Articles | Volume 17, issue 3
https://doi.org/10.5194/os-17-849-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-849-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coastal submesoscale processes and their effect on phytoplankton distribution in the southeastern Bay of Biscay
AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, 5007 Bergen, Norway
Anna Rubio
AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
Luis Felipe Artigas
Université du Littoral Côte d'Opale, Université de Lille, CNRS UMR 8187 LOG, 32 Avenue Foch, 62930 Wimereux, France
Ingrid Puillat
IFREMER/Dyneco/Physed, BP 70, 29280 Plouzané, France
Ivan Manso-Narvarte
AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
Pascal Lazure
IFREMER/Dyneco/Physed, BP 70, 29280 Plouzané, France
Ainhoa Caballero
AZTI Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110 Pasaia, Spain
Related authors
No articles found.
Zéline Hubert, Arnaud Louchart, Kévin Robache, Alexandre Epinoux, Clémentine Gallot, Vincent Cornille, Muriel Crouvoisier, Sébastien Monchy, and Luis Felipe Artigas
EGUsphere, https://doi.org/10.5194/egusphere-2024-1933, https://doi.org/10.5194/egusphere-2024-1933, 2024
Short summary
Short summary
This study provides the first assessment of decadal changes of the whole phytoplankton community addressed by flow cytometry in the highly productive waters of the Strait of Dover. A significant increase of 1 °C in surface seawater temperature, associated to an important change in nutrient concentration and balance, have triggered a change in phytoplankton communities characterized by higher total abundance and an increasing proportion of the smallest cells (picroeukaryotes, picocyanobacteria).
Pablo Lorente, Anna Rubio, Emma Reyes, Lohitzune Solabarrieta, Silvia Piedracoba, Joaquín Tintoré, and Julien Mader
State Planet, 1-osr7, 8, https://doi.org/10.5194/sp-1-osr7-8-2023, https://doi.org/10.5194/sp-1-osr7-8-2023, 2023
Short summary
Short summary
Upwelling is an important process that impacts water quality and aquaculture production in coastal areas. In this work we present a new methodology to monitor this phenomenon in two different regions by using surface current estimations provided by remote sensing technology called high-frequency radar.
Irene Ruiz, Anna Rubio, Ana J. Abascal, and Oihane C. Basurko
Ocean Sci., 18, 1703–1724, https://doi.org/10.5194/os-18-1703-2022, https://doi.org/10.5194/os-18-1703-2022, 2022
Short summary
Short summary
The south-eastern Bay of Biscay is an accumulation zone for marine litter. Yet, the behaviour of the riverine litter fraction reaching the sea is poorly understood. We resolve this by studying litter buoyancy and transport, based on high-frequency radar observations and Lagrangian simulations. We show large seasonal and regional differences between items' behaviour, particularly in summer when highly buoyant litter beaches faster and Gipuzkoa and Pyrénées-Atlantiques regions are mostly affected.
Clare Ostle, Kevin Paxman, Carolyn A. Graves, Mathew Arnold, Luis Felipe Artigas, Angus Atkinson, Anaïs Aubert, Malcolm Baptie, Beth Bear, Jacob Bedford, Michael Best, Eileen Bresnan, Rachel Brittain, Derek Broughton, Alexandre Budria, Kathryn Cook, Michelle Devlin, George Graham, Nick Halliday, Pierre Hélaouët, Marie Johansen, David G. Johns, Dan Lear, Margarita Machairopoulou, April McKinney, Adam Mellor, Alex Milligan, Sophie Pitois, Isabelle Rombouts, Cordula Scherer, Paul Tett, Claire Widdicombe, and Abigail McQuatters-Gollop
Earth Syst. Sci. Data, 13, 5617–5642, https://doi.org/10.5194/essd-13-5617-2021, https://doi.org/10.5194/essd-13-5617-2021, 2021
Short summary
Short summary
Plankton form the base of the marine food web and are sensitive indicators of environmental change. The Plankton Lifeform Extraction Tool brings together disparate plankton datasets into a central database from which it extracts abundance time series of plankton functional groups, called
lifeforms, according to shared biological traits. This tool has been designed to make complex plankton datasets accessible and meaningful for policy, public interest, and scientific discovery.
