio of heat and salt fluxes at the ice-ocean interface, J. Geophys. Res.-Oceans, 121, 1063–1084, https://doi.org/10.1002/2015JC010796, 2016. a, b
Kelley, D., Fernando, H., Gargett, A., Tanny, J., and Özsoy, E.:
The diffusive regime of double-diffusive convection, Prog. Oceanogr., 56, 461–481, https://doi.org/10.1016/S0079-6611(03)00026-0, 2003. a
Khazendar, A., Schodlok, M. P., Fenty, I., Ligtenberg, S. R. M., Rignot, E., and van den Broeke, M. R.:
Observed thinning of Totten Glacier is linked to coastal polynya variability, Nat. Commun., 4, 1–9, https://doi.org/10.1038/ncomms3857, 2013. a
MacAyeal, D. R.:
Thermohaline circulation below the Ross Ice Shelf: A consequence of tidally induced vertical mixing and basal melting, J. Geophys. Res.-Oceans, 89, 597–606, https://doi.org/10.1029/JC089iC01p00597, 1984. a
Malyarenko, A., Wells, A. J., Langhorne, P. J., Robinson, N. J., Williams, M. J., and Nicholls, K. W.:
A synthesis of thermodynamic ablation at ice-ocean interfaces from theory, observations and models, Ocean Model., 154, 101692, https://doi.org/10.1016/j.ocemod.2020.101692, 2020. a, b, c, d
McConnochie, C. D. and Kerr, R. C.:
The effect of a salinity gradient on the dissolution of a vertical ice face, J. Fluid Mech., 791, 589–607, https://doi.org/10.1017/jfm.2016.62, 2016. a, b
McConnochie, C. D. and Kerr, R. D.:
Testing a common ice-ocean parameterization with laboratory experiments, J. Geophys. Res.-Oceans, 122, 5905–5915, https://doi.org/10.1002/2017JC012918, 2017a. a
McConnochie, C. D. and Kerr, R. C.:
Enhanced ablation of a vertical ice wall due to an external freshwater plume, J. Fluid Mech., 810, 429–447, https://doi.org/10.1017/jfm.2016.761, 2017b. a, b
McConnochie, C. D. and Kerr, R. C.:
Dissolution of a sloping solid surface by turbulent compositional convection, J. Fluid Mech., 846, 563–577, https://doi.org/10.1017/jfm.2018.282, 2018. a, b, c
McDougall, T. J. and Barker, P. M.:
Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox, Scor/Iapso Wg127, p. 28, http://www.teos-10.org/ (last access: 18 July 2022), 2011. a
McDougall, T. J., Barker, P. M., Feistel, R., and Galton-Fenzi, B. K.:
Melting of Ice and Sea Ice into Seawater and Frazil Ice Formation, J. Phys. Oceanogr., 44, 1751–1775, https://doi.org/10.1175/JPO-D-13-0253.1, 2014. a, b, c, d
McPhee, M. G.:
Turbulent heat flux in the upper ocean under sea ice, J. Geophys. Res., 97, 5365, https://doi.org/10.1029/92JC00239, 1992. a
McPhee, M. G., Maykut, G. A., and Morison, J. H.:
Dynamics and thermodynamics of the ice/upper ocean system in the marginal ice zone of the Greenland Sea, J. Geophys. Res., 92, 7017, https://doi.org/10.1029/JC092iC07p07017, 1987. a, b, c, d
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert, M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.:
Polar Regions, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegrí, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N. M., Cambridge University Press, Cambridge, UK and New York, NY, USA, 203–320, https://doi.org/10.1017/9781009157964.005, 2019. a, b
Middleton, L., Vreugdenhil, C. A., Holland, P. R., and Taylor, J. R.:
Numerical simulations of melt-driven double-diffusive fluxes in a turbulent boundary layer beneath an ice shelf, J. Phys. Oceanogr., 51, 403–418, https://doi.org/10.1175/JPO-D-20-0114.1, 2021. a, b, c
Minchew, B. M., Gudmundsson, G. H., Gardner, A. S., Paolo, F. S., and Fricker, H. A.:
Modeling the dynamic response of outlet glaciers to observed ice-shelf thinning in the Bellingshausen Sea Sector, West Antarctica, J. Glaciol., 64, 333–342, https://doi.org/10.1017/jog.2018.24, 2018. a
Mondal, M., Gayen, B., Griffiths, R. W., and Kerr, R. C.:
Ablation of sloping ice faces into polar seawater, J. Fluid Mech., 863, 545–571, https://doi.org/10.1017/jfm.2018.970, 2019. a, b, c, d
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., and Hellmer, H. H.:
Future projections of Antarctic ice shelf melting based on CMIP5 scenarios, J. Climate, 31, 5243–5261, https://doi.org/10.1175/JCLI-D-17-0854.1, 2018a. a