Lohitzune Solabarrieta, Ismael Hernández-Carrasco, Anna Rubio, Michael Campbell, Ganix Esnaola, Julien Mader, Burton H. Jones, and Alejandro Orfila
Ocean Sci., 17, 755–768, https://doi.org/10.5194/os-17-755-2021, https://doi.org/10.5194/os-17-755-2021, 2021
Short summary
Short summary
High-frequency radar technology measures coastal ocean surface currents. The use of this technology is increasing as it provides near-real-time information that can be used in oil spill or search-and-rescue emergencies to forecast the trajectories of floating objects. In this work, an analog-based short-term prediction methodology is presented, and it provides surface current forecasts of up to 48 h. The primary advantage is that it is easily implemented in real time.
Lucia Pineau-Guillou, Pascal Lazure, and Guy Wöppelmann
Ocean Sci., 17, 17–34, https://doi.org/10.5194/os-17-17-2021, https://doi.org/10.5194/os-17-17-2021, 2021
Short summary
Short summary
We investigated the long-term changes of the principal tidal component M2 along North Atlantic coasts, from 1846 to 2018. We analysed 18 tide gauges. We found that M2 variations are consistent at all the stations in the North-East Atlantic, whereas some discrepancies appear in the North-West Atlantic. The similarity between the North Atlantic Oscillation and M2 variations in the North-East Atlantic suggests a possible influence of the large-scale atmospheric circulation on the tide.
Ivan Manso-Narvarte, Erick Fredj, Gabriel Jordà, Maristella Berta, Annalisa Griffa, Ainhoa Caballero, and Anna Rubio
Ocean Sci., 16, 575–591, https://doi.org/10.5194/os-16-575-2020, https://doi.org/10.5194/os-16-575-2020, 2020
Short summary
Short summary
Our main aim is to study the feasibility of reconstructing oceanic currents by extending the data obtained from coastal multiplatform observatories to nearby areas in 3D in the SE Bay of Biscay. To that end, two different data-reconstruction methods with different approaches were tested, providing satisfactory results. This work is a first step towards the real applicability of these methods in this study area, and it shows the capabilities of the methods for a wide range of applications.
Ivan Manso-Narvarte, Ainhoa Caballero, Anna Rubio, Claire Dufau, and Florence Birol
Ocean Sci., 14, 1265–1281, https://doi.org/10.5194/os-14-1265-2018, https://doi.org/10.5194/os-14-1265-2018, 2018
Short summary
Short summary
Our main aim is to compare two different measuring systems of the surface ocean currents: land-based, high-frequency radar and satellite altimetry. Results show that the surface currents detected by both systems agree up to a 70 %, mostly in areas of persistent currents. This work is a first step in the combination of both technologies for an improved monitoring of the coastal surface ocean dynamics.
Ismael Hernández-Carrasco, Lohitzune Solabarrieta, Anna Rubio, Ganix Esnaola, Emma Reyes, and Alejandro Orfila
Ocean Sci., 14, 827–847, https://doi.org/10.5194/os-14-827-2018, https://doi.org/10.5194/os-14-827-2018, 2018
Short summary
Short summary
A new methodology to reconstruct HF radar velocity fields based on neural networks is developed. Its performance is compared with other methods focusing on the propagation of errors introduced in the reconstruction of the velocity fields through the trajectories, Lagrangian flow structures and residence times. We find that even when a large number of measurements in the HFR velocity field is missing, the Lagrangian techniques still give an accurate description of oceanic transport properties.
M. Thyssen, S. Alvain, A. Lefèbvre, D. Dessailly, M. Rijkeboer, N. Guiselin, V. Creach, and L.-F. Artigas
Biogeosciences, 12, 4051–4066, https://doi.org/10.5194/bg-12-4051-2015, https://doi.org/10.5194/bg-12-4051-2015, 2015
Short summary
Short summary
Phytoplankton community structure at a high spatial resolution (<3km) was studied in the North Sea during a cruise in May 2011. A first comparison with PHYSAT reflectance anomalies enables the extrapolation of the community structure rather than a dominant type at the North Sea scale and was interpreted with its hydrological characteristics. This will seriously improve our understanding of the influence of community structure on biogeochemical processes at the daily and basin scales.
Cited articles
Benson, D. J.: Computational methods in Lagrangian and Eulerian hydrocodes,
Comput. Method. Appl. M., 99, 235–394,
https://doi.org/10.1016/0045-7825(92)90042-I, 1992. a
Beutler, M., H, W. K., Meyer, B., Moldaenke, C., Lüring, C., Meyerhöfer, M.,
Hansen, U. P., and Dau, H.: A fluorometric method for the differentiation
of algal populations in vivo and in situ, Photosynth. Res.,
72, 39–53, 2002. a
Borja, A., Chust, G., Rodríguez, J. G., Bald, J., Belzunce-Segarra, M. J.,
Franco, J., Garmendia, J. M., Larreta, J., Menchaca, I., Muxika, I., Solaun,
O., Revilla, M., Uriarte, A., Valencia, V., and Zorita, I.: The past is
the future of the present: Learning from long-time series of marine
monitoring, Sci. Total Environ., 566, 698–711, 2016. a
Caballero, A., Mulet, S., Ayoub, N., Manso-Narvarte, I., Davila, X., Boone, C.,
Toublanc, F., and Rubio, A.: Integration of HF Radar Observations for an
Enhanced Coastal Mean Dynamic Topography, Front. Mar. Sci., 7,
1005, https://doi.org/10.3389/fmars.2020.588713, 2020. a
Cotté, C., D'Ovidio, F., Dragon, A. C., Guinet, C., and Lévy, M.:
Flexible preference of southern elephant seals for distinct mesoscale
features within the Antarctic Circumpolar Current, Prog. Oceanogr.,
131, 46–58, https://doi.org/10.1016/j.pocean.2014.11.011, 2015. a
Cullen, J. J.: Subsurface Chlorophyll Maximum Layers: Enduring Enigma or
Mystery Solved?, Annu. Rev. Mar. Sci., 7, 207–239,
https://doi.org/10.1146/annurev-marine-010213-135111, 2015. a, b, c, d
D'Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y., and Levy, M.: Fluid
dynamical niches of phytoplankton types, P. Natl. Acad. Sci. USA, 107, 18366–18370, https://doi.org/10.1073/pnas.1004620107, 2010. a, b
Emery, W. J. and Thomson, R. E.: Preface, in: Data Analysis Methods in
Physical Oceanography, edited by Emery, W. J. and Thomson, R. E., Elsevier
Science, Amsterdam, https://doi.org/10.1016/B978-044450756-3/50000-9,
2001. a
Estrada, M., Marrasé, C., and Salat, J.: In vivo fluorescence/chlorophyll a
ratio as an ecological indicator in oceanography, Sci. Mar., 60, 317–325,
1996. a
Fernández, E., Cabal, J., Acuña, J. L., Bode, A., Botas, A., and
García-soto, C.: Plankton distribution across a slope current-induced
front in the southern Bay of Biscay, J. Plank. Res., 15,
619–641, https://doi.org/10.1093/plankt/15.6.619, 1993. a
Ferrer, L., Fontán, A., Mader, J., Chust, G., González, M.,
Valencia, V., Uriarte, A., and Collins, M. B.: Low-salinity plumes in the
oceanic region of the Basque Country, Cont. Shelf Res., 29,
970–984, https://doi.org/10.1016/j.csr.2008.12.014, 2009. a
Gomis, D. and Ruiz, S.: Manual DAToBJETIVO v.01: Una herramienta para el
análisis espacial objetivo y diagnóstico de variables oceanográficas.
Departamento Recursos Naturales, Grupo de Oceanografía Interdisciplinar
IMEDEA (centro mixto Universitat de les Illes Balears – CSIC), Mallorca,
España, 40 pp., 2003. a
Gomis, D., Ruiz, S., and Pedder, M. A.: Diagnostic analysis of the 3D
ageostrophic circulation from a multivariate spatial interpolation of CTD and
ADCP data, Deep-Sea Res. Pt. I, 48,
269–295, https://doi.org/10.1016/S0967-0637(00)00060-1, 2001. a, b
Gruber, N., Lachkar, Z., Frenzel, H., Marchesiello, P., Münnich, M.,
McWilliams, J. C., Nagai, T., and Plattner, G. K.: Eddy-induced reduction of
biological production in eastern boundary upwelling systems, Nat.