Naughten, K. A., Meissner, K. J., Galton-Fenzi, B. K., England, M. H., Timmermann, R., Hellmer, H. H., Hattermann, T., and Debernard, J. B.:
Intercomparison of Antarctic ice-shelf, ocean, and sea-ice interactions simulated by MetROMS-iceshelf and FESOM 1.4, Geosci. Model Dev., 11, 1257–1292, https://doi.org/10.5194/gmd-11-1257-2018, 2018b. a, b, c
Nicholls, K. W.:
The study of ice shelf-ocean interaction–techniques and recent results, Advances in Polar Science, 5, 222–230, https://doi.org/10.13679/j.advps.2018.3.00222, 2018. a
Nicholls, K. W., Makinson, K., and Østerhus, S.:
Circulation and water masses beneath the northern Ronne Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 109, C12017, https://doi.org/10.1029/2004JC002302, 2004. a
Nicholls, K. W., Abrahamsen, E. P., Buck, J. J. H., Dodd, P. A., Goldblatt, C., Griffiths, G., Heywood, K. J., Hughes, N. E., Kaletzky, A., Lane-Serff, G. F., and Others: Measurements beneath an Antarctic ice shelf using an autonomous underwater vehicle, Geophys. Res. Lett., 33, L08612, https://doi.org/10.1029/2006GL025998, 2006. a, b
Padman, L., Fricker, H. A., Coleman, R., Howard, S., and Erofeeva, L.:
A new tide model for the Antarctic ice shelves and seas, Ann. Glaciol., 34, 247–254, https://doi.org/10.3189/172756402781817752, 2002. a
Pawlowicz, R., Beardsley, B., and Lentz, S.:
Classical tidal harmonic analysis including error estimates in MATLAB using T TIDE, Comput. Geosci., 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002. a, b
Post, A., Galton-Fenzi, B., Riddle, M., Herraiz-Borreguero, L., O'Brien, P., Hemer, M., McMinn, A., Rasch, D., and Craven, M.:
Modern sedimentation, circulation and life beneath the Amery Ice Shelf, East Antarctica, Cont. Shelf Res., 74, 77–87, https://doi.org/10.1016/j.csr.2013.10.010, 2014. a
Reese, R., Gudmundsson, G. H., Levermann, A., and Winkelmann, R.:
The far reach of ice-shelf thinning in Antarctica, Nat. Clim. Change, 8, 53–57, https://doi.org/10.1038/s41558-017-0020-x, 2018. a, b
Rignot, E., Jacobs, S., Mouginot, J., and Scheuchl, B.:
Ice Shelf Melting Around Antarctica, Science, 341, 266–270, https://doi.org/10.1126/science.1235798, 2013. a, b
Rignot, E., Mouginot, J., and Scheuchl, B.:
MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2, NASA National Snow and Ice Data Center Distributed Active Archive Center, https://doi.org/10.5067/D7GK8F5J8M8R, Boulder, Colorado, USA, 2017. a
Robinson, N. J., Williams, M. J. M., Barrett, P. J., and Pyne, A. R.:
Observations of flow and ice-ocean interaction beneath the McMurdo Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 115, C03025, https://doi.org/10.1029/2008JC005255, 2010. a
Robinson, N. J., Stevens, C. L., and McPhee, M. G.:
Observations of amplified roughness from crystal accretion in the sub-ice ocean boundary layer, Geophys. Res. Lett., 44, 1814– 1822, https://doi.org/10.1002/2016GL071491, 2017. a
Rosenberg, M., Galton-Fenzi, B. K., and Gamble Rosevear, M.: Amery Ice Shelf – hot water drill borehole AM06, RDI 300 kHz ADCP ocean velocity data 2010–2011, Ver. 1, Australian Antarctic Data Centre [data set], https://doi.org/10.26179/r16w-am36, 2021. a
Rosevear, M. G., Gayen, B., and Galton-Fenzi, B. K.:
The role of double-diffusive convection in basal melting of Antarctic ice shelves, P. Natl. Acad. Sci. USA, 118, e2007541118, https://doi.org/10.1073/pnas.2007541118, 2021. a, b, c
Seroussi, H., Nowicki, S., Payne, A. J., Goelzer, H., Lipscomb, W. H., Abe-Ouchi, A., Agosta, C., Albrecht, T., Asay-Davis, X., Barthel, A., Calov, R., Cullather, R., Dumas, C., Galton-Fenzi, B. K., Gladstone, R., Golledge, N. R., Gregory, J. M., Greve, R., Hattermann, T., Hoffman, M. J., Humbert, A., Huybrechts, P., Jourdain, N. C., Kleiner, T., Larour, E., Leguy, G. R., Lowry, D. P., Little, C. M., Morlighem, M., Pattyn, F., Pelle, T., Price, S. F., Quiquet, A., Reese, R., Schlegel, N.-J., Shepherd, A., Simon, E., Smith, R. S., Straneo, F., Sun, S., Trusel, L. D., Van Breedam, J., van de Wal, R. S. W., Winkelmann, R., Zhao, C., Zhang, T., and Zwinger, T.:
ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over the 21st century, The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, 2020. a
Shcherbina, A. Y., Rudnick, D. L., and Talley, L. D.:
Ice-draft profiling from bottom-mounted ADCP data, J. Atmos. Ocean. Tech., 22, 1249–1266, https://doi.org/10.1175/jtech1776.1, 2005. a, b
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., and others: Mass balance of the Antarctic Ice Sheet from 1992 to 2017, Nature, 556, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
Sirevaag, A.:
Turbulent exchange coefficients for the ice/ocean interface in case of rapid melting, Geophys. Res. Lett., 36, L04606, https://doi.org/10.1029/2008GL036587, 2009. a
Stanton, T., Shaw, W., Truffer, M., Corr, H., Peters, L., Riverman, K., Bindschadler, R., Holland, D., and Anandakrishnan, S.:
Channelized ice melting in the ocean boundary layer beneath Pine Island Glacier, Antarctica, Science, 341, 1236–1239, https://doi.org/10.1126/science.1239373, 2013. a
Stevens, C., Hulbe, C., Brewer, M., Stewart, C., Robinson, N., Ohneiser, C., and Jendersie, S.:
Ocean mixing and heat transport processes observed under the Ross Ice Shelf control its basal melting, P. Natl. Acad. Sci. USA, 117, 16799–16804, https://doi.org/10.1073/pnas.1910760117, 2020. a, b, c
Stewart, C. L.:
Ice-ocean interactions beneath the north-western Ross Ice Shelf, Antarctica, PhD thesis, University of Cambridge, https://doi.org/10.17863/CAM.21483, 2018. a, b, c, d
Stewart, C. L., Christoffersen, P., Nicholls, K. W., Williams, M. J. M., and Dowdeswell, J. A.:
Basal melting of Ross Ice Shelf from solar heat absorption in an ice-front polynya, Nat. Geosci., 12, 435–440, https://doi.org/10.1038/s41561-019-0356-0, 2019. a, b
Teledyne RD Instruments: Acoustic Doppler Current Profiler Principles of Operation: A Practical Primer, Tech. rep., N 951-6069, RD Instruments, 2006. a
Vreugdenhil, C. A. and Taylor, J. R.:
Stratification effects in the turbulent boundary layer beneath a melting ice shelf: insights from resolved large-eddy simulations, J. Phys. Oceanogr., 49, 1905–1925, https://doi.org/10.1175/JPO-D-18-0252.1, 2019. a, b, c, d
Wells, A. J. and Worster, M. G.:
A geophysical-scale model of vertical natural convection boundary layers, J. Fluid Mech., 609, 111–137, https://doi.org/10.1017/S0022112008002346, 2008. a
Wen, J., Wang, Y., Wang, W., Jezek, K. C., Liu, H., and Allison, I.:
Basal melting and freezing under the Amery Ice Shelf, East Antarctica, J. Glaciol., 56, 81–90, https://doi.org/10.3189/002214310791190820, 2010. a, b
Williams, G., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima, K., Fukamachi, Y., Fraser, A., Gao, L., Chen, H., McMahon, C., and others: The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay, Nat. Commun., 7, 1–9, https://doi.org/10.1038/ncomms12577, 2016. a
Williams, M. J. M., Grosfeld, K., Warner, R. C., Gerdes, R., and Determann, J.:
Ocean circulation and ice-ocean interaction beneath the Amery Ice Shelf, Antarctica, J. Geophys. Res.-Oceans, 106, 22383–22399, https://doi.org/10.1029/2000JC000236, 2001.
a
Yu, J., Liu, H., Jezek, K. C., Warner, R. C., and Wen, J.:
Analysis of velocity field, mass balance, and basal melt of the Lambert Glacier–Amery Ice Shelf system by incorporating Radarsat SAR interferometry and ICESat laser altimetry measurements, J. Geophys. Res.-Sol. Ea., 115, B11102, https://doi.org/10.1029/2010JB007456, 2010. a, b
Short summary
Understanding ocean-driven melting of Antarctic ice shelves is critical for predicting future sea level. However, ocean observations from beneath ice shelves are scarce. Here, we present unique ocean and melting data from the Amery Ice Shelf, East Antarctica. We use our observations to evaluate common methods of representing melting in ocean–climate models (melting
parameterisations) and show that these parameterisations overestimate melting when the ocean is warm and/or currents are weak.
Understanding ocean-driven melting of Antarctic ice shelves is critical for predicting future...