Geosci., 4, 787–792, https://doi.org/10.1038/ngeo1273, 2011. a
Guillaud, J.-f., Aminot, A., Delmas, D., Gohin, F., Lunven, M., Labry, C., and
Herbland, A.: Seasonal variation of riverine nutrient inputs in the northern
Bay of Biscay (France), and patterns of marine phytoplankton response, J. Mar. Syst., 72,
309–319, https://doi.org/10.1016/j.jmarsys.2007.03.010, 2008. a
Hastie, T. and Tibshirani, R.: Generalized Additive Models, Chapman and Hall, 352 pp.,
1990. a
Irigoien, X., Fiksen, Cotano, U., Uriarte, A., Alvarez, P., Arrizabalaga, H.,
Boyra, G., Santos, M., Sagarminaga, Y., Otheguy, P., Etxebeste, E., Zarauz,
L., Artetxe, I., and Motos, L.: Could Biscay Bay Anchovy recruit through a
spatial loophole?, Prog. Oceanogr., 74, 132–148,
https://doi.org/10.1016/j.pocean.2007.04.011, 2007. a
Kruskopf, M. and Flynn, K. J.: Chlorophyll content and fluorescence responses
cannot be used to gauge reliably phytoplankton biomass, nutrient status or
growth rate, New Phytol., 169, 525–536, 2006. a
Latasa, M., Cabello, A. M., Morán, X. A. G., Massana, R., and R, S.:
Distribution of phytoplankton groups within the deep chlorophyll maximum,
Limnol. Oceanogr., 62, 665–685, https://doi.org/10.1002/lno.10452, 2017. a, b, c
Liu, Y., Kerkering, H., and Weisberg, R.: Chapter 11 - Observing Frontal
Instabilities of the Florida Current Using High Frequency Radar, in: Coastal
Ocean Observing Systems, edited by: Liu, Y., Kerkering, H., and Weisberg,
R. H., Academic Press, Boston, 179–208,
https://doi.org/10.1016/B978-0-12-802022-7.00011-0, 2015. a
MacIntyre, H. L., Lawrenz, E., and Richardson, T. L.: Taxonomic Discrimination
of Phytoplankton by Spectral Fluorescence, in: Chlorophyll a Fluorescence in
Aquatic Sciences: Methods and Applications, edited by: Suggett, D., Prášil,
O., and Borowitzka, M., Developments in Applied
Phycology, 4, 129–169, 2010. a
Mahadevan, A.: Ocean science: Eddy effects on biogeochemistry, Nature, 506,
168–169, https://doi.org/10.1038/nature13048, 2014. a
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of
Plankton, Annu. Rev. Mar. Sci., 8,
https://doi.org/10.1146/annurev-marine-010814-015912, 2016. a
Mahadevan, A., Thomas, L. N., and Tandon, A.: Comment on “eddy/wind
interactions stimulate extraordinary mid-ocean plankton blooms”, Science,
320, 5875, https://doi.org/10.1126/science.1152111, 2008. a, b
Mantovani, C., Corgnati, L., Horstmann, J., Rubio, A., Reyes, E., Quentin, C.,
Cosoli, S., Asensio, J. L., Mader, J., and Griffa, A.: Best Practices on High
Frequency Radar Deployment and Operation for Ocean Current Measurement,
Front. Mar. Sci., 7, 210 pp., https://doi.org/10.3389/fmars.2020.00210, 2020. a
Morozov, E., Pozdnyakov, D., Smyth, T., Sychev, V., and Grassl, H.:
Space-borne study of seasonal, multi-year, and decadal phytoplankton
dynamics in the Bay of Biscay, Int. J. Remote Sens., 34,
1297–1331, https://doi.org/10.1080/01431161.2012.718462, 2013. a
Muller, H., Blanke, B., Dumas, F., Lekien, F., and Mariette, V.: Estimating
Lagrangian Residual Circulation (LRC) in the Iroise Sea, Proceedings of the
IEEE Working Conference on Current Measurement Technology, 78, 279–284,
https://doi.org/10.1109/CCM.2008.4480881, 2009. a
Petus, C., Marieu, V., Novoa, S., Chust, G., Bruneau, N., and Froidefond,
J. M.: Monitoring spatio-temporal variability of the Adour River turbid
plume (Bay of Biscay, France) with MODIS 250-m imagery, Cont. Shelf
Res., 74, 35–49, https://doi.org/10.1016/j.csr.2013.11.011, 2014. a
Pingree, R. D. and Garcia-Soto, C.: Plankton blooms, ocean circulation and the
European slope current: Response to weather and climate in the Bay of Biscay
and W English Channel (NE Atlantic), Deep-Sea Res. Pt. II, 106, 5–22, https://doi.org/10.1016/j.dsr2.2014.07.008, 2014. a, b
Puillat, I., Lazure, P., Jégou, A.-M., Lampert, L., and Miller, P.:
Mesoscale hydrological variability induced by northwesterly wind on the
French continental shelf of the Bay of Biscay, Scintia Marina, 70, 15–26, 2006. a
R Core Team: R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria,
https://www.R-project.org/ (last access: 11 June 2021), 2020. a
Reverdin, G., Marié, L., Lazure, P., Ovidio, F., Boutin, J., Testor, P.,
Martin, N., Lourenco, A., Gaillard, F., Lavin, A., Rodriguez, C., Somavilla,
R., Mader, J., Rubio, A., Blouch, P., Rolland, J., Bozec, Y., Charria, G.,
Batifoulier, F., Dumas, F., Louazel, S., and Chanut, J.: Freshwater from the
Bay of Biscay shelves in 2009, J. Mar. Syst., 109,
134–143, https://doi.org/10.1016/j.jmarsys.2011.09.017, 2013. a, b
Rubio, A., Reverdin, G., Fontán, A., González, M., and Mader, J.: Mapping
near-inertial variability in the SE Bay of Biscay from HF radar data and
two offshore moored buoys, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL048783, 2011. a
Rubio, A., Solabarrieta, L., Castanedo, S., Medina, R., and Aranda, J. A.: Surface circulation and Lagrangian transport in the SE Bay of Biscay from HF radar data, 2013 MTS/IEEE OCEANS, https://doi.org/10.1109/OCEANS-Bergen.2013.6608039, 2013. a, b, c
Rubio, A., Caballero, A., Or, A., Hernández-carrasco, I., Ferrer, L.,
González, M., Solabarrieta, L., and Mader, J.: Remote Sensing of
Environment Eddy-induced cross-shelf export of high Chl-a coastal waters in
the SE Bay of Biscay, Remote Sens. Environ., 205, 290–304, https://doi.org/10.1016/j.rse.2017.10.037, 2018. a, b
Solabarrieta, L., Rubio, A., Castanedo, S., Medina, R., Charria, G., and
Hernández, C.: Surface water circulation patterns in the southeastern
Bay of Biscay: New evidences from HF radar data, Cont. Shelf
Res., 74, 60–76, https://doi.org/10.1016/j.csr.2013.11.022, 2014. a, b
Teles-Machado, A., Peliz, A., McWilliams, J. C., Dubert, J., and LeCann, B.:
Circulation on the Northwestern Iberian Margin: Swoddies, Prog. Oceanogr., 140, 116–133, 2016. a
Tew Kai, E., Rossi, V., Sudre, J., Weimerskirch, H., Lopez, C.,
Hernandez-Garcia, E., Marsac, F., and Garçon, V.: Top marine predators
track Lagrangian coherent structures, P. Natl. Acad. Sci. USA, 106, 8245–8250,
https://doi.org/10.1073/pnas.0811034106, 2009.
a
Valencia, V., Franco, J., Borja, Á., and Fontán, A.: Hydrography
of the southeastern Bay of Biscay, Oceanography and marine environment of
the Basque Country, Elsevier Oceanography Series, 70, 159–194, https://doi.org/10.1016/S0422-9894(04)80045-X, 2004. a, b
Wood, S. N.: Modelling and smoothing parameter estimation with multiple
quadratic penalties, J. R. Stat. Soc., 62, 413–428, 2000. a
Wood, S. N.: Generalized additive models: An introduction with R, Chapman &
Hall/CRC, 496 pp., 2006. a
Wood, S. N.: Fast stable restricted maximum likelihood and marginal likelihood
estimation of semiparametric generalized linear models, J. Roy. Stat. Soc., 73, 3–36, 2011. a
Short summary
The ocean is a turbulent system, full of meandering currents and fronts of various scales. These processes can influence the distribution of microscopic algae or phytoplankton by upwelling deep, nutrient-rich waters to the sunlit surface or by actively gathering and accumulating them. Our results suggest that, at the surface, salinity is the main conditioning factor for phytoplankton distribution. However, at the subsurface, oceanic currents influence phytoplankton distribution the most.
The ocean is a turbulent system, full of meandering currents and fronts of various scales. These